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Abstract: Continuous authentication using keystroke dynamics is significant for applications where continuous moni-
toring of a user’s identity is desirable, for example in the context of the online assessments and examinations
frequently encountered in eLearning environments. In this paper, a novel approach to realtime keystroke
continuous authentication is proposed that is founded on a sinusoidal signal based approach that takes into
consideration the sequencing of keystrokes. Three alternative time series representations are considered and
compared: Keystroke Time Series (KTS), Discrete Fourier Transform (DFT) and Discrete Wavelet Transform
(DWT). The proposed process is fully described and analysed using three keystroke dynamics datasets. The
evaluation also includes a comparison with the established Feature Vector Representation (FVR) approach.
The reported evaluation demonstrates that the proposed method, coupled with the DWT representation, out-
performs other approaches to keystroke continuous authentication with a best overall accuracy of 98.24%; a
clear indicator that the proposed keystroke continuous authentication using time series analysis has significant
potential.

1 INTRODUCTION

Keystroke dynamics are a form of behavioural bio-
metrics which can be used to authenticate keyboard
(keypad) users (Gaines et al., 1980; Alshehri et al.,
2016b). Broadly, we can identify two forms of
keystroke authentication: (i) static authentication and
(ii) continuous authentication. The first is used in the
context of one-time authentication, for example pass-
word or pin number access to a system; thus in the
context of fixed texts. Some examples, from the lit-
erature, concerning this form of authentication can be
found in (Bleha et al., 1990; Killourhy and Maxion,
2009; Syed, 2014). The second form of authentica-
tion is typically applied in the context of continuous
free text where it is desirable to continuously monitor
the identity of a user; examples regarding this form of
authentication can be found in (Shepherd, 1995; Mon-
rose and Rubin, 1997; Dowland and Furnell, 2004;
Gunetti and Picardi, 2005; Ahmed and Traore, 2014).
One application, where continuous authentication is
applicable, is in the case of students completing on-
line assessments as part of distance and online learn-
ing systems.
The focus of the work presented in this paper is con-
tinuous authentication. The reasons for this are as

follows: (i) there is little reported work concerning
continuous authentication using keystroke dynamics
due to the challenges involved, and (ii) the increas-
ing prevalence of internet facilitated distance learning
(eLearning, Massive Open Online Courses and so on)
where continuous authentication is desirable.
In this paper, we introduce a novel mechanism
for keystroke continuous authentication, namely
Keystroke Continuous Authentication based Spectral
Analysis (KCASA) mechanism. The proposed model
is motivated by conceptualising the process of key-
board usage as a continuous stream of keystroke
events, thus as a time series which can be trans-
formed into the spectral domain to extract typing
patterns. More specifically, the idea is to convert
a given keystroke stream from the temporal domain
(raw data) to the sinusoidal (frequency) domain. The
intuition is that such transformations for time series
streams lead to faster, and more accurate, detection
of patterns (Chan and Fu, 1999; Keogh et al., 2001).
Therefore, keystroke streams can be effectively em-
ployed for real-time/continuous user authentication.
In this study, two types of spectral transform are con-
sidered: (i) Discrete Fourier Transformation (DFT)
and (ii) Discrete Wavelet Transform (DWT).
The remainder of this paper is structured as follows.
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In Section 2 a problem statement is provided to-
gether with a discussion of current issues with respect
to keystroke continuous authentication. This is fol-
lowed. in Section 3, with some definitions and pre-
liminaries concerning the proposed model. Section
4 then discusses the proposed process for finding the
similarity between keystroke sinusoidal signals, while
Section 5 presents the proposed KCASA model. The
evaluation of the proposed approach is given in Sec-
tion 6. Finally, the paper is concluded with a summary
of the main findings, and some recommendations for
further work, in Section 7.

2 PREVIOUS WORK

The fundamental approach of using keystroke dy-
namics for user authentication is founded on two
keystroke timing features: (i) key hold time (KHt ),
the elapsed time between a key press and a key re-
lease; and (ii) flight time (F t ), the time between n
consecutive key presses (releases), also sometimes
referred to as flight time latency or simply latency
(Obaidat and Sadoun, 1997). Both can be indexed
using either a temporal or a consecutive numeric ref-
erence. Whatever the case, both flight time and hold
time can be used to construct a distinctive typing pro-
file associated with individual users (Gaines et al.,
1980). These profiles are typically encapsulated using
a feature vector representation of some form. In other
words, typing profiles are frequently constructed us-
ing vectors of statistical values, such as the average
and standard deviation of hold times, or the digraph
flight time latency of selected frequently occurring di-
graphs. Authentication is then conducted by compar-
ing the similarity between stored feature vectors rep-
resented typing (reference) profiles, which are known
to belong to a specific user, and a previously unseen
profile that is claimed to belong to a particular user.
Although there has been only limited reported work
directed at keystroke continuous authentication, what
reported work there has been has used a feature vector
representation; this has met with some success.
However, there are some limitations regarding the
utilisation of the feature vector representation in the
context of keystroke continuous authentication. One
of the main limitations is the size of the required fea-
ture vectors; a significant number of digraphs and/or
trigraphs has to be considered which is infeasible in
the context of real-time continuous authentication. In
(Monrose and Rubin, 1997) the feature vectors were
composed of the flight time means of all digraphs in
the training dataset. The continuous authentication
was then conducted by repeatedly generating “test”

feature vectors for a given user, one every minute,
and comparing with stored reference profiles. If a
statistically similar match was found, then this was
considered to be an indication of user authentication.
Although the typing profile was composed of all di-
graph features, the overall reported accuracy was a
dsappoiting 23%. Similarly, in (Dowland and Fur-
nell, 2004) the mean and Standard Deviation (SD) of
the flight times for all digraphs and trigraphs in the
training dataset were used. Some 6,390 digraphs were
needed to make up a sufficient typing profile.

Some researchers have attempted to use an abstrac-
tion of typing features to decrease the size of the fea-
ture vectors. In (Gunetti and Picardi, 2005) the flight
time, for frequent n-graphs, was used, although the
approach was applied in the context of user identifica-
tion (as opposed to user authentication). Thus, given
a previously unseen sample, the shared n-graphs in
the sample and the stored n-graphs were identified
and collected in separate arrays. The elements in
the arrays were then ordered according to flight time
and the difference between the arrays computed by
considering the orderings of the elements; a measure
referred to as the degree of disorder was used (an
idea motivated by Spearman’s rank correlation co-
efficient (Zar, 1972)). Identifying a new sample re-
quired comparison with all stored sample (reference)
profiles, a computationally expensive process. In the
reported evaluation, 600 reference profiles were con-
sidered (generated from 40 users, each with 15 sam-
ples); the time taken for a single match was 140 sec-
onds (using a Pentium IV, 2.5 GHz). However, con-
struction typing profile using the average flight time
of only shared n-graphs contained in the training data
might not be representative of the n-graphs in the sam-
ples to be authenticated. This can, in turn, affect the
authentication accuracy, especially in the context of
real-time continuous authentication where typing pat-
terns are extracted from free text; a substantial num-
ber of n-graphs are required. Furthermore, it can be
observed from the study presented in (Gunetti and Pi-
cardi, 2005) that the authentication of one sample re-
lies on all other samples in the training data. This can
also lead to an efficiency issue in the context of con-
tinuous authentication.

In (Ahmed and Traore, 2014) an Artificial Neural
Network classifier was used to build a prediction
model to overcome the limitation of the work pre-
sented in (Gunetti and Picardi, 2005). Key-down
time was used together with average digraph and
monograph flight times to predict missing digraphs
based on the limited information in the training data;
thus, there was no need to involve a great number of
keystroke features while constructing the typing pro-
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file. This mechanism worked reasonably well in the
context of static authentication in a controlled setting;
typing of the same text using the same keyboard lay-
out in an allocated environment. Thus how this would
work in the context of continuous authentication re-
mains an open question. A more general criticism of
the feature vector approach is that the feature vector
values are either typing pattern abstractions (for ex-
ample average hold times) or only represent a subset
of the data (for example only frequently occurring di-
graphs).
It is proposed in this paper that the established fea-
ture vector representation may not be ideally suited
to keystroke continuous authentication. It is argued
that by representing keystroke dynamics as time se-
ries, and transforming these series to the frequency
domain, can lead to a better intepretation of typing
patterns with respect to real-time continuous authenti-
cation. To the best knowledge of the authors, no prior
work in the literature has considered the concept of
the sinusoidal representation of keystroke dynamics
in the context of continuous keyboard authentication.
However, it should be noted that in (Alshehri et al.,
2016b) the authors first proposed the idea of keyboard
based user authentication using time series, but with
respect to static text. In (Alshehri et al., 2016a) it was
suggested that this could also be applied in the context
of continuous text, although only hold time was con-
sidered. This paper presents a much more sophisti-
cated implementation of the approach, encompassing:
(i) the concept of transforming keystroke time series
into the sinusoidal (frequency) domain, (ii) utilsing
additional keystroke timing features to enhance au-
thentication effectiveness, (iii) usage of a transformed
sinusoidal sliding windows to achieve authentication,
(iv) a data cleaning process for keystroke dynamic to
be applied prior to any authentication being carried
out and (iv) a dynamic method for bespoke similarity
thresholds applicable to individual users.

3 REPRESENTING KEYSTROKE
DYNAMICS AS TIME SERIES

As already noted, the process of typing produces
a Keystroke time series Kts = {e1,e2, . . . ,en} where
en is an independent data event, and n ∈ N is the
length of the time series. Each data event ei rep-
resents a tuple of the form 〈ti,ki〉 where: (i) ti is
a temporal index of some form, and (ii) ki denotes
some associated attribute (feature) value. Thus, Kts =
{〈t1,k1〉,〈t2,k2〉, . . . ,〈ti,ki〉}. Such a time series can
be viewed as a 2D plot with t along the x-axis and
attribute value k along the y-axis (Figure 1). With re-

spect to the work presented in this paper, the value
for ti is set to be a sequential ID number (sequence of
key presses), whilst k records either flight time (F t )
or hold time (KHt ). Note also that in this paper only
the univariate time series representation is considered,
that is, in the evaluation section, we consider F t and
KHt as independently and compare their effectiveness
in the context of the proposed model. Figure 1 shows
four pairs of Kts sequences, each featuring n = 300
keystrokes, using F t as the keyboard dynamic. The
figure shows four (random) subjects selected from the
datasets used for evaluation purposes as reported on
in Section 6. Inspection of the figure clearly indicates
that individual subjects poses distinct keystroke pat-
terns and that these patterns can consequently be used
to generate distinct typing profiles.
The generated keystroke time series can be used di-
rectly as described in (Alshehri et al., 2016b). How-
ever, as already noted, the usage of such “raw” time
series is expensive in terms of efficiency and storage
capacity (Agrawal et al., 1993). Thus the idea pre-
sented in this paper is to use some forms of trans-
formation of the time series; it is conjectured that
this will yield accurate results more efficiently. Two
transformations are considered: the Discrete Fourier
Transform (DFT) and the Discrete Wavelet Transform
(DWT). Each is discussed in further detail in the fol-
lowing two sub-sections.

3.1 The Discrete Fourier Transform

The Discrete Fourier Transform (DFT) has been
widely adopted with respect to time series data of all
kinds (see for example (Agrawal et al., 1993; Vla-
chos et al., 2004)). In this paper, DFT has been used
to transform keystroke time series data from the tem-
poral domain to the frequency domain. The idea is
that this will then allow comparisons of keystroke
times series in a more efficient manner (than if the
transformation had not been conducted) without los-
ing any salient information. The compression is con-
ducted by representing the keystroke stream as a lin-
ear combination of sinusoidal coefficients. Similarity
between the transformed coefficients for any pair of
corresponding signals can then be computed for au-
thentication purposes.
Given a keystroke time series Kts = {e1,e2, . . . ,en},
where ki ∈ en is either a F t or a KHt value, and n
is the length of the keystroke time series. The DFT
transform compresses Kts into a linear set of sinu-
soidal functions with amplitudes p, q and phase w:

Kts =
N

∑
i=1

(piCos(2πwkF t
i )+qiSin(2πwiF t

i )) (1)
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Figure 1: Keyboard time series examples (n = 300) for four subjects, two examples per subject, writing unspecified free text.

The time complexity for transforming (each) Kts time
series is O(n log n) using the radix 2 DFT algorithm
(Janacek et al., 2005; Cooley and Tukey, 1965).
Using the DFT transform, the obtained Kts is com-
posed of a new magnitude (the amplitude of the dis-
crete coefficients) and phase spectral shape in which
the similarity can be computed between pairs of trans-
formed Kts. Similarity measurement will be discussed
in further detail in Section 4. Further detail concern-
ing the DFT can be found in(Harris, 1978).

3.2 The Discrete Wavelet Transform

The Discrete Wavelet Transform (DWT) is an alter-
native form of time series representation that con-
siders the time span over which different frequen-
cies are present in a time series. DWT is some-
times claimed to provide a better transformation than
DFT in that it retains more information (Chan and Fu,
1999). DWT can be applied to time series accord-
ing to different scales, orthogonal (Haar, 1910) and
nonorthogonal (Gabor, 1946). In this paper, an or-
thogonal scale is used for the DWT, more specifically
the well known Haar transform was adopted (Haar,
1910) as described in (Chan and Fu, 1999). Fun-
damentally, a Haar wavelet is simply a sequence of
functions which together form a wavelet comprised
of a series of square shapes. The Haar transform is
considered to be the simplest form of DWT; however,
it has been shown to offer advantages with respect to
time series analysis where the time series feature sud-
den changes. The transformation is usually described
in terms of Equation 2 where, in the context of this
paper, x is some keystroke dynamic.

φ(x) =





1 if 0 < t < 1
2

−1 if 1
2 < t < 1

0 otherwise
(2)

The time complexity for transforming (each) Kts time
series, using the Haar transform is O(n). Further de-
tail concerning the Haar DWT transform can be found
in (Edwards, 1991) and (Burrus et al., 1997).

4 SIMILARITY MEASUREMENT

Comparison of the transformed keystroke time series,
for the purpose of continuous authentication, requires
some kind of similarity measure. Given two keystroke
time series, S1 and S2, of the same length, the sim-
plest manner in which this can be achieved is to com-
pare the sum or average of the Euclidean distances be-
tween all pairs of corresponding points in S1 and S2.
The smaller the sum (average) the more similar the
two time series are; If the sum (average) is 0 then S1
and S2 are identical. However, this simple approach
does not take into account “offsets” (phase shifts and
amplitude differences) that might exist in the time se-
ries. For the proposed KCASA model, detailed in the
following section, Dynamic Time Warping (DTW)
was therefore adopted. The advantage offered is that
DTW takes into consideration phase shifts between
pairs of signals whereas Euclidean distance does not
(Ye and Keogh, 2009).
In more detail, the operation of DTW can best be de-
scribed by considering two (transformed) keystroke
time series S1 = {a1,a2, . . . ,ai, . . . ,ax} and S2 =
{b1,b2, . . . ,b j, . . . ,by}, where x and y are the lengths
of the two series respectively, and (ai and b j) are DFT
or DWT coefficients. A matrix M of size x−1×y−1
is then constructed whereby the value held at each cell
mi j ∈ M is the distance from point ai ∈ S1 to point
b j ∈ S2:

mi j =
√

(ai−b j)2 (3)

The matrix M is used to determine a minimum warp-
ing distance (wd), which is then used as a similarity
measure. A wd is the accumulated sum of the val-
ues associated with a Warping Path (WP) from cell
m0,0 to cell mx−1,y−1. A warping path is a sequence
of cell locations, WP = {w1,w2, . . . ,wi}, such that
given wk = mi, j the follow on location is either mi+1, j,
mi, j+1 or mi+1, j+1. The wd associated with a particu-
lar WP is then the sum of the values held at the loca-
tions in WP:
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Figure 2: Warping Path (WP) examples. Top: WPs obtained from comparing two keystroke sinusoidal signals from the same
subject typing different texts, (a) DFT and (b) DWT. Bottom WPs obtained from comparing two keystroke sinusoidal signals
from two different subjects writing different texts, (c) DFT and (d) DWT.

wd =
|WP|
∑
i=1

wi ∈WP (4)

To arrive at a minimum wp, for each location the fol-
lowing location is chosen so as to minimise the ac-
cumulated wd. The“best” warping path is thus that
which serves to minimise the distance from m0,0 to
mx−1,y−1. The minimum wd for a pair of time se-
ries can therefore be interpreted as an indicator of the
similarity between the two time series. Note that if
wd = 0 the two keystroke time series in question will
be identical.
To further illustrate the concept of DTW, Figure 2
presents four WPs, resulting from application of the
DTW process. Figures 2(a) and 2(b) show WPs ob-
tained when DTW was applied to keystroke sinu-
soidal signals for the same subject writing different
unknown texts; Figure 2(a) using DFT and 2(b) us-
ing DWT. In contrast, Figures 2(c) and 2(d) show the
WPs obtained when comparing keystroke sinusoidal
signals associated with two different subjects, writing
different texts; Figure 2(c) using DFT and 2(d) using
DWT.

5 KEYSTROKE CONTINUOUS
AUTHENTICATION BASED
SPECTRAL ANALYSIS
(KCASA) OPERATION

The proposed KCASA model operates using a win-
dowing approach, continuously sampling keystroke
stream subsequences Kw ⊂ Kts. The window size w is
predefined by the user. Thus Kw = {ei,ei+1, . . . ,ew}
where i is a “start” time stamp. The keystroke stream
subsequences can be made up of either flight time (F t )
or hold time (KHt ) values and can be processed sim-
ply as a straight forward time series, the Keystroke
Time Series (KTS) representation. Alternatively, as
proposed in this paper, the time series can be trans-
formed, using the DFT or DWT representation as de-
scribed above. In the evaluation presented later in
this paper, the effectiveness of the DFT and DWT
representations is compared with the operation of the
straight-forward KTS representation.
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5.1 User Profile Calculation

A user profile Up is a set of m non-overlapping
keystroke streams (windows), or simply keystroke
sinusoidal windows, Up = {W1,W2, . . . ,Wm}, where
each window W has a length of ω. Note that |Up|
needs to be substantially greater than the window
length ω, so that a number of subsequences (win-
dows) can be extracted. Note also that the generated
windows are prepared for the next transformation us-
ing DFT and DWT.
The value of ω is user defined. For the experiments
reported on later in this paper, a range of ω values was
considered from 25 to 150 key presses increasing in
steps of 25, that is ω = {25,50,75,100,125,150}. By
doing so, we can examine the effect of ω on perfor-
mance in terms of accuracy. It was anticipated that
a small window size would provide efficiency gains;
desirable in the context of real-time continuous au-
thentication.
The set Up is also used to generate a bespoke σ
threshold value. This is calculated by comparing all
subsequences in Up using DTW, and obtaining an av-
erage warping distance w̄d which is used as the value
for σ:

σ = w̄d =
1
|Up|

|Up|
∑
i=2

DTW (Wi−1,Wi) (5)

It has been shown that averaging the warping dis-
tances associated with a set of time series can lead to
effective and more accurate classification of stream-
ing data than if only one warping distance is consid-
ered (Niennattrakul and Ratanamahatana, 2009).

5.2 Subsequence Preprocessing and
Noise Reduction

Prior to the commencement of the KCASA authen-
tication process each newly collated keystroke time
series must be “cleaned”. The issue here is that F t

values can be substantial, for example when there
is pause in the typing process. A limit is therefore
placed on F t values using a maximum flight time
threshold value ϕ. Given a F t value in excess of
ϕ, the value will be reduced to ϕ. For the evalu-
ation presented later in this paper, a range of val-
ues for ϕ were considered, from 0.750 to 2.00 sec-
onds incrementing in steps of 0.25 seconds, thus:
ϕ = {0.75,1.00,1.25,1.50,1.75,2.00}.
With respect to key hold time KHt , the time whereby
a key is held down is normally no longer than 1 sec-
ond. Inspection of the datasets used for evaluation
purposes with respect to the study presented in this

paper indicated that the highest recorded value of KHt

was 0.95 seconds. Consequently, it was felt that no
maximum hold time threshold was required.

5.3 The KCASA Algorithm

The pseudo code for KCASA process is presented
in Algorithm 1. As noted earlier in this paper,
the principle idea is that, as typing proceeds, non-
overlapping keystroke sub-series are collected, each
of (window) length ω, and compared to previously
obtained keystroke sub-series. On start up, an ini-
tial requirement is to confirm that the user is who
they say they are by comparing the first collected sub-
series with the user profile Up as described in Sub-
section 5.1. As the session proceeds, continuous au-
thentication is undertaken by comparing the most re-
cent sub-series Wi with the previously collected sub-
series Wi−1. Algorithm 1 takes the following inputs:
(i) window size ω, (ii) a similarity threshold σ (de-
rived as described above in Sub-Section 5.1) and (iii)
a ϕ threshold for F t . The process operates continu-
ously in a loop until the typing session is terminated
(the user completes the assessment, times out or logs-
out) (lines 4-6). Values for k are recorded as soon
as the typing session starts (line 7). Note that in the
case of flight time the value will be checked, and if
necessary replaced, according to ϕ (lines 8 to 10).
The k value is then appended to the keystroke stream
Kts. The counter is monitored, and sub-sequences
are extracted whenever ω keystrokes have been ob-
tained. The first collected sub-series (W1 ∈Kts) is the
startup time series; each subsequent sub-series Wi is
then compared, using DTW, with the previous Wi−1
sub-series.

6 EVALUATION

A series of experiments were conducted to evaluate
the proposed KCASA mechanism so as to determine
how well it performed in terms of the detection of im-
personators. Comparisons were also undertaken with
respect to a Feature Vector Representation (FVR), the
established approach from the literature for keystroke
continuous authentication. The metrics used for the
evaluation were: (i) Authentication accuracy (Acc.),
(ii) the False Acceptance Rate (FAR) and (iii) the
False Rejection Rate (FRR). Note that FAR and FRR
are the traditional metrics used to measure the perfor-
mance of Biometric systems (Polemi, 1997). In more
detail, the objectives of the evaluation were:

1. Authentication Performance using the KCASA
Model: To compare the effectiveness of DFT and
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Table 1: Summary of datasets.

Dataset # Sub. Env. Lang. Features Avg. size SD
ACB 30 Free English F t ,KHt 4625 1207
GP 31 Free Italian F t 7157 1095
VHHS 39 Lab English F t ,KHt 4853 1021

Algorithm 1: KCASA algorithm.

Input: ω, σ, ϕ.
Output: Continuous authentication reporting

1: counter = 0
2: Kts = /0
3: loop
4: if termination signal received then
5: break
6: end if
7: k = keystroke feature (e.g. F t or KHt )
8: if Flight time & k > ϕ then
9: k = ϕ . Noise reduction.

10: end if
11: Kts = Kts∪〈counter,k〉
12: counter++
13: if REM(counter/ω) == 0 then
14: Wi = sub-series {Ktscounter−ω . . .Ktscounter}
15: if counter = ω then . Start up situation
16: Trans f orm(W ) . Transform W to

(DFT)/(DWT)
17: Start up: authenticate Wi w.r.t Up and

σ, and report
18: else
19: Authenticate Wi w.r.t. Wi−1 and σ, and

report
20: end if
21: end if
22: end loop

DWT in the context of the proposed KCASA ap-
proach, and the usage of the simple KTS represen-
tation (as proposed in (Alshehri et al., 2016b)), in
terms of accuracy, FAR and FRR.

2. Effect on Authentication Performance using
Different Parameters: To determine the effect of
using different values for ω (the sampling window
size) and ϕ (the maximum flight time threshold
value).

3. Efficiency: to compare the run time efficiency of
KCASA in the context of the three representations
considered (DFT, DWT and KTS).

4. Comparison with Feature Vector Approach:
To compare the operation of KCASA with the
established feature vector based approach for
keystroke continuous authentication.

Note that the evaluation was conducted using flight
time and hold time so as to also analyse which feature
yielded the better results.
The rest of this section is organised as follows. The
datasets used for the evaluation are introduced in Sub-
section 6.1. The results with respect to the first eval-
uation objective are considered in Sub-section 6.2,
while those with respect to the second objective are
considered in Sub-section 6.3. Efficiency is consid-
ered in Sub-section 6.4; and the comparison with the
feature vector based approach in Sub-section 6.5.

6.1 Datasets

Three datasets were used with respect to the reported
experiments taken from (Gunetti and Picardi, 2005),
(Vural et al., 2014), and (Alshehri et al., 2016b). For
ease of presentation the three data sets are identified
using acronyms made up of the authors’ surnames:
GP (Gunetti and Picardi, 2005), VHHS (Vural et al.,
2014) and ACB (Alshehri et al., 2016b).
The GP dataset was used with respect to the work re-
ported on in (Gunetti and Picardi, 2005). The publicly
available version of this dataset comprised 31 sub-
jects typing free text in Italian (that used in (Gunetti
and Picardi, 2005) comprised 40 subjects, however,
the text associated with nine of the subjects was not
included in the public version of the dataset). The
VHHS dataset was collected in laboratory conditions.
The subjects were asked to type both predefined text
and free text in English; only the free text part was
used with respect to the experiments reported on in
this paper. The version of the authors’ ACB dataset
used with respect to the work presented in this pa-
per comprised 30 subjects (an earlier version of the
dataset consisted of only 17 subjects). Each subject
was asked to provide free text samples (in English)
in a simulated online assessment environment; the
aim being to mimic the mode of typing when using
an eLearning environment. Thus, the subjects used
whatever keyboard they had at hand. Note that for the
GP dataset only the F t feature was available, whilst
for the remaining two datasets both F t and KHt were
collected. Therefore the performance of KCASA us-
ing KHt could not be evaluated using the GP dataset.
Table 1 provides a summary of the three datasets
used; the table also includes some statistical measure-
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Table 2: Accuracy results obtained using the three different
KCASA representations when using Ft (best results in bold
font).

Dataset
Flight time F t

Accuracy
KTS DFT DWT

ACB 96.20 97.43 99.22
GP 95.47 96.94 98.41
VHHS 94.83 97.43 97.09
Average 95.50 97.27 98.24
SD 0.68 0.28 1.07

Table 3: Accuracy results obtained using the three different
KCASA representations when using KHt (best results in
bold font).

Dataset
Key hold time KHt

Accuracy
KTS DFT DWT

ACB 96.15 97.36 95.09
VHHS 94.33 93.69 95.75
Average 95.24 95.66 95.42
SD 1.29 2.40 0.47

Table 4: FAR and FRR results obtained using the three dif-
ferent KCASA representations when using Ft (best results
in bold font).

Dataset
Flight time F t

FAR FRR
KTS DFT DWT KTS DFT DWT

ACB 0.050 0.030 0.026 1.96 1.50 1.37
GP 0.039 0.034 0.035 1.98 1.72 1.48
VHHS 0.030 0.022 0.016 1.97 1.85 1.65
Avg. 0.040 0.029 0.026 1.97 1.69 1.50
SD 0.010 0.006 0.010 0.01 0.17 0.14

ments concerning the average length of the time se-
ries in each dataset and associated Standard Devia-
tions (SDs). For evaluation purpose, each record in
each data set was divided into two; the first half was
used to generate the typing profile Up and the second
for the continuous authentication evaluation.

6.2 Authentication Performance using
the KCASA Model

The results obtained with respect to the evaluation di-
rected at comparing the DFT, DWT and KTS KCASA
representations, using either F t or KHt , are given
in Tables 2 to 5; Tables 2 and 4 show the accuracy
(Acc.), FAR and FRR results obtained using F t , while
Tables 3 and 5 present the results, using the same met-
rics, obtained using KHt . For the reported experi-

Table 5: FAR and FRR results obtained using the three dif-
ferent KCASA representations when using KHt (best re-
sults in bold font).

Dataset
Key hold time KHt

FAR FRR
KTS DFT DWT KTS DFT DWT

ACB 0.06 0.04 0.45 2.01 1.61 1.38
VHHS 0.03 0.02 0.04 1.97 1.91 1.74
Avg. 0.05 0.04 0.25 1.99 1.76 1.56
SD 0.02 0.01 0.29 0.02 0.22 0.25

Table 6: Summary of results presented in Tables 2 to 5.

Metric F t Feature KHt Feature
KTS DFT DWT KTS DFT DWT

Acc 95.50 97.27 98.24 95.24 95.66 95.42
FAR 0.040 0.029 0.026 0.05 0.04 0.25
FRR 1.97 1.69 1.50 1.99 1.76 1.56

ments, ω = 75 keystrokes and ϕ = 1.25 seconds were
used as default settings. These parameters were used
because experiments, reported on in the following
sub-section, had indicated that these produced best re-
sults.
From Table 2, it can be observed that the DWT repre-
sentation produced the best overall accuracy (average
accuracy of 98.24% with an associated Standard De-
viation (SD) of 1.07 when using F t . With respect to
FAR we can observe, from Table 4, that DWT also
produced the best results, except in the case of the GP
datasets where DFT was recorded as producing the
best result. It can also be noted, from Table 4, that the
DWT representation gave the best FRR results with
an average of 1.50 and an associated SD of 0.14.
With respect to KHt (Tables 3 and 5), a best average
accuracy of 95.66% was obtained using DFT (with an
associated SD of 2.40). Inspection of Table 5 shows
that the best average FAR result was 0.04 when us-
ing the DFT representation, and the best average FRR
result was 1.56 using DWT. Recall that evaluation us-
ing KHt could not be conducted using the GP dataset
because KHt was not included in the GP dataset.
The results listed in Tables 2 to 5 are presented in
summary form in Table 6. From this summary, it
can be observed that the straightforward KTS repre-
sentation did not perform well compared to the DFT
and DWT representations. Also, from the results pre-
sented in the table, an argument can be made in favour
of the DWT representation, coupled with F t , which
gave the best overall performance in terms of Acc,
FAR and FRR.
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6.3 Effect on Authentication
Performance using Different
Parameters

The results presented in the previous sub-section as-
sumed a window size ω of 75 and a maximum
F t threshold value ϕ of 1.25. Recall that the lat-
ter is only applicable in the context of F t . To
evaluate the effect of these parameters, experiments
were conducted using a range of values for ω and
ϕ; {25,50,75,100,125,150} key presses for ω and
{0.75,1.00,1.25,1.50,1.75,2.00} seconds for ϕ.
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Figure 3: The effect of changes in the ω parameter on accu-
racy using KHt feature for VHHS dataset.
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Figure 4: The effect of changes in the ω parameter on accu-
racy using KHt feature for ACB dataset.

The accuracy results using KHt , as the keystroke dy-
namic, are shown in the form of 3D bar charts in Fig-
ures 3 and 4 for the VHHS and ACB datasets respec-
tively. From the figure, it can be seen that ω = 75
produced better accuracy results for the two datasets
in terms of all three KCASA representations, with
the exception of the KTS representation in the ACB
dataset where ω = 100 produced a better accuracy.
The accuracy results obtained using F t as the
keystroke dynamics are presented, again in the form
of 3D bar charts, in Figure 5. From this Figure, it can
be seen that ω and ϕ values of 75 and 1.25, respec-
tively, tended to produce best results, although the se-
lection of ϕ does not seem to have had as much impact

as the selection of ω. Note also that accuracy “levels
off” as ω is increased.

6.4 Efficiency

To compare the efficiency of the considered KCASA
representations, experiments were conducted in terms
of the time to generate the user profiles in each case.
For the experiments, ω was set to a range of values, as
described earlier, whilst ϕ was kept constant at 1.25
because earlier experiments, reported on above, had
demonstrated that the value of ϕ was less significant.
The efficiency performance using F t is presented in
Figure 6 with respect to each of the three datasets con-
sidered. From the Figure, it can be seen that as ω in-
creased the run time also increased. This was to be ex-
pected because the computation time required by the
DTW process would increase as the size of the win-
dow ω increased. Interestingly, there are well-known
solutions to mitigate against the complexity of DTW
(see for example (Itakura, 1975; Sakoe and Chiba,
1978)); however, no such mitigation was applied with
respect to the experiments reported on in this paper
although this could clearly be done.
Overall the results indicated that when using the pro-
posed transformations efficiency gains were made
with respect to the simple KTS representation, with
DFT producing better runtime results than DWT. It
is interesting to note that the time given in (Gunetti
and Picardi, 2005) to construct a user profile was
140 seconds, a significant difference compared to the
proposed approach, although in (Gunetti and Picardi,
2005) the computing technology available in 2005
was used. It should also be noted that, in the con-
text of KHt , similar runtime results were produced to
those presented in Figure 6, because both are using
the same DTW similarity measure.

6.5 Comparison with Feature Vector
Approach

From the literature, previous work on keystroke con-
tinuous authentication has frequently been founded
on the Feature Vector Representation (FVR). It has
already been noted that the proposed KCASA model
has significant runtime advantages over the feature
vector based approach (see Subsection 6.4). However,
it was felt appropriate to conduct further experiments
comparing the operation of KCASA with the feature
vector based approach in terms of authentication ac-
curacy. Using both F t and KHt appropriate feature
vectors were generated. Consequently, further com-
parison could be made with the approach proposed in
(Gunetti and Picardi, 2005) (see Section 2). The rea-
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Figure 5: The accuracy results obtained for KTS, DFT and DWT using different values ω and ϕ.

son for selecting this approach was that, to the best
knowledge of the authors, the approach had produced
the best reported FAR and FRR results to date. How-
ever, the software for the approach was not publicly
available; thus the authors encoded the mechanism
themselves according to the description given in the
original study. So as to conduct a fair comparison
only F t was considered, because the study in (Gunetti
and Picardi, 2005) used F t values. The average ac-
curacy results obtained, when comparing the opera-
tion of FVR with the KTS, DFT and DWT represen-
tations, in terms of F t , are given in Figure 7. The best
accuracy result obtained for FVR was 90.15%, signif-
icantly worse than the accuracy results obtained using
the KCASA representations which yielded a best ac-
curacy result of 98.24% (when using the DWT repre-
sentation).

7 CONCLUSION

In this paper, a novel mechanism for realtime con-

tinuous keystroke authentication, called Keystroke
Continuous Authentication using Spectral Analysis
(KCASA) has been proposed, whereby authentica-
tion of user typing patterns is conducted by captur-
ing keystroke dynamics in the form of spectral (fre-
quency) streams. KCASA operates efficiently using
either flight time F t or hold time KHt keystroke tim-
ing features. Two spectral transformations were con-
sidered to represent keystroke timing features: Dis-
crete Fourier Transform (DFT) and Discrete Wavelet
Transform (DWT). Keystroke spectral streams simi-
larity was conducted using Dynamic Time Warping
(DTW), although alternative time series comparison
techniques could equally well have been applied. The
KCASA model operates by continuously extracting
non-overlapped keystroke sinusoidal signals captured
using a sliding window of size ω. The most appro-
priate size for ω was found to be 75 keystrokes for
both timing features (flight time F t and key hold time
KHt ). In the case of flight time, an issue was dis-
covered with excessive flight times; flight times were
thus capped with a maximum value defined by a pa-
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Figure 6: Runtime (seconds) comparison using flight time
and the three KCASA representations with respect to each
of the three datasets, (a) GP, (b) VHHS and (c) ACB.

rameter ϕ, the most appropriate value for ϕ was found
to be 1.25 seconds. The reported experimentation
and evaluation indicated that the most accurate rep-
resentation was DWT using the F t keystroke feature,
while the most efficient was found to be DFT. Exper-
iments were also reported on indicating that the pro-
posed KCASA model outperformed the feature vec-
tor based approach used by comparator systems such
as that reported in (Gunetti and Picardi, 2005). For
future work, the authors intend to investigate the us-
age of multivariate keystroke time series (incorporat-
ing F t and KHt timing features together) within the
context of the proposed KCASA model. Furthermore,
the time complexity of DTW, in the context of the
proposed representations, remains an open topic for
future work.

Figure 7: The obtained average accuracy using the three
representations (KTS, DFT, DWT and FVR) with respect to
the three datasets used. DWT shows a comparative perfor-
mance with respect to KCASA model.
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