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Abstract: The aim of this study is to develop an automatic detector of the cyclic alternating pattern by first detecting 

the activation phases (A phases) of this pattern, analysing the electroencephalogram during sleep, and then 

applying a finite state machine to implement the final classification. A public database was used to test the 

algorithms and a total of eleven features were analysed. Sequential feature selection was employed to select 

the most relevant features and a post processing procedure was used for further improvement of the 

classification. The classification of the A phases was produced using linear discriminant analysis and the 

average accuracy, sensitivity and specificity was, respectively, 75%, 78% and 74%. The cyclic alternating 

pattern detection accuracy was 75%. When comparing with the state of the art, the proposed method 

achieved the highest sensitivity but a lower accuracy since the fallowed approach was to keep the REM 

periods, contrary to the method that is used in the majority of the state of the art publications which leads to 

an increase in the overall performance. However, the approach of this work is more suitable for automatic 

system implementation since no alteration of the EEG data is needed. 

1 INTRODUCTION 

A variety of imaging techniques have been 

developed through time to analyse the human body, 

being frequently employed by modern medicine as 

auxiliary diagnosis elements. Electroencephalo-

graphy is a member of the electrobiological 

measurements group, reading the electrical activity 

produced by the brain (created when neurons are 

activated) and the electroencephalogram (EEG) is 

one of the most used techniques in this field. EEG 

records the alternating electrical activity at the scalp 

surface using conductive media and metal electrodes 

(Schomer and Silva, 2010). The scalp electrodes 

distribution usually follows the 10-20 electrode 

placement standardization, presented in figure 1, and 

the EEG power spectrum, calculated by the Fourier 

transform, is typically categorized in four bands 

(Teplan, 2002), delta (0.5-4 Hz), theta (4-8 Hz), 

alpha (8-13 Hz) and beta (13-30 Hz).  

The EEG is commonly used for sleep analysis. 

Two major states of sleep have been defined, the 

rapid eye movement (REM) and the non-REM 

(NREM). The NREM can be divided into four 

stages, from S1 to S4, increasing from stage to stage 

the slow-wave activity. An example of a normal 

hypnogram is presented in figure 2. In the most 

recent classification the third and fourth states are 

combined, being named N3, the second stage is N2 

and the first N1. Cyclic patterns of NREM stages 

and REM define the sleep macrostructure. However, 

the microstructure is characterised by transitional 

states such as the cyclic alternating pattern (CAP), 

characterized by a cycle of activation (A phase) and 

quiescent (B phase) phases as represented in figure 

3. This pattern is not defined in the REM sleep. Each 

phase has a minimum duration of 2 seconds, being 

60 seconds the maximum (Chokroverty, 2009).  
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Figure 1: 10-20 electrode placement standardization. 

Adapted from Schomer and Silva (2010). 

The A phases can be categorised into three 

subtypes, A1, A2 and A3, increasing the percentage 

of rapid activities, in the alpha or the beta bands 

from the A1 to A3 (Mendez et al., 2014). A non-

CAP period happens when the phase duration is 

higher or lower than the specified. EEG Monopolar 

derivations (C4-A1 or C3-A2) are frequently used 

for CAP analysis, being the alpha and beta 

frequency bands defined differently to include a new 

band. Therefore, the alpha goes from 8 to 12 Hz, the 

sigma from 12 to 15 Hz and the beta from 15 to 30 

Hz (Mariani et al., 2011a). 

 

Figure 2: Example of a normal hypnogram. 

 

Figure 3: Example of a CAP using a monopolar derivation 

(C4-A1) signal. 

Studies have shown that the main role of CAP in 

sleep is to generate, consolidate and disrupt the 

macrostructure of sleep (Halász et al., 2004). 

Therefore, CAP can be seen as a marker of sleep 

instability. A full night of EEG sleep analysis 

generates a large quantity of information making 

manual CAP scoring unpractical with a high 

susceptibility to miss classification, being the 

expected specialist agreement, analysing the same 

results, in the 69% to 78% range (Rosa et al., 2006). 

Therefore, automatic CAP detection algorithms have 

been proposed.  

This paper has the folowing organization: the 

state of the art is analysed in section 2 being the used 

methods indicated in section 3; section 4 presents 

the algorithms performance; comparison with related 

work is performed in section 5 and the paper 

conclusion is presented in the next section. 

2 STATE OF THE ART 

Two main approaches for CAP classification are 

presented in the bibliography. The first consist in 

detecting CAP from the EEG data and was used by 

Karimzadeh et al. (2015), employing multiple 

entropy features to feed the three tested classifiers: 

linear discriminant analysis (LDA); support vector 

machine (SVM); k-nearest neighbours (kNN). It was 

verified that sample entropy, Shannon entropy and 

Kolmogorov entropy are the most relevant features 

being kNN the best classifier. The second approach 

consist in using in a first step a classifier to 

determine the A and B phases and then applying a 

finite state machine (FSM) to classify CAP. A total 

of nine articles were found, through a systematic 

review, in the state of the art presenting algorithms 

for A phase detection and five with algorithms to 

detect each of the three subtypes of the A phase.  

The usual approach consist in considering that 

everything that is not an A phase is a B phase. A 

simple method, based in frequency band descriptors 

and thresholds was presented by Navona et al. 

(2002) and Barcaro et al. (2004), producing for each 

of the five bands a descriptor that consists in the 

value of a short average (two seconds) subtracted by 

a longer average (64 seconds) and dividing the result 

by the longer average. Classification was performed 

using specific thresholds. Mariani et al. (2011b) 

achieved the best results for A phase detection using 

the Hjorth activity, classifying with a threshold. 

Niknazar et al. (2015) analysed the similarity of the 

windowed signal with a database of reference A 

phase windows using statistical behaviour of local 

extrema (SBLE). 

Mariani et al. (2010) used five band descriptors, 

differential variance (difference of the current 

window and the previous window variance) and the 

Hjorth activity to feed the classifier, using a three-

layer neural network (NN) with Logsig activation 
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function. The same features were used by Mariani et 

al. (2011a) to feed a soft-margin SVM with 

Gaussian kernel and by Mariani et al. (2013), using 

a variable window, to feed three LDA classifiers (the 

first for the background classification, the second for 

the A1 classification and the third for the A2 and A3 

classification). The A phase classification was 

determined by combining the classification vectors. 

SVM achieved the highest average results.  

Mariani et al. (2012) used the same features and 

four classifiers (NN, LDA, SVM and the Adaptive 

Boosting classifier, AdaBoost, with 20 weak 

learners) verifying that LDA provided the best 

results. Machado et al. (2016) used a macro-micro 

structure descriptor, the Teager energy operator 

(TEO), Lempel-Ziv complexity, Zero-Crossing, 

empirical mode decomposition, Shannon entropy 

and variance as features to feed three classifiers, 

LDA, SVM and kNN. It was determined that SVM 

produces the highest accuracy. 

By analysing the A phase detection proposals it 

was possible to identify the features indicated as the 

most relevant: five frequency band descriptors; 

Hjorth activity; differential variance; TEO; Lempel-

Ziv complexity; Zero-Crossing; Shannon entropy; 

empirical mode decomposition; macro-micro 

structure descriptor. It is also possible to determine 

that LDA, SVM, kNN and NN are the most suited 

classifiers.  

The main objective of this work is to propose 

new features using the LDA, since it was determined 

to be the classifier that achieved the highest 

performance in the state of the art analysis. A 

comparison with the features indicated by Mariani et 

al. (2012) was also implemented since this work 

reported the highest performance of the 

bibliographical analysis. The results were achieved 

using the LDA.  

The majority of the presented works remove the 

REM periods from the analysis, increasing the 

overall performance of the algorithms. In this work a 

different approach was used, keeping all the sleep 

data, making the developed algorithms of this work 

more suitable for automatic system implementation. 

3 MATERIALS AND METHODS 

A systematic review was performed to determine the 

best approach for CAP classification. The chosen 

method first classifies the A and B phases and after 

uses a FSM to determine the CAP. A public 

database was used for training and testing the 

classifier and the FSM in a programming 

environment. 

The employed features are a mix of some 

identified in the state of the art as the most relevant 

and some new ones proposed. The first test involved 

the use of all features and sequential feature 

selection (SFS) was applied in the second test to 

choose the best features for the classifier.  

Principal component analysis (PCA) was used in 

the third test to generate the features independently 

from the classifier and the final test was the use of 

the features indicated by Mariani et al. (2012) in the 

developed algorithm. 

3.1 Database  

A public database from PhysioNet (Terzano et al., 

2001), with specific annotations of the macro and 

microstructure made by trained neurologists, was 

employed in the tests. A total of 14 recordings were 

used, being recorded using the 10-20 international 

system and monopolar derivations (C4-A1 or C3-

A2). The annotations include the sleep stage, event 

description and duration.  

The sleep analysis varies between six hours and 

thirty minutes and nine hours and fifty minutes. The 

subjects age varies between 23 and 78 years, being 

nine males and five females. 50000 samples were 

used in average in each of the employed datasets 

(data from three subjects), either for test or training. 

In both cases train/test with two datasets and 

validate with the left off subject, repeating multiple 

times until all subjects were used at least one time 

for validation. The EEG signals were imported to the 

programming environment Matlab 9.0 (The 

Mathworks Inc.) for the analysis. 

3.2 Feature Set 

The features determined in the review as the best 

ones for A phase detection were tested. A two 

second time window was used, chosen due to be the 

minimum A phase duration. 

TEO and Shannon entropy presented good 

discriminatory capabilities. The five band 

descriptors provided a lower accuracy when 

compared to the analysis of power spectral density 

(PSD) of each band. The same conclusion occur 

when comparing the differential variance with the 

autocovariance. The time series analysis could also 

be used, since the average power and the standard 

variation presented a good correlation with the 

presence of the A phases. Other relevant feature 
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used in other EEG analysis is the log-energy entropy 

(Aydin et al., 2009). 

A total of 11 features were analysed in this work. 

Specifically: average power; standard variation; 

Shannon entropy; autocovariance; log-energy 

entropy; TEO; PSD in the delta, theta, alpha, sigma 

and beta  bands.  

The feature selection was performed with a 

classifier dependent method (the SFS using the 

sequential forward selection method) and a classifier 

independent method (the PCA). The seven features 

used by Mariani et al. (2012) were also tested in the 

developed algorithm. 

3.3 Sequential Forward Selection 

The implemented sequential forward selection 

algorithm initiates with two sets of variables, the 

first is empty and the second has all the features.  

The most relevant feature is determined in the 

first iteration considering the ratio Total= 

(Acc+Sen+Spe)/3 and moved from the second set to 

the first set.  

During the second iteration the algorithm looks 

for the second most relevant feature that has the best 

compatibility with the first feature, providing the 

highest value for Total. This feature is moved from 

the second set to the first set and placed after the 

first feature. 

The Algorithm is repeated until all the features 

were moved to the first set, being ordered according 

to their relevance. 

3.4 Classifier 

The discriminant analysis, a supervised learning 

classifier, was employed for classification. This 

classification method assumes the data to be 

produced based on Gaussian distributions. The linear 

model (LDA) first determines the mean of each class 

and then computes the covariance. Therefore, each 

class has the same covariance matrix but with 

different means.  

The aim of the classifier is to produce a 

hyperplane decision surface that divides the feature 

space, maximizing the ratio of between-class 

variance to within-class variance (Murphy, 2012). In 

this work LDA was used in a binary classification 

where the results are either an A phase or not an A 

phase (considered to be a B phase). 

The classifier was tested and validated using a 

cross validation scheme (validate with one subject 

and train with the others, being used 7 subjects for 

training and 7 subjects for testing), producing the 

average accuracy (Acc), sensitivity (Sen), specificity 

(Spe) and area under the curve (AUC). A FSM was 

used to classify the CAP, by implementing the rules 

of CAP, being the accuracy (CAPacc) of the results 

evaluated. 

3.5 Post-processing 

A post-processing procedure was introduced to 

reduce the outliers of the classification, improving 

the CAP accuracy. This procedure considers as a 

misclassification an isolated A phase, with only two 

seconds, surrounded by two b phases and an isolated 

B phase, with only two seconds, surrounded by two 

A phases. The misclassified data is converted into 

the opposite phase (an A into a B and a B into an A). 

3.6 Finite State Machine 

The FSM was developed to implement the two rules 

of CAP: the first dictates the validity of the A and B 

phases by specifying the minimum duration of 2 s 

and a maximum of 60 s of each phase; second rule 

indicates that a B phase needs to separate two 

successive A phases. The FSM algorithm flowchart 

is represented in figure 4.  
 

 

Figure 4: FSM algorithm flowchart. 

4 RESULTS 

The influence of the sleep stage in the features was 

analysed, concluding that average power, standard 
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variation, log-energy entropy and PSD in the delta 

and theta bands are strongly correlated with the 

sleep stage. This correlation may affect the classifier 

performance since the feature behaviour changes 

according to the sleep stage. It was also determined 

that all features react to the presence of an A-phase 

in every sleep stage. However, the highest reaction 

happen in the second sleep stage. 

The 11 features were used in the first test and the 

classifier average accuracy was 72% with a 

sensitivity of 82% and specificity of 70%. The CAP 

accuracy was 67%. SFS was applied in the second 

test being presented in table 1 the order of the 

features by relevance (from 1 to 11) and in figure 5 

the average results. The best results were achieved 

using the first six features with a Total ratio of 76. 

PCA was employed in the third test and the best 

results were produced using the first three 

components (variance of 78%). 

Table 1: Features ordered according to the SFS results. 

Features Order 

PSD beta 1 

Average power 2 

PSD theta 3 

TEO 4 

Standard variation 5 

PSD alpha 6 

PSD sigma 7 

Shannon entropy 8 

Log-energy entropy 9 

Autocovariance 10 

PSD delta 11 

 

 

Figure 5: Results of the SFS. Legend: 1 - average power; 2 

- standard variation; 3 - Shannon entropy; 4 - log-energy 

entropy; 5 - autocovariance; 6 - TEO; 7 - PSD delta; 8 - 

PSD beta; 9 - PSD alpha; 10 - PSD sigma; 11 - PSD theta. 

The final test was the application of the features 

used by Mariani et al. (2012) in the developed 

algorithm. However, Mariani et al. (2012) used a re-

sampled training set from a different source, using 

the same number of samples belonging to the A and 

B phases, to avoid biasing the classifier and the 

wake and REM periods were removed. The obtained 

results are presented in table2. 

Table 2: Results of the implemented classifier achieved 

with different features. 

Employed 

features 

Acc 

(%) 

Sen 

(%) 

Spe 

(%) 
AUC 

CAPacc 

(%) 

Selected by 

SFS 

75 ± 

5 

78 ± 

2 

74 ± 

7 

0.76 ± 

0.02 
75 ± 7 

Produced by 

PCA 

74 ± 

6 

71 ± 

5 

75 ± 

8 

0.73 ± 

0.02 
76 ± 6 

Proposed by 

Mariani et 

al. (2012) 

67 ± 

3 

79 ± 

15 

64 ± 

4 

71 ± 

0.07 
68 ± 6 

 

The highest accuracy and AUC was achieved 

using SFS while PCA provided the best specificity 

and CAP accuracy (since the data is unbalanced, 

having more B phases then A phases). The features 

proposed by Mariani et al. (2012) provided the 

maximum sensitivity but with a great variation in the 

results. 

5 DISCUSSION 

Multiple approaches have been presented in the 

analysed bibliography for the A-phase detection. 

Table 3 summarizes the analysis of the reported 

results from papers that have used LDA for 

classification and compares with the average results 

achieved in the work. 

Table 3: Results comparison. 

Paper Method Acc (%) Sen (%) Spe (%) 

(Mariani et 

al., 2013) 
LDA 86 67 90 

(Mariani et 

al., 2012) 
LDA 85 73 87 

(Machado et 

al., 2016) 
LDA 68 - - 

This work 

LDA 

with 

SFS 

75 78 74 

 

From table 3 analysis is notorious that our 

method produced the highest sensitivity but a lower 

accuracy then Mariani et al. (2013) and Mariani et 

al. (2012) that have removed the REM periods, 

leading to an increase in the overall performance of 
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the proposed method. The approach of not removing 

the REM periods was also employed by Machado et 

al. (2016), however the reported accuracy has the 

lowest value. 

A more detailed comparison between the results 

achieved using the features proposed by Mariani et 

al. (2012) is presented in table 4. The achieved 

results have a lower accuracy and specificity but a 

higher sensitivity. However, the variation of the 

results is similar to the variation presented by 

Mariani et al. (2012), having sensitivity the more 

significant variation. The difference in the results 

could be due to the fact that Mariani et al. (2012) 

employed a re-sampled training set to balance the 

data since, usually, there are much more B phases 

than A phases so a low specificity will lead to a 

lower accuracy. Therefore, the AUC would provide 

a better comparison but this information is not 

reported by Mariani et al. (2012). The other relevant 

factor is the removal of the REM periods that leads 

to better results. 

Table 4: Comparison between the results achieved using 

the features proposed by Mariani et al. (2012). 

Paper Acc (%) Sen (%) Spe (%) 

(Mariani et al., 2012) 85 ± 5 73 ± 11 87 ± 6 

This work 67 ± 3 79 ± 15 64 ± 4 
 

Comparing the CAP accuracy of the developed 

work with the proposal of Karimzadeh et al. (2015), 

consisting in classifying directly CAP from the EEG 

data, is possible to verify that our results are 4% 

lower when comparing with the LDA classifiers. 

However, Karimzadeh et al. (2015) have also 

removed the REM periods in the analysis so the 

direct comparison is not appropriated. Figure 6 

summarizes the results with SFS. 

 

Figure 6: Global results with SFS. 

 

6 CONCLUSIONS 

This work was produced with the goal of developing 

an algorithm capable of detecting the CAP using 

first a classifier for the A phase detection and then 

apply a FSM to implement the rules of CAP. It was 

verified that a combination of SFS, for selecting the 

best features, and a post processing procedure 

produces the best results. Comparing with the 

alternative approach, presented by Karimzadeh et al. 

(2015), of directly classify the CAP from EEG, it 

was determined that our method produces a similar 

accuracy but with simple features. 

By comparing with the articles in the state of the 

art it was determined that the developed algorithm 

has comparable performance without the need to 

manually manipulate the database to remove the 

REM periods, making the approach of this work 

more suitable for automatic system implementation. 
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