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Abstract: Route optimization is an important problem for single agents and multi-agent systems. In route optimization
tasks, the considered challenges generally belong to the family of shortest path problems. Such problems are
solved using optimization algorithms, such as the A* algorithm, which is based on tree search and dynamic
programming. In several practical cases, cost values should be as evenly minimized for individual parts of
paths as possible. These situations are also considered as multi-objective problems for partial paths. Since dy-
namic programming approaches are employed for the shortest path problems, different types of criteria which
can be decomposed with dynamic programming might be applied to the conventional solution methods. For
this class of problems, we employ a leximax-based criterion, which considers the bottlenecks and unfairness
among the cost values of partial paths. This criterion is based on a similar criterion called leximin for multi-
objective maximization problems. It is also generalized for objective vectors which have variable lengths.
We address an extension of the conventional A* search algorithm and investigate an issue concerning on-line
search algorithms. The influence of the proposed approach is experimentally evaluated.

1 INTRODUCTION and Lemaitre, 2009; Greco and Scarcello, 2013). This
criterion is based on the dictionary order of vectors
Route optimization is a critical problem for single whose values are sorted in ascending order. Maxi-
agents and multi-agent systems. Several tasks aremization on the leximin criterion maximizes the min-
based on the optimization of routes, such as route imum objective and improves fairness. This approach
navigation for drivers, delivery services, and planning has been applied to resource allocation problems with
for mobile robots. The goal of the route optimiza- multiple objectives (Dritan and Pioro, 2008). For the
tion of agents is generally minimization of the total minimization problems, similar a criterion where the
cost on the optimal route. The A* search algorithm objective values are sorted in descending order can be
is a fundamental path finding method that is based applied.
on best-first search and dynamic programming (Hart  In this study, we focus on a property that a prob-
and Raphael, 1968; Hart and Raphael, 1972). On thelem which is defined with this criterion can be decom-
other hand, in several practical problems, improving posed into subproblems in ways similar to dynamic
bottlenecks and fairness among the cost values of theprogramming (Matsui et al., 2014; Matsui et al.,
individual parts in the optimal path might be an is- 2015). Since the A* search algorithm is based on dy-
sue. This is also a multi-objective optimization prob- namic programming, we can employ a criterion that
lem where each objective corresponds to an individual resembles leximin. Therefore, in this work we ad-
part of a path. Several criteria, which select a solu- dress the route optimization methods that improve the
tion to a multi-objective problem, are known as social bottlenecks and the fairness of paths based on this
welfare or scalarization functions (Sen, 1997; Marler type of criterion. We apply a modifieléximaxcri-
and Arora, 2004). Leximin is a criterion that con- terion that resembles leximin to the A* search algo-
siders bottlenecks and fairness among the objectivesrithm. We also investigate the possibility of incre-
for multi-objective maximization problems (Bouveret mental optimization approaches for the exploration
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the total summation of the cost values in a path. The
goal of the route optimization problem is to minimize
the cost of the routes for the same pair of start and
goal nodes.

In this work, we assume that the cost values take
a small number of integer values, such{ds2} or
{1,---,10}. The cost values basically represent levels
of unfavorableness.

In the following, we interchangeably use vertices
and nodes. In addition, we mainly address lattice
of agents in environments. In this investigation, we graphs, as shown in Fig. 1, for simple discussions of
note that the proposed operations have a characterissuch issues as heuristic distances. Here, the numbers
tic property where the lower bounds of the optimal of the nodes correspond to identifiers of them. The
path might not converge to the optimal values under numbers for the edges correspond to their cost values.
the equation of the optimal principle. On the other
hand, the upper bounds converge to the optimal ones.2.2 Path Finding Algorithm based on
We address hpw thl§ property can be mitigated in in- Dynamic Programming
cremental optimization methods.

The rest of this paper is organized as follows.
The next section introduces the backgrounds of this
study, including path finding problems, related so-
lution methods, and several concepts about bottle-
necks and fairness. Then we present our proposed ap
proach where a modified leximax criterion is applied
to the A* search algorithm in Section 3. Section 4
describes approaches for the exploration of agents in
environments. The proposed approach is experimen-
tally evaluated in Section 5. Then several discussions
and conclusions are shown in Sections 6 and 7.

Figure 1: Lattice graph.

A* search (Hart and Raphael, 1968; Hart and
Raphael, 1972) is a path finding algorithm based on
best-first search and dynamic programming. This al-
gorithm performs a search process from a start node to
a goal node. In the process, the estimated cost values
(distances) of the optimal path are updated for the vis-
ited nodes by dynamic programming. When the goal
node is found, the optimal path is determined from
the stored information. In the exploration process, a
search method extends the nodes based on their esti-
mated cost values.

For each nods €V, its estimated cost value of
optimal pathf(s) is defined:

f(s) =g(s)+h(s). )

2.1 Route Optimization Problems Hereg(s) is the estimated cost value from the start
node tos, andh(s) is the estimated cost value from
Route optimization problems are generally based ong to the goal node. Whilgy(s) is updated based
the shortest path prOblem. We address a fUndamentabn dynamic programming in the exp|oration process,
prOblem, which is defined with a Welghted and undi- h(s) is given as a heuristic Va|uJe h(S) is admis-
rected graplG = (V,E). V andE are sets of ver-  giple when it is a correct lower bound value. For
tices and edges, respectively. We assume the edgegattice graphsh(s) can be defined based on several

2 PRELIMINARIES

are undirected. For each edgg < E, whichis con-  distance functions, such as the Manhattan and Euclid
nected tas,sj €V, its cost valuaw ; = w(ej) isde-  distances, considering the lower bound cost values of
fined with functionw: & j — Z+, whereZ+ is a set the edges.

of positive integer values. The algorithm consists of two phases based on a

Path P is defined as a sequence of vertices gynamic programming manner. In the first phase, an
(S1,%,-++,sn) € V", where edge 1 € E exists be-  optimal and complete version of best-first search is
tween each pair of vertices, 5,1 € V. The costof  performed from the start node updating eacH (s)).
pathP is evaluated ag *wij. The shortest path  After the goal nodes, is extracted, the second phase
from start nodes; € V to goal nodesy € V is defined s performed from the goal node to the start node to
as the path with the minimum cost value among the compose the shortest path. See (Hart and Raphael,
paths fromss to 3. Such a shortest path is considered 1968; Hart and Raphael, 1972; Russell and Norvig,

the optimal route. _ 2003) for details of the algorithm.
In general settings, the aggregation of the cost val-

ues is defined with a summation operator to evaluate  'The actual algorithm maintairlys)) as well agy(s).
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2.3 Real-time Search Algorithm 2.5 Multi-objective Optimization

Problems
Real-time search algorithms are also path finding
methods based on search methods and dynamic proin the class of multi-objective optimization prob-
gramming. Here the solution methods are designed solems, multiple objectives are simultaneously opti-
that an agent employs exploration and exploitation in mized. The above route optimization problem with
a path finding. Initially, the agentis placed at the start bottlenecks and fairness is also a multi-objective op-
node with estimated cost values (ehgs ) = 0 for all timization problem. Here we consider the following
5 € V). It explores in the environment and learns the multi-objective optimization problem: MOP.
estimated optimal cost value of each node. Based onpgfinition 1 (MOP). MOP is defined withX, D, F).
these estimated cost values, the agent searches for thg is 5 set of variables, D is a set of domaivns’of vari-
goal node. After the agent arrives at the goal node, it 4pjes. and F is a set of objective functions. Variable
starts its next tour with the updated values. x € X takes value from finite and discrete setD.

An important point of this approach is that dy- For set of variables XC X, function f € F is de-
namic programming is assumed to be the agent'sfined as f(x1, - ,X k) : Di1 x --- x Djx — N, where
learning process. With an appropriate strategy andy, , ... x e X. fi(X.1, - ,% «) is simply denoted by
learning rule, the estimated optimal cost value of each f,(x;). The goal of the problem is to simultaneously

node is improved by the number of tours. Learning gptimize the objective functions under a criterion.
Real-Time A* (LRTA*) is such an algorithm. With it,

an agent performs the following steps at each rjde
in a tour:

A combination of the values of the objective func-

tions is represented as an objective vector.

, Definition 2 (Objective vector) Objective vectow

1. Forall nodes; adjacent tas, the agent evaluates 5 afined asvi,---,vk|. For assignmentd to the
estimated cost valug(s;) = w,; + ;). variables in X, v; is defined as y= fj(4x,).

2. The agent updates the estimated cost value sothat  Here the ideal goal is to maximize all the values
h(s) < ming; f(sj). of the objective functions. However, in general cases,

3. It moves to the next node so tha « the goal cannot be_ achieved since there are trade-
arg miny f(s;). offs between the objectives. Therefore, based on the

) Pareto dominance between objective vectors, one of

Note that in the above rule, ttigs) value is both ~ the Pareto optimal solutions is selected (Sen, 1997,

the estimation value to be optimized and the penalty Marler and Arora, 2004).

value that is employed to escape from cyclic paths.

See (Barto et al., 1995) for details of this algorithm. 2.6 Leximin

2.4 Bottlenecks and Fairness Among Since there are many Pareto optimal solutions in gen-
Ed eral cases, several social welfare criteria and scalar-
ges ization functions are employed to select a solu-

tion (Sen, 1997; Marler and Arora, 2004).
Next we investigate the improvement of bottlenecks Summationzﬁ‘zlfj(xj), which is found in con-
and fairness among edges. In the example in Fig. 1,ventional social welfare, considers the efficiency of
let the start node b& = 1 and the goal node tsg=9. the objectives. While maximization on the summation
In the minimization of conventional total cost values, achieves Pareto optimality, fairness among the objec-
one optimal path i$1,2,3,6,9) and its costis 5. On tivesis ignoredMaximinmaximizes minimum objec-
the other hand, for minimization where the edges of tive value mir‘f=l fi(Xj). Even though this improves
the maximal cost values are reduced, one optimal paththe worst case value among the objectives, the solu-
is (1,2,3,6,5,8,9), and its cost is 6. Note that there tion is not Pareto optimal. To ensure Pareto optimal-
are no edges with cost value 2 on this path. Here theity, such additional tiebreaker criteria as summation
goal of the problem is not only to reduce the number are necessary. Moreover, since only the minimum ob-
of edges with the maximum cost values but also to jective value is improved, other objective values are
reduce the total cost value by improving the fairness not distinguished.
among edges, if possible. Such paths might be inves-  Leximinis defined as the dictionary order on ob-
tigated when an appropriate route must avoid highly jective vectors whose values are sorted in ascending
unsatisfactory specific residents and extra loads of order (Bouveret and Lemaitre, 2009; Greco and Scar-
bottleneck facilities. cello, 2013; Matsui et al., 2014; Matsui et al., 2015).
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Definition 3 (Sorted objective vectar)The values of
sorted objective vector are sorted in ascending or-
der.

Definition 4 (Leximin). Letv = [vy,---,vk] andVv’' =
[V}, ,Vk] denote the sorted objective vectors whose
length is K. The order relation, denoted witfieximin,

is defined as follows. v <jeximin V' if and only if
3tV <t,w =V, Av < V.

Leximin is a criterion that repeats the comparison

Definition 6 (Theil Index) For n objectives, Theil in-
dex T is defined as

)

where vy is the utility or the cost value of an objective
andv is the mean utility value for all the objectives.

The Theil index takes a value {@,logn]. When

between the minimum values in the vectors. Since all utilities or cost values are identical, the Theil in-

maximization on leximin is a subset of maximin, it dex value is zero. Inequalities on different number of
improves the worst case values. In addition, this max- members can be compared using it. Note that the min-
imization relatively improves the fairness and ensures imization on the leximin criterion does not assure the

Pareto optimality.
The addition of two sorted objective vectors is de-
fined with concatenation and resorting.

Definition 5 (Addition of sorted objective vec-
tors) Letv and V' denote vectordvy,---,vk| and
[Vi,---,Vi], respectively. The addition of two vectors,
VoV, is represented ag’ = [V, -V /], wherev”
consists of all the values mandV’. In addition, the

values inv” are sorted in ascending order.

For the addition of sorted objective vectors, the
following invariance exists (Matsui et al., 2014).

Proposition 1 (Invariance of leximin on addition)
Let v and V' denote sorted objective vectors of the
same length. In additions” denotes another sorted
objective vector. I/ <jeximin V', thenv & v <eximin

vV ov'.

Based on this invariance, dynamic programming
can be applied to solve optimization problems with
the leximin criterion (Matsui et al., 2014; Matsui
et al., 2015). However, we assume that the original
problem is decomposed into subproblems with objec-
tive vectors of the same length.

Moreover, a sorted objective vector can be repre-
sented as a vector of the sorted pairs of an objective
value and the count of the value (Matsui et al., 2014).

This representation corresponds to run-length encod-

ing and a sorted histogram. The comparison and the
addition of two sorted objective vectors can be di-
rectly performed on this representation.

2.7 Theil Index

As addressed above, several criteria, including sum-
mation and leximin, ensure Pareto optimality. Pareto
optimality is important in situations with selfish mem-
bers; however, other measurements of inequality are
also critical. To evaluate the paths shown in later sec-
tions, we employ the Theil index, a well-known mea-
surement of inequality.
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decrement of the Theil index value, since it is basi-
cally a sequence of improvements of the worst value.

3 ROUTE OPTIMIZATION
CONSIDERING BOTTLENECKS
AND FAIRNESS

We address the route optimization problems that
consider bottlenecks and fairness among individual
edges. As shown in the previous section, the opti-
mization problem with the leximin criterion is decom-
posed with dynamic programming. Therefore, we in-
vestigate the approach that replaces the aggregation
of the cost values in the A* algorithm from the sum-
mation to a leximin-like criterion. Assuming the new
criterion for this optimization, the problem is rede-
fined as follows.

Theshortestpath finding problem is defined with
a weighted and undirected graph= (V,E). The sets
V, E, weight values of edges, and P&tare defined
similar to the original definition. The cost of path
P is aggregated as a objective vector instead of the
summation. Then the cost is compared based on a
criterion which is similar to the leximin, while it is
designed for minimization problems and the variable
length of vectors. The shortest path from start node
Ss €V to goal nodesy € V is defined as the path with
the minimum cost value based on this criterion. Such
a shortest path is considered the optimal route.

The following two modifications must be ad-
dressed to employ the approach for maximization on
the leximin criterion.

e The maximization on leximin is replaced by the
minimization onleximax

e The operations are extended for the subproblems
of different lengths of vectors.
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3.1 Minimization on Leximax 3.3 Heuiristic Distance Function

For minimization problems, maximization on leximin Inthe A* search algorithm, estimated cost vah{e ),

is replaced by the minimization of leximax. Although which is given by a heuristic distance function, should
leximax is similarly defined as leximin, the ordering be a lower bound value that does not exceed the op-
of the values in the objective vectors is inverted. timal cost value. For example, in the case of lattice
graphs, such a heuristic function can be defined with
the lower bound cost value for all the edges and the
Manhattan distance. For minimization on the summa-
tion, a heuristic value is the product of the Manhattan
Definition 8 (Leximax) Let v = |vi,---,w] and distance and the lower bound cost value.

V' = [vy,---,Vi] denote descending objective vectors For minimization on the vleximax, such a heuris-
whose lengths are K. The order relation, denoted with tic value is an objective vector that consists of dupli-
<leximax 1S defined as followst <jeximaxV' ifand only  cates of the lower bound cost values, where the vector
if 3,V <t =V, Aw < V. length is identical to the Manhattan distance.

With this modification, the worst case values are
inverted to maximum cost values. Thus the objective 3.4 Correctness and Complexity of
of the problem is also inverted to the minimization of Solution Method
the aggregated objective values. While the addition of

two descending sorted objective vectors is similarly

defined as the leximin, the ordering of the values in When the objective vector of estimated cbgt;) of
each concatenated vector is the opposite. a heuristic distance function is a correct lower bound

one, the A* search algorithm selects one of the op-
. f timal paths. For lattice graphs, the Manhattan dis-
3.2 Comparison of Vectors with tance?‘rom a node to theggopal node is the minimum
Different Lengths length of the possible vector. Therefore, the objec-
tive vector whose length is the same as the Manhattan
In route optimization problems, when the path lengths distance and whose values are duplicates of the low-
are different, the lengths of the corresponding objec- €st cost value for all the edges is a lower bound for
tive vectors are also different. Therefore, we employ the remaining optimal path. On the other hand, in

Definition 7 (Descending sorted objective vector)
The values of a descending sorted objective vector are
sorted in descending order.

the variable-length leximaxyleximax whose defi- general cases, designing efficient heuristic functions
nition is extended for objective vectors of different Might not be easy.
lengths. In addition, for minimization on summation,

heuristic cost valud(v;) can be simply defined as
zero. Similarly, for minimization on leximax, an
empty vector can be employed la&;).

Definition 9 (Vleximax). Let v = [vq,---,v] and
V' = [v,---,Vi/] denote descending sorted objective
vectors whose lengths are K and Kespectively. For The comparison of two vectors of different lengths

K =K/, imax IS the same a imax 1IN other L . ;
“vleximax SSleximax based on vleximin activates a tiebreaker, where the
cases, zero values are appended to one of the vectors

<o that the both vectors have the same number of Val_shorter vector is selected when the two vectors are
identical on their parts of the same length. In this case,
ues. Then the vectors are compared based @fmax

fewer edges are preferred. Since the estimation cost
Intuitively, this comparison is based on two modi- is a lower bound, no incorrect path can be selected as
fied vectors which have the same sulfficient length by the optimal path, even if the lengths of the descending
padding blanks with zeros. Consider the two modified sorted objective vectors are different. Therefore, the
vectors of infinite length assuming the cost of zero for solution method returns one of the optimal paths.
each unused edge, which can contain the extra edges Even though the overhead of the computation re-
outside of the system. Since the comparison of lexi- lated to vleximax is significantly larger than that of
max is based on tie-breaks from the beginning of the the summation and the comparison on scalar val-
both vectors, the redundant parts of zeros in both theues, it is polynomial with the length of each vector.
vectors can be ignored. When the sorted objective vector is represented as
In the A* search algorithm for comparing two run-length encoding or a histogram, the space com-
paths based on vleximax, the corresponding descend-plexity of each vector i©(n) for n types of objective
ing sorted objective vector should be appropriately values. If an array is employed for this vector repre-
aggregated. sentation, the addition of two vectors increments the
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Assume that a complete path between the start and
goal nodes was obtained from an exploration phase.
Cyclic paths are allowed to increase the learning op-
portunities.

Then the path is scanned from the goal node to the
initial start node by updating corresponding estimated
valuesh(sc) except the goal node. Note that hege

denotes thdxth value from the initial start node on a
path:

Figure 2: Lattice graph withvalls.

1. The agent evaluate$(sc;1) = Wi,j + h(Sc1),

count values whose complexity 8(n). The com-
P y B(n) wherew; j corresponds to edge; betweers, and

plexity for the comparison of two vectors is al&¢n).

Sk+1-
2. If h(sx) has not been updated yet, it is up-
4 INCREMENTAL dated byf(s1). Otherwise, it is updated by

min(f (Sc:1), h(S))-

In the example of Fig. 2, assume that an episode
of nodes(1,2,3,6,5,2,3,6,9) has been performed in

OPTIMIZATION

Next we focus on how the real-time search algorithm S X X )
can be generalized with the leximax criterion. Un- the initial trial. Since the node 9 is the goal node,
fortunately, this is impossible due to a problematical (%) holds empty vectoff. Thenh(6) is updated by

i ; f(9) =[]+ [1] = [1]. Similarly, for their previous part
monotonicity on cyclic paths.

Consider the case shown in Fig. 2, where the ©7N0des(5,2,3),n(3) =[1,1}, h(2) = [1,1,2], h(5) =
agents start from node 1. For the nodes adjacent tol1:1:2,2] are updated. However, for their previous
node 1(2) +wi2 =[]+ [1] = [1] andh(4) + w4 = node 6,h(6) holds its vector by miff (5),h(6)) =
[]+[2) = [2). With the vieximax and the rules based MiN([1,1,1,2,2],[1]) = [1]. h(3) = [1,1] andh(2) =
on the LRTA* shown in Section 2.3, the agent moves 1,1,2] are a|$° unchanged joiaile Riguiguegnart of
to node 2 and updatéx1) to [1]. Then for the nodes ~ N0des(3,2). Finally,h(1) is updated by1,1,1,2].
adjacent to node 2h(1) +wi, = [1] + [1] = [1,1], The abové(s) is the upper bound of the optimal
h(3) +Waz =[]+ (2] = [2] ahdh(S) Fwps =[]+ cost value froms, to the goal node, since it is up-
2] = [2]. Therefore, the agent returns to node 1 and 9atéd by the propagation from the goal node. When
updatesh(2) to [1,1]. In the third step, for the nodes the agent's exploratlon.s are sufﬁuelm(_ts() converges
adjacent to node 1(2) +wy o = [1,1] + [1] = [1,1,1] to the optimal value, since the algorithm exactly per-
andh(4) + wis =[] +[2 = ’[2]_ Therefore, the agent forms partial updates of the dynamic programming.
returns to node 2 again and repeats this round-trip for- .
ever to add cost value 1 1) andh(2). 4.2 Boundaries of Paths

The above example reveals the necessity of other )
approaches for exploration in the case of sorted ob- While the above episode-based approach needs com-
jective vectors with variable lengths when there can Pléte paths to the goal nodes, it converges with ap-
be cyclic paths. Such cyclic paths can be detected Propriate e>§plorat|on strategu_as. Thg other problem of
with a threshold length. Then some such incorrect the above simple update rule is that it does not employ
break the cyclic movements. However, such an ap- ON the path. Also, the algorithm cannot evaluate the
proach might be problematic, since the invariance of lower bound cost values which can be employed by
vleximin does not hold and may affect the correctness best-first strategies.

of the dynamic programming. Here we address tHewer boundof optimal cost
value h(s) and the upper bound valugs). The
4.1 Episode-based Approach boundaried(s) andh(s) of the estimated cost val-

ues are initialized as follows:

Here we address more safe approaches with a rela-1. Except for the goal nodé(s) andh(s) are ini-
tively direct extension of conventional search algo- tialized to[ ] and[T --- T}, respectively, wherg
rithms. Since the dynamic programming is correct, denotes the maximum cost vall€s) must con-
we employ episode-based learning, where the learn-  tain a sufficient number of duplicates of the maxi-
ing phases are separated from the exploration phase. mum cost value to exceed the other objective vec-
This approach is also called off-line learning. tors in the manner of vleximin.
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2. On the other hand, for the goal node, the initial h(s¢)). If such all values are corrupted, it means
value ofh(s) andh(s) is[]. that there is no information to fix the boundaries.
Except for the goal node, nodeupdates it1(s ) Therefore, thg agent do no'Fhing and wait for fu-

andnh(s) as follows: B ture propagations from outside.

. N min(w; . 2. This modification may cause the situation of
his) < max(n(s),ngjm(wu +hs)) ®) h(s) £ h(s) as a result of propagations. In this
h(s) « min(h(s),min(wij +h(s))). () casef)(s) is replaced byr(s).

: This approach is not exact but based on the im-
mediate convergence of upper bounds. Since we em-
_ _ . ploy an off-line learning which updates both upper

When a path is obtained from an exploration 5,4 jower bounds simultaneously from the node of
phase, the following operations are performed. zero cost (i.e. the goal node), the convergence of up-
1. The path is scanned from the goal node to the first per bounds will be faster than the lower bounds in

wheres; denotes all the nodes adjacenstoHere we
updateh(s) andh(s) at the same time.

node. general cases. In addition, the revision dbraken
2. Except for the goal node, each naglen the path  lower bound vector is performed when its length ex-
updates it$1(s ) andh(s,). ceeds a threshold. It also delays the convergence of

the lower bounds. When these assumptions are suf-
ficiently satisfied, it is expected that the solution will
resemble the one of A*.

With the above boundaries the exploration and
learning phases perform parts of dynamic program-
ming. We consider that the boundaries of ngd®ave
converged wheh(s) > h(s). In the case of the con- . .
ventional summagtio)n, th(e t))oundaries eventually con- 4.3 A Heuristic Exploration
verge. However, in the case of the vleximax, the con-
vergence is not guaranteed. Consider the exampleThe exploration strategies should cover all solutions
shown in Fig. 2 again. Assuming thia¢3), h(4), and with boundaries. Even though arbitrary exploration
h(5) take zero, from the initial statdy(1) andh(2) strategies can be employed, we employ a heuristic ex-
increase such thdt],[1],[1,1],[1,1,1],---,[1,---,1] ploration strategy as follows. We added the following
by turns. These vectors never overcome a vector information to each nods.

[2]. Similar cases occur in actual propagations even the counterstcnt of visits to the node in each

if an episode does not contain cyclic paths. Foranon  qur. The counter is reset to zero in the beginning
cyclic path(1,2,3,6,9), the lower bounds are updated of each exploration process.

for the sequence of nodes 1 and 2 in reverse order. Yy J ] o
If other paths of different episodes contain these two ® thelastvisit timedasttime to the node. This infor-
nodes, they are repeatedly updated in a way that is ~ Mation s stored through the optimization process.

This situation resembles LRTA* which is not eas- after it is stored to dastime. In the initial state,
ily generalized with vleximax. In this problem, the all lasttime are set to zero.

upper bounds of cost vectors still follow the principle S|m||ar|y, the fo"owing information is added to
of optimality. On the other hand, the lower bounds each edge.

might not converge to the optimal vectors, while their
lengths monotonically increase. This property also
resembles that of negative cyclic paths. The A* al-
gorithm dose not affected by this property, since it is
based on the propagation of cost values from the node  With the above information, the following rules
of zero cost. In addition, the algorithm does not as- are applied to an agent enadjacent to nodes.

sume cyclic paths. However, LRTA* is affected by 1
the property, since its behavior is completely based ™
on the lower bounds. Therefore, the on-line search 2. For s; and an edges j, if h(sj) # h(sj) and

¢ the counterselcnt; of selection of the edge
in each tour. The counter is reset to zero in the
beginning of each exploration process.

If s; is the goal nodes; has the first priority.

might be caught by cyclic paths. selentj = 0, sj has the second priority. This rule
To mitigate such situations, we revise ther- assures to evaluate unexplored edges even if those

ruptedlower bound as follows. cost values are relatively high.

1. When the length ofi(s) exceeds the number of 3. The nodes; who has a smallerstcnt has the third
edgesh(s) is replaced byf (sj) which is the sec- priority. With this rule, the agent will avoid cyclic
ond smallest value:f(sj) = secondmig, (W x + paths if possible.
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Table 1: Solution qualities: lattice graph of £A0 nodes. Table 4: Solution qualities: lattice graph of ¥0QL0 nodes
(start nodes in the middle).

Cost | Alg. Solution quality
sum.[ min.| max.] len. | theil cost | alg. solution quality

[1,2] [sum.] 20.7] 12 18 [0.039 sum.| min. | max.| len. | theil
Ixm. | 21.9 1(2 19.6| 0.032 [1,2] [sum.[11.8]1 2 10 [0.045
[1,5] | sum.| 34.3 1|4 18 |0.135 Ixm.|12.5]1 1.8 |11 |0.037
Ixm. | 41.3] 1|3.4 |22.4/0.095 [1,5] |sum.[20 |1 [3.7 [10 [0.133
[1,10 | sum.| 58.6 1|7.7 |18.4|0.223 Ixm. |26.4 |1 3.4 |14.2|0.096
Ixm. | 74.4 1/6.6 |23.2/0.147 (1,10 [sum.[34.5(1.2 |7.1 |10.4|/0.199
Ixm.|50.6|1.1 |6.3 [15.4|/0.134

Table 2: Solution qualities: Lattice graph of 180100 Table 5: Solution qualities: Lattice graph of 180100

nodes. nodes (start nodes in the middle).

Cost | Alg. Solution quality cost | alg. solution quality
sum. [ min.[ max.] len. | theil sum. | min. | max.| len. | theil
[1,2] [sum.[213.2] 1|2 [198 |0.025 [1,2] [sum.[108.5 12 [100 |0.027
Ixm. | 286.9 1(12 282.8| 0.006 Ixm. | 149.5 1118 |147 |0.006
[1,5] [sum.[ 346.1 1|5 199.6/0.132 [1,5] |sum.| 178.5 1{4.9 |100.8/0.132
Ixm. | 446.7| 1(3.6 |275.60.085 Ixm.|223.2] 1|3.4 |135 |0.087
[1,10 [ sum.|580.8] 1[9.5 [202.8/0.215 [1,10] { sum.| 301 1|9 103.2]0.213
Ixm. | 960.3 1/6.8 |350 |0.128 Ixm. | 592.1 1|16.3 |214.8/0.130

Table 6: Computational cost: lattice graph of 10000

Table 3: Computational cost: lattice graph of 10000 nodes (start nodes in the middle).

nodes. cost | alg. | iter. | num.of | exec.

cost | alg. | iter. num. of exec. opn. nodes time [s]

opn. nodes time [s] [1,2] | sum.| 1993 2182| 0.004

[L,2] | sum.| 7217 7537| 0.022 Ixm. | 7013 7371| 0.066

Ixm. | 8359 8883 | 0.070 (1,5] | sum.| 4702 4860 | 0.009

[1,5] | sum.| 9989 9996 | 0.020 Ixm. | 9214 9702| 0.105

Ixm. | 9497 9923| 0.078 [1,10 | sum.| 7023 7217| 0.016

[1,10] | sum.| 9996 9999 0.019 Ixm. | 7759 8402| 0.175
Ixm. | 8468 9182 0.172

5 EVALUATION

4. Whenvstcnt are identical, the nods; who has
a lowerh(sj) has the fourth priority. This is the
best-first strategy, which is guided by the above We experimentally evaluated the proposed approach.
rules. First, we evaluated the modified A* search algorithm.

The example problems are based on lattice graphs that

consist of 10x 10 and 100« 100 nodes. Start node

S and goal nodey are the left-top and right-bottom

nodes. Each edge has an integer cost valya,i2j,

[1,5], or [1,10]. The cost value is randomly set based

on uniform distribution. Ten problem instances are

averaged for each set of parameters. We experimen-
Due to the above boundaries and the heuristic ex- tally compared the conventional method based on the
ploration, the resulting solution method might be an summation ‘sum.” and the proposed method based
inexact method; however they fit particular intuitions on leximax (vlieximax) ‘Ixm.’. The experiment was
based on our experience. As the first study, we experi- performed on a computer with a Core i7-3930K CPU
mentally employ the above approach assuming simple (3.20 GHz), 16-GB memory, Linux 2.6.32, and g++
graphs. The necessity of such a guided approach for(GCC) 4.4.7.

5. Whenvstcnt andh(s;j) are are identical, respec-
tively, then the nodes; with older lasttime has
the fifth priority. With this rule, ties will be ex-
plored deterministically.

the vleximax criterion reveals the difficulty of design- Tables 1 and 2 show the solution qualities. The
ing an on-line optimization algorithm for this class of cost values in each solution are evaluated with the
problems. summation, the minimum value, the maximum value,
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Table 7: Solution qualities: lattice graph of £QL0 nodes Table 8: Solution qualities: lattice graph of 220 nodes

(Ixm) (A* and learning). (Ixm) (A* and learning).

cost alg. solution quality cost alg. solution quality
sum.| min. | max.| len. | thell sum. | min. | max.| len. | theil
[1,2] | Ixm. A* | 21.9 1|2 19.6/0.032 [1,2] | Ixm. A* | 46.8 1| 1.9/44.8/0.016
Ixm. Irn.| 21.9 1|2 19.6/0.032 Ixm. Irn.| 46.8 1| 1.9/44.8/0.016
[1,5] | Ixm. A* | 41.3 1|3.4 |22.4/0.095 [1,5] | Ixm. A* | 77.4 1| 3.4|45.4|0.102
Ixm. Irn. | 41.3 1|3.4 |22.4/0.095 Ixm. Irn.| 77.4 1| 3.4/45.4|/0.102
[1,10 | xm. A* | 74.4]  1]6.6 |23.2/0.147 [1,10] | Ixm. A* [145.7] 1| 6.6/50.6|/0.145
Ixm. Irn.| 74.4 1/6.6 |23.2(0.147 Ixm. Irn. | 145.7 1| 6.6|/50.6|0.145

600 0.1

the number of values (len.), and the Theil index | -6-sum -4~ theil |
. oo ) . . . 500
(theil). The Theil index is a criterion of unfairness, &9/0‘8—6—9@\
where smaller values represent less unfairness. The 400
results show that the solution method ‘Ixm.’ reduced E 300 A-A-v’*-A-v“v—A-A}D 0.05 3
bottlenecks and unfairness with trade-offs between =
them and the summation. It also reduced the Theil in-
dex on average. In addition, the maximum cost value 100 et
was reduced whenever possible. 0 555 0
Table 3 shows the computational cost. We eval- 100 300 500 700 900 1100
uated the computational cost as the number of oper- trial
ations for the nodes (iter.), the number of extended figyre 3: Incremental optimization with vieximax: 220
nodes (num. of opn. nodes), and the execution nodeswi j = [1,2].
time. The result reveals that the heuristic cost func-
tion based on the Manhattan distance on the grids is . ) .
not very efficient. While most of the nodes were ex- bles 7 and 8 shows the solution quality. Since both

tended, there were several opportunities for pruning, methods obtain similar results, it is considered that
even for the solution method ‘Ixm. The execution the heuristic approaches of the incremental solution
time of ‘Ixm. significantly exceeded that of ‘sum. Method are relatively reasonable. _
due to the operations on the sorted objective vectors ~ F19ures 3-5 show the learning progress of the in-
and vleximax. But overhead might be allowed in rel- crémental solution methods. Each graph shows the
atively small problems. anytime curves of the summation and the Theil in-

With the same set of graphs, we evaluated the dex for an actugl result. The samples are averaged
cases where a start nogeis almost in the center of for every 100 t_rlals. Note that the resu_lts can vary
a graph, while a goal node is the right-bottom node. f_or mstance;, since we employgd a relatively exhaus-
Tables 4 and 5 show the solution qualities. The results tive exploration based on best-first searqh._ The results
resemble the cases of the previous setting. Similarly, show that_the summation and the Theil mt_d_ex were
Table 6 shows the computational cost. In this result, grad_u_ally improved a_nd converg_ed. In ad_dmon, the
the number of extracted nodes is relatively less than 1€l index was relatively small in early trials when
that of the previous setting. It is considered as the the range of cost values was also narrow.
effect of the heuristic distance function of the A* al-
gorithm. On the other hand, the reduction for ‘Ixm.
is relatively small. This reveals the difficulty of de- 6 DISCUSSION
signing heuristic distance functions for the criterion.

We also evaluated the optimization methods for Since maximization on (v)leximax improves the
the exploration agents. Here %010 and 20x 20 worst case values, the summation of the cost values
lattice graphs with left-top start nodes and right- is increased as a trade-off. When the range of the
bottom goal nodesy are employed. The A* algo- cost values is relatively large, the trade-off is empha-
rithm based on vleximax (‘Ixm. A*) and the incre- sized, and hence the increment of the summation of
mental solution method (‘Ixm. Irn.") were evaluated. the cost values grows. The length of the optimal vec-
With preliminary experiments, we set appropriate pa- tor, namely the number of edges in the optima path,
rameters so that the incremental solution method ob-also grows. Additional approaches, such as limita-
tains episodes and the solution quality converges. Ta-tions on the ranges of the cost values or controls of

S

200
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2000 0.2 tor of two values is necessary to maintain the original
| —S-sum_-a- thei information for the leximin/leximax. Such general-
1500 e A 0.15 ization needs more investigation.

_ vﬂ\ﬁ—A\A Since this criterion is simply defined without pa-
£ 1000 Sex=A=A| 0.1 T rameters, the trade-offs among bottleneck, fairness
’ . and effectiveness are fixed. Several modifications or
500 0.05 different criteria that can be decomposed with dy-

\( namic programming will be necessary to maintain the

0 0 trade-offs.

100 300 500 700 900 1100
trial

Figure 4: Incremental optimization with vleximax: 20 7 CONCLUSION

nodesw; j = [1,5].
4000 0.2 We addressed route optimization methods that con-
3500 ggcz_;Q —S-sum -2 theil L sider bottlenecks and fairness on optimal paths using
3000 LY 0.15 maximization on leximax criteria. The experimental
2500 Y ‘\& results shows that our proposed approach reduced the
€ 2000 \ Bepoofa-pedsAl oo T cases of the worst cost values and relatively improved
® 1500 = the fairness in the optimal path. Future work will
1000 \ 0.05 improve the solution methods including better heuris-
500 ®\ tic functions and investigations about similar criteria
0 o N 5 with more appropriate tunings of trade-offs between
100 300 500 700 900 1100 efficiency and fairness. The opportunities of on-line
trial learning and reinforcement learning will also be inter-

Figure 5: Incremental optimization with vleximax: 20 esting Issues.

nodesw; j = [1,10.

criteria, are necessary to reduce the trade-offs. On theACKNO\NI—EDGEMENTS
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