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In this paper, we discuss sketches based on ball partitioning (BP), which are compact bit sequences repre-
senting multidimensional data. The conventional nearest search using sketches consists of two stages. The
first stage selects candidates depending on the Hamming distances between sketches. Then, the second stage
selects the nearest neighbor from the candidates. Since the Hamming distance cannot completely reflect the
original distance, more candidates are needed to achieve higher accuracy. On the other hand, we can regard
BP sketches as quantized images of a dimension reduction. Although quantization error is very large if we use
only sketches to compute distances, we can partly recover distance information using query. That is, we can
compute a lower bound of distance between a query and a data using only query and the sketch of the data.
‘We propose candidate selection methods at the first stage using the lower bounds. Using the proposed method,
higher level of accuracy for nearest neighbor search is shown through experimenting on multidimensional data

such as images, music and colors.

1 INTRODUCTION

A similarity search is one of important and famous
tasks for information retrieval in multidimensional
data. The purpose of the similarity search is to find
data near to a query with respect to a given distance.
In order to avoid “the curse of dimensionality,” di-
mension reduction techniques have been developed.
One of the most important properties of dimension
reduction is that the distance between any two data is
not expanded after transformation. In other word, di-
mension reduction is a Lipschitz continuous mapping.
This property establishes the safety of pruning stra-
tegy that excludes any data, which is far away from a
query in the lower dimensional space, from the search
target without examining the distance in the original
space. For example, K-L transformation (or equiva-
lently principal component analysis (PCA)) (Fuku-
naga, 1990) and FastMap (Faloutsos and Lin, 1995)
are known as dimension reductions for a Euclidean
space. Also H-Map (Shinohara et al., 1999) and
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Simple-Map (S-Map, for short) (Shinohara and Is-
hizaka, 2002) are dimension reductions applicable to
any metric space such as L; metric space and strings
with edit distance (Wagner and Fischer, 1974).

As another technique for efficient similarity se-
arch in multidimensional spaces, sketch (Miiller and
Shinohara, 2009; Mic et al., 2016; Dong et al., 2008;
Mic et al., 2015; Wang et al., 2007) has also been de-
veloped. Sketch is a compact bit sequence represen-
ting multidimensional data. Ball partitioning (Uhl-
mann, 1991) (BP, for short) is a method to make ske-
tches by assigning a bit 0 or 1 to a data, such that 0
if it is in a ball and 1 otherwise. BP is also used in
vantage point tree (Yianilos, 1993).

Conventionally, the similarity search using sket-
ches consists of two stages. The first stage selects
candidates depending on their Hamming distances be-
tween sketches. Here, we should note that the com-
putational cost of the Hamming distance is very small
if we use efficient bit operations such as exclusive or
and bit count. The second stage selects the nearest
neighbor by comparing the candidates with the query
using distances in the original space. As the Ham-
ming distance cannot preserve the information of dis-
tances between data, similarity search using sketches
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is only an approximation method. One of the most
important tasks for sketches is achieving high accu-
racy with small number of candidates obtained at the
first stage.

When the width w of sketches is considered as the
dimensionality, the dimensionality may not be redu-
ced. However, as the size w bit is usually much smal-
ler than the original data, we may consider mapping
to sketches as a quasi-dimension reduction. Nevert-
heless, the Lipschitz continuity of the mapping is not
guaranteed as long as the Hamming distance is used.

On the other hand, since the sketch of w bits is de-
fined by using w BP’s, we can regard w-bits sketches
as quantized images of S-Map (Ohno, 2011). That is,
BP sketches are quantized images of S-Map, where
each axis value is quantized to one bit depending on
whether or not greater than thresholds. Note that the
L., distance should be used to guarantee the Lipschitz
continuity of S-Map. Any L., distance between ske-
tches is O or 1, that is, the quantization error is very
large. As for data in the database, we should use only
sketches at the first stage because the original high di-
mensional data are too large. However, as for queries,
we can use the original queries as well as their sket-
ches. Hence, in this paper, we show that, for each ske-
tch bit, a lower bound of distance between a query g
and data x can be calculated using ¢ and the sketch of
x without the original x. If we take score.. defined by
the maximum of distance lower bounds as the aggre-
gation like L., distance, the distance estimation using
sketch is not expanded and a BP sketch mapping can
be considered as a quasi-dimension reduction. Simi-
lar idea is also found in asymmetric distance estima-
tion (Dong et al., 2008; Jain et al., 2011; Balu et al.,
2014), where sketches are constructed by generalized
hyperplane partitioning(GHP), some of them assume
the Euclidean distance or cosine distance, and their
estimation may expand the distance.

For w bit sketches, we have w distance lower
bounds. To guarantee distance lower bounds, we have
to use the aggregation by maximum score.. In ap-
proximate nearest neighbor search using sketches, we
propose score; and scorep, which are the aggregati-
ons by sum and square sum respectively, which are
no longer distance lower bounds. By experimenting
on images, music and colors databases, we observe
that score; and score, achieve a more accurate nea-
rest neighbor search compared to the Hamming dis-
tance and score.. Naive implementation of aggre-
gation needs more computational cost than the Ham-
ming distance using bit operations. For each query
we can precompute aggregations to construct a ta-
ble function. The cost for aggregation using table
function is almost comparable with the cost for the

Hamming distance using bit operations. We can ig-
nore this preprocess cost if we search large database.

We believe that our contribution lies in the fol-
lowing three points. First, in any metric space, ba-
sed on the observation that BP sketches are quantized
images of dimension reduction S-Map, we point out
that the sketch mapping can be considered as a quasi-
dimension reduction by aggregating distance lower
bounds between the query and a sketch for each bit
of the sketch in L. manner. Similar methods are
used elsewhere (Charikar, 2002; Jain et al., 2011),
where sketches are based generalized hyperplane par-
titioning (GHP) in Euclidean distance and cosine dis-
tance, and aggregated distance lower bounds is just a
distance estimation but lower bound. Here, we also
point out that GHP sketches are quantized images of
H-Map. Thus, our approach is easily extended to be
applicable to any GHP based sketches. Second, we
propose a low cost method to compute aggregations
using precomputed table functions. This contribu-
tion is not very significant but important for practi-
cal problems. In our setting, we assume that data are
made by feature extraction function and they are not
very high dimension. Therefore, we cannot ignore the
computational cost for the first stage. Third, we pro-
pose sum or square sum aggregations of distance lo-
wer bounds for the priority at the first stage. Such
aggregations are no longer distance lower bound. Ne-
vertheless they are more useful than maximum ag-
gregation. Similar techniques are found elsewhere,
where GHP based sketches are considered in Eucli-
dean distance or cosine distance. Our method is ap-
plicable to BP sketches in any metric space and easily
extended to GHP.

2 PRELIMINARIES

Here, we briefly introduce some necessary concepts
for our discussion.

2.1 Dimension Reduction and
Simple-Map

We assume two metric spaces (U,D) and (U’,D'),
where D and D' are distance functions satisfying tri-
angle inequality. Let dim(x) for a data x denote the
dimensionality of x. Then, we say that a mapping
¢ : U — U’ is a dimension reduction if it satisfies the
following conditions for every x,y € U:

dim(¢(x)) < dim(x) @))
D'(6(x),6(y) < D(x,y) ©)
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Condition (1) means that ¢ reduces the dimensio-
nality of data. However, it is not handled very strictly
in this paper. For example, the size required to re-
present data is regarded as the dimensionality. Con-
dition (2) means that D’ provides the lower bound of
a distance D(x,y), which guarantees to ignore a data
without computing D in similarity search. For exam-
ple, if D'(¢(g),0(x)) exceeds the current search di-
ameter of a query ¢, then x can be ignored without
computing D(g, x).

A Simple-Map (S-Map, for short) (Shinohara and
Ishizaka, 2002) is a kind of Fréchet embedding (Ma-
tousek, 2002) that any finite metric space of n points
can be embedded isometrically into n-dimensional L,
normed space. A similar idea has also been proposed
by Hjaltason and Samet (Hjaltason and Samet, 2003).
For a point p € U called a pivot, we define an S-Map
0, of x € U with p as follows.

0p(x) = D(p,x).
By triangle inequality, the following inequality holds
for every x,y € U:
0, (x) —0p(»)| < D(x,y).

Furthermore, for a set P = {py,..., pm} of pivots, we
define S-Map ¢p with P as follows.

0p(x) = (9p; (%) - 0p,, (¥))-

Suppose that we give D' as follows:

D'(0p(x), 0p(y)) = max|9p, (x) = 0y, ()]

In other words, if the projected space U’ is considered
as an L., metric space, then, an S-Map is a dimension
reduction.

In H-Map (Shinohara et al., 1999), using a pair of
two points (p1,p2) € U as a pivot, we define an H-
Map ¢(,, p,) of x € U as follows.

D -D
¢(p17p2)(x) — (pl7x) 5 (pz,x).

Then, H-Map is also a dimension reduction.

2.2 Nearest Neighbor Search using
Sketches

We assume that data in the given database are indexed
by natural numbers 1 to n. Thus, letdb = {x;,--- ,x,}
be the given database of n data. The dissimilarity
between two data x; and x; is defined as distance
D(x;,xj). The nearest neighbor search for a query
q is to find x € db such that D(gq,x) < D(q,y) for all
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y € db. Let s be a function which maps data to its
sketch. We can realize the k-nearest neighbor search
using sketches as follows, where K > k.

1. Preparation stage:
Calculate all the sketches s(x1),...,s(x,).

2. First stage (Filtering using the Hamming distan-
ces of sketches):
Calculate the sketch s(q) of query q.
Calculate all the Hamming distances of sketches
from s(q).
Select the closest K sketches s(x;, ),...,s(xi;) to

s(q)-

3. Second stage (Nearest neighbor search using ac-
tual distances):
Select the k nearest neighbor data from the candi-
dates x;,,...,X.

Sketches are relatively small structures with re-
spect to their original feature data. For example, we
use sketches of 32 bits for image feature data of 64 by-
tes in our experiments. At the first stage of searching
process, we use the Hamming distances, which can be
more easily calculated using bit operations than the
actual distances between features. However, sketches
cannot preserve all the distance relation. Therefore,
we use them as a filter. The larger K of the number of
candidates at the first stage achieves a more accurate
but slower search. Thus, one of the most important
subjects on sketch is to achieve higher accuracy with
smaller K, or equivalently, to speed up search within
acceptable error.

2.3 Sketches based on Ball Partitioning

In this paper, we consider sketches based on ball par-
titioning (BP). A pair (p,r) of a point and a radius is
called a pivot. A ball partitioning BP,,, ) is defined as
follows:

[0 ifDpx)<r
BP, 1 (x) = { 1 otherwise

A BP based sketch function sp of width w is defi-
ned by a set of w pivots P = {(p1,71),...,(Pw,w)} as
follows:

Sp(x) = BP(ph,I)(x)...BP(pwa)(x)

Consider 4 points A, B,C,D on a Euclidean plane
in Figure 1. Using a set of two pivots P =
{(p1,r1),(p2,r2)}, their sketches are sp(A) = 01,
SP(B) = 00, SP(C) = 10, SP(D) =11.

Let g be any query outside of both balls. Since
sp(g) = 11, Hamming distances between sketches of
gand A,B,C,D are 1, 2, 1, 0, respectively. The order
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Dl

Figure 1: 2 bit sketches by two balls.

of conventional priority at the first stage is D < A =
C < B. Note that A and C cannot be distinguished by
Hamming distances from g.

2.4 Pivot Selection for Sketches using
Binary Quantization

The pivot selection for sketch is a very important
problem but outside of our scope. Here, we briefly
introduce a heuristic algorithm SELECTPIVOTQBP,
which is not the best search algorithm but can find a
relatively good set of pivots within a small computa-
tion time.

Binary quantization (BQ) selects one of the 2"
corners of n dimensional feature space, which are too
many to efficiently be selected. BQ randomly choo-
ses a data from database and quantizes it to a corner
according with the median.

In our experiments, we adopt probability of colli-
sions between sketches as the evaluation function of
pivots. If two different data x and y have the same
sketch, we say a collision occurs. From experience,
sketches with less collisions provide more accurate
nearest neighbor search. The algorithm SELECTPI-
VOTQBP in Algorithm 15 illustrates the algorithm
for selecting pivots of QBP, where D is the distance
function and eval is the evaluation function for pivot.

3 DISTANCE LOWER BOUNDS
BETWEEN QUERIES AND
SKETCHES

In this section, we introduce a method to compute
distance lower bounds between queries and sketches.

el',/

g1 ve pit’

Figure 2: Distance lower bound between query and sket-
ches.

First, let us explain the idea using an example. Consi-
der four points A, B,C,D and a query ¢ in Figure 2.

The sketch sp(g) has 1 at the leftmost bit while
sp(A) has 0. Therefore,

D(pl 7A) S ry.
By triangle inequality,

D(q,A) > D(p1,q9) —D(p1,A).

From these two inequalities,

D(q,A) > D(p1,q) —r1.

The lower bound of distance between g and any point
whose leftmost sketch bit is 0 is given by (as e; in
Figure 2),

e1(q,0%) = D(p1,q) —r1.

Similarly, the lower bound of distance between ¢ and
Cis

e2(q,#0) = D(p2,q) — ra.
Here, note that the above lower bounds can be calcu-
lated only from D(p1,q), D(p2,q), r1 and r, without
D(q,A) and D(q,C).

More formally, we can compute the lower bounds
as explained below. Let p; and r; be the center and ra-
dius of i-th pivot. Assume i-th sketch bits for a query
g and data x are different from each other, that is,
D(pi,q) > r; and D(p;,x) < r; (or D(p;,q) < r; and
D(pi,x) > r;). This difference is extremely quanti-
zed as 1 in their Hamming distance. Calculating the
distances D(p;,x) for all x in database require more
computational costs. On the other hand, the distance
D(q,x) is partly recovered using D(p;,q) only.

When

D(pi,q) > r; and D(p;,x) <ri,
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/* M : the dimension of data, N : the number of data */

/* db[N][M] : database, med[M] : the median of feature values */

/* T : the number of random trials for each axis */

/* MIN : the minimum feature value, MAX : the maximum feature value

#

1 procedure SELECTPIVOTQBP(p[W]|[M], r[W],W)

/% p[W][M],r[W] : the centers and radiuses of pivots */
/* W : the width of sketches */
/* eval : evaluation of pivots to be minimized */
2 fori=1toW do
3 best ¢« oo
4 fort=1to T do
5 ¢ + random();
/* binary quantization */
6 for j=1to M do
7 if db[c][j] < med|[j] then
s | plilli] « Min:
9 else
10 | pli[j] « MAX;
11 r[i] < the median of D(p[i],db[1]),...,D(p[i],db[N]);
12 current < eval(p[l],r[l],...,pli],r[i]);
13 if current < best then
14 | best < current; temp — pli]; rtemp « r[i;
15 pli] + temp; r[i] + rtemp;

Algorithm 1: SELECTPIVOTQBP.

by triangle inequality, as shown in the left of Figure
39

D(q,x) = D(pi,q) —D(pi,x) = D(pirq) —ri-
Similarly, when
D(pi,q) <r; and D(p;,x) > r;,
we have, as shown in the right of Figure 3,
D(q,x) 2 D(pi,x) — D(pi,q) = ri—D(pi,q)-

Thus, we have the lower bound e;(q,s(x)) of D(g,x)
by

s J 0 if 5i(q) = si(x)
ei(q,s(x)) { |D(pi,q) — ri if 5i(q) # si(x)

We propose priorities using the distance lower
bound ¢;(g,x) as the criteria to select candidates at
the first stage. When we use as the priority

scores(q,s(x)) = mwéf( ei(g,s(x))
i—
which is the maximum lower bound, we can safely

prune some of candidates because it is really a dis-
tance lower bound.
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On the other hand, the Hamming distance is the
sum of the differences. We also examine the sum and
the square sum of the distance lower bounds

ei(g,s(x))

scorei(q,s(x)) =

™

1

w
scorez(q,5(x)) = Y (ei(q,x))
i=1
as the priorities. Although they are no longer theore-
tical lower bounds, experiments show that they bring
a more accurate nearest neighbor search.

In the conventional sketch search, the Hamming
distance is used as the priority at the first stage, and it
is advantageous that high speed calculation is possible
by bit operations. In the proposed method, since the
distance lower bounds are obtained for a large number
of data for each question, the cost increase can be re-
duced by preparing a table function. The cost increase
can almost be ignored.

4 EXPERIMENTS

In this section, we report experiments using several
data, which are images, music and colors, as follows:
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Figure 3: Distance Lower Bound.

e images: about 70 million 2D frequency spectrums
of 64 dimension data extracted from 2,900 videos.

e music: about 70 million mel-frequency spectrums
of 96 dimension data extracted from 1,400 music
CD.

e colors: about 110,000 data of 112 dimension from
SISAP database.

We adopted 32 bit as the width of sketches. 32 pi-
vots are selected by SELECTPIVOTQBP with TRIAL
= 1000. For each database, we selected 10 different
sets of pivots. The experimental results of precision
show the average of these 10 sets of pivots.

Randomly generated data are not appropriate for
experiments of nearest neighbor search, because in
higher dimensional spaces it is rare to find near data.
Therefore, we prepare five types of queries: very-
near, near, middle, far, very-far which are genera-
ted from randomly selected pairs from database with
mixing noise ratio of 5 —10%, 15 —20%, 25 —30%,
35 —40%, 45 — 50%, respectively. For example, a
very-near query ¢ is a weighted sum of randomly se-
lected data x and y from database with weight 10%
and 90%, respectively. For each noise level, we pre-
pare 100 queries. The average of nearest neighbor
distances for queries are shown in Figure 4.

1000
800
600

400

distance

200

0
5 10 15 20 25 30 35 40 45 50
noise (%)
images music colors
Figure 4: The average of nearest neighbor distances.

First, we compare run times using priorities of the
Hamming distance, score., scorej, and score;. Ta-
ble 1 illustrates the computer environment.

Table 1: The computer environment.
CPU Intel(R) Xeon(R) CPU E5-2640
2.5GHz
64GBytes

memory

Table 2 shows the average run time per query in
millisecond. From this table, no significant difference
between methods is observed. Thus, computational
costs for distance lower bounds and their aggregation
are almost the same as that for the Hamming distance.
In this table, only the results for images and music
databases are shown, because the run time for colors
is very small.

Table 2: Run time.

DB images music
K 0.10% [ 1.0% || 0.10% | 1.0%
Hamming 19.5 71.5 21.1 87.5
scoreq 16.8 85.5 23.0 111
scorey 22.5 89.1 23.4 121
SCOT€w 15.2 63.4 16.9 74.2

The precision of the search is defined as the pro-
vability that the top K candidates of the first stage in-
clude the exact nearest neighbor. We report the results
for K of three sizes 0.01%, 0.1% and 1.0% relative to
database size.

Figure 5, 6 and 7 summarize the precisions of se-
arch for databases images, music and colors, respecti-
vely, where score; is omitted, because it is very simi-
lar to scoreq.

S CONCLUDING REMARKS

From the experiments, we confirmed that the preci-
sion is improved by the proposed methods using the
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K=0.01% K=0.10% K=1.0%
100 100 100 —
© 80 80 80 N
2 60 60 60 T~z
S 40 40 40 —A—Hamming
& 20 20 20 score_1
0 0 0 -
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noise(%)
Figure 5: Precisions for images.
K=0.01% K=0.10% K=1.0%
100 100 = 100
v 80 80 80
c
S 60 60 N 60 \.\
S 40 40 \ 40 “ —a—Hamming
i} 28 = 28 X 28 score_1
O O N © & O O N © & O O N ®© & score_inf
NV NS A o A )
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noise(%)
Figure 6: Precisions for music.
K=0.01% K=0.10% K=1.0%
100 100 ~\ 100 i~
© 80 80 R 80 ~
g 60 \ 60 . 60 2
S 40 40 40 —#—Hamming
& 20 = 2 20 =¢==score_1
0 == 0 0 =
O O N0 & O QO O N © QO O N © & score_inf
A 2 A O A S i 2)
KRRV G A0 GNP ©

noise(%)

Figure 7: Precisions for colors.

distance lower bounds, their maximum score.., their
total sum score;, and their total square sum scorey,
compared to using the Hamming distance. One of the
most important tasks for the future work of this rese-
arch may be to examine why score; and score, give
better priorities than score.. and Hamming distance.
Since all priorities in these experiments have a simi-
lar tendency to any of the three databases of image,
music and colors, we think that the dependency of da-
tabase is unlikely. We should consider the influence
of the width w of sketches, because score.. will im-
prove by the larger w, but score; and score, may get
worse. There is a possibility that the same phenome-
non may also occur in S-Map, where L., is used in
projected space. This is also a future issue.

In the experiments we reported, we optimized ske-
tches by random trials using binary quantization. We
can apply optimization techniques such as local se-
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arch and simulated annealing. We run annealing by
increasing resampling (AIR) introduced by Imamura
et.al (Imamura et al., 2017) on pivot selection for ske-
tches to minimize collisions. Although sketches with
smaller collision probability are found by using them,
the search precision is not improved. Therefore, we
have to consider other evaluation function for sket-
ches rather than the probability of collision. For ex-
ample, it is conceivable to use the correlation coeffi-
cient of distances before and after projection between
sample pairs and the distance preservation ratio of the
distance lower bounds as the evaluation function.

In this paper, we consider sketches based on ball
partitioning, which can be considered as quantized
images of S-Map. Generalized hyperplane partiti-
oning (Uhlmann, 1991) (GHP) can also be used to
make sketches. GHP based sketches can be conside-
red as quantized images of H-Map. We can calculate
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distance lower bounds between queries and sketches
even for GHP based sketches. We should also investi-
gate the effectiveness of proposed methods for GHP.

We compare aggregation methods score; and
scorey in addition to score. In our experiments, their
performances are better than the traditional method
using the Hamming distances. The score. gives a
theoretical distance lower bound. Therefore, for K
objects selected at the first stage based on score; or
scorey, safe pruning based on scores is applicable.
At the second stage, any candidate with score., lar-
ger than the actual distance of the provisional nearest
neighbor can be removed without computing the ac-
tual distance. We also have to consider score,, aggre-
gation for p other than 1 and 2, such as 1.5.
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