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Abstract: Antibiotic resistance evolves alarmingly quickly, requiring constant reevaluation of resistance patterns to guide

empiric treatment of bacterial infections. Aggregate antimicrobial susceptibility reports, called antibiograms,
are critical for evaluating the likelihood of effectiveness of antibiotics prior to the availability of patient specific
laboratory data. Our objective is to analyze the ability of the methods to predict antimicrobial susceptibility.
This research utilizes Massachusetts statewide antibiogram data, a rich dataset composed of average percent
susceptibilities of 10 species of bacteria to a variety of antibiotics collected by the Massachusetts Department
of Public Health from over 50 acute-care hospitals from 2002 to 2015. First, we improved data quality by
implementing data filtering strategies. We then predicted up to three future years of antibiotic susceptibilities
using regression-based strategies on nine previous years of data. We discovered the same prediction method-
ology should not be utilized uniformly for all 239 antibiotic-bacteria pairs. Thus, we propose model selection
strategies that automatically select a suitable model for each antibiotic-bacteria pair based on minimizing those
models’ mean squared error and previous year's prediction error. By comparing the predictions against the
actual mean susceptibility, our experimental analysis revealed that the model selectors based on the predictions

of the previous performed best.

1 INTRODUCTION (CDC, 2013; WHO, 2014). Conservative estimates
from 2013 attribute over two million infections and
L 23 thousand deaths to antibiotic resistant bacteria per
11 Bac_kground on the Antibiotic year (CDC, 2013). Without a deeper understanding
Resistance Threat of resistance patterns and more informed prescription
practices, resistance rates will continue to increase

Antibiotic resistant bacteria of clinical significance untilthere is no way to cure some bacterial infections.
are becoming increasingly prevalent around the The consequences of inaction are catastrophic.
world. The World Health Organization (WHO) has The overuse of antibiotics is one of the main
classified the reported levels of antimicrobial resis- causes of antimicrobial resistance (CDC, 2013; Ven-
tance as alarming. Infections due to antibiotic resis- tola, 2015). Once viewed as life-saving therapies, the
tant bacteria are more expensive to treat than otherfole of antibiotics in the public eye has shifted to be-
bacterial infections, costing the U.S. economy an es- ing thought of as ubiquitous within healthcare. In fact,
timated 20 billion dollars a year in direct healthcare antibiotics remain one of the most prescribed human
costs, as well as at least that much in additional fi- medicines (CDC, 2013). Unfortunately, antibiotics
nancial burdens to patients, family members, and so-2are not always prescribed responsibly, with up to 50
ciety at large for loss of productivity. Patients with Percent of prescriptions either being unnecessary or
antibiotic resistant bacterial infections also experi- ineffective (CDC, 2013; Ventola, 2015). In particular,
ence more devastating health outcomes ranging fromincorrectly prescribed antibiotics have been shown to
extended hospital stays to increased risk of death contribute to antimicrobial resistance (Ventola, 2015).
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1.2 Motivation for Antibiotic Resistance methods, notably regression variants, but the investi-

Monitoring and Predictions gators do not utilize these methods to make predic-

tions about antimicrobial resistance in future years

(Anderson et al., 2012; Crnich et al., 2007; Lagace-
Wiens et al., 2013). One of these studies uses mul-
tivariate regression analysis to isolate the impact of
etime with five years of data from Canadian hospitals
(Lagace-Wiens et al., 2013). Another study uses lin-
ear regression to predict the future amount of antimi-
crobial infections based on five years of data from US
nursing homes (Crnich et al., 2007). Lastly, there is
a study that uses logistic regression to determine for
how many days the antibiogram was a reliable pre-
dictor of Pseudomonas aeruginosasceptibility with
eight years of data from Duke University Hospital
(Anderson et al., 2012). However, the need for high-
quality continuous monitoring, analysis, and predic-
tion of antibiotic resistance remains. In particular, it
it important to reliably incorporate more antibiotic-
bacteria pairs as well as leverage longitudinal data as-
sets collected from more medical facilities.

To prevent further unnecessary increases in resis-
tance and effectively treat patients, antibiotics should
be prescribed more responsibly based on resistanc
patterns (Ventola, 2015). This can only be accom-
plished with accurate up-to-date susceptibility knowl-
edge. Outdated resistance information facilitates the
propagation of ineffective and inappropriate antibiotic
use by suggesting antibiotics may be effective when
they are not. Antibiotic resistance is tracked using
antibiograms, reports that provide the average per-
cent susceptibility of select antibiotics tested against
samples of bacteria, called clinical isolates, that are
collected from patients in medical facilities. Antibi-
ograms are routinely generated by microbiology lab-
oratories for acute care facilities and, less often, for
other healthcare facilities and organizations. These
antibiograms are used to monitor resistance trends
and to guide prescription practices before patient spe-
cific laboratory data is available.

Despite the growing antimicrobial resistance cri-
sis, there is a lack of both widespread data and previ- L . , . ,
ous analytics on longitudinal resistance patterns. Ac- 1 N€ objective of this work is to utilize, design, and
cording to the World Health Organization (WHO), evaluatg predl_ct_lvg methods_ fp_r their effectl\_/en(_ess
there is no coordinated surveillance of antibiotic resis- ©© Predict antibiotic susceptibility on a longitudi-

tance bacteria (WHO, 2014). Even when antimicro- N&l antibiogram dataset. This work leverages the
bial resistance data is monitored, there is at best a few!lassachusetts statewide antibiogram dataset curated

months delay after the collection period until the an- PY the Massachusetts Department of Public Health
tibiograms are assembled. For instance, if reports areSiNce 1999 (Bureau of Infectious Disease and Labo-
collected yearly, susceptibility data from the begin- 2ory Sciences, 2016). No other study in the liter-
ning of a given year would be used to guide prescrip- ature curren_tly tackles prec!lptlng antimicrobial resis-
tion practices over two years later. Unfortunately, @nce on this scale. Specifically, the Massachusetts
this inevitably means antibiotics are prescribed using Statéwide antibiogram dataset is expansive enough

outdated resistance knowledge and the responses tdat We can predict antimicrobial susceptibility mul-
emerging resistance threats are delayed. Thus, preliPle years into the future for more than two hundred
dictive analytics needs to be applied to model existing 2ntibiotic-bacteria pairs. _
susceptibility data and predict future susceptibility for , USing this dataset, we evaluate the effectiveness
many antibiotic-bacteria pairs. These predictions can ©f régression-based methods for their ability to pre-
be used to guide prescription practices and prepare fordiCt multiple years into the future. Our analysis re-

future resistance threats. However, antimicrobial an- VE&/S @ need for a strategy that seamlessly learns
alytics on multiple antibiotic-bacteria pairs is largely 2nd then utilizes the best prediction model for each
lacking in the literature. antibiotic-bacteria pair. We address this by design-

ing model selection strategies based on several key
metrics. Namely, these meta-methods select the most
appropriate model for each antibiotic-bacteria pair by
) ) o minimizing those models’ mean squared error and
The ch|—squar9 _test is a popule_\r statlstlcal' method previous year's prediction error. By comparing the
to analyze antibiogram data as it only requires data pagjctions against the actual mean susceptibility, our
from two different sets of time (Crnich et al.,, 2007; gyperimental analysis concludes that our proposed
Hastey et al., 2016). However, this test can only qqe| selector methodology is more effective at pre-

reveal which antibiotic-bacteria pairs experienced a gjcing future susceptibility percents compared to ex-
significant change in resistance over those two Setsisting methods.

of time. Other papers incorporate machine learning

1.4 Scope of this Paper

1.3 Previous Antimicrobial Analytics
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2 DATASET, METHODOLOGY, 2.2 Preprocessing
AND METHODS _ _ _ _

Our preprocessing goal is to improve data quality
. and robustness of predictions while maintaining the
2.1 The Massachusetts Statewide ability to predict future susceptibility for as many

Antibiogram Dataset antibiotic-bacteria pairs as possible. First, we ad-

dress the specific concerns mentioned above in Sec-

This research is conducted on 14 years of Mas- tion 2.1 to improve data quality. As antibiograms with
sachusetts statewide antibiogram data. The antibi-fewer isolates are not as trusted, we only consider data
ograms that form this dataset were collected by the points with at least 20 isolates. After this cleaning
Massachusetts Department of Health (MDPH) from step, 847 percent of the data points remain.
2002 to 2015 from over 50 acute-care hospitals across  Further data cleaning must balance the goal of
the state. This expansive dataset contains susceptiminimizing the impact of possible data quality issues
bility data for 10 species of bacteria tested against by aggressively removing potentially erroneous data
a subset of the total 86 antibiotics for a total of 766 points against the requirement to maintain a represen-
antibiotic-bacteria pairs. Samples of bacteria, called tative critical mass of the antibiotic-bacteria pairs to
isolates, were collected from patients within acute- assure a high-fidelity data analysis. Given that the
care hospitals using cultures.The antibiotic suscepti- quality of data may vary based on the CLSI guide-
bility of these isolates was tested in hospital microbi- lines adherence, we established the following data
ology laboratories. They are considered susceptible quality guidelines. Namely, we require that there are
or resistant to tested antibiotics based on the Clini- at least four data points for the specific antibiotic-
cal and Laboratory Standards Institute (CLSI) guide- bacteria pair for the target years we will predict. This
lines and the US Food and Drug Administration ap- diminishes the impact of an outlier susceptibility per-
proved breakpoints of concentration of the antibiotics. cent influencing the actual mean susceptibility per-
The isolates collected from a hospital during the same cent which we use to evaluate our predictions (Sec-
year, aggregated to create a single antibiogram, aretion 2.5). As second requirement, we also stipulate
then reported to MDPH the year subsequent to whenthat there must be at least one data point in each of
the testing occurred. the four prior years.

The dataset is composed of 1021 individual The decision about how many data points to re-
data points. The data points contain an antibiotic, a quire as minimal membership was supported by an
bacteria, the number of isolates, the percent of the empirical study on the above mentioned trade-off of
isolates that were susceptible, the year, the hospital,data quality and antibiotic-bacteria pair quantity. That
and the location within the hospital where the isolates is, we require only four data points in the aforemen-
were collected. We utilize these data points in our tioned predicted years because it is a good compro-
prediction methodology (Section 2.3). mise between minimizing the impact of the poten-

While the Massachusetts statewide antibiogram tial error and maximizing the number of antibiotic-
dataset is impressive in size and scope, data procurebacteria pairs that can be predicted. There is a slight
ment occurring over 14 years and more than 50 hos-increase in prediction ability when the number of re-
pitals varies in reliability. There were policy changes ports required in the target and prior years are in-
over time that to some degree influenced quality and creased. However, the benefit is offset by the decrease
quantity of antibiograms submitted to the MDPH. in the number of antibiotic-bacteria pairs that feature
One consideration is the possible inclusion of dupli- sufficient data in this reduced dataset. As we desire to
cate isolates of the same infection. Also, it is chal- predict as many pairs as possible, we opt for fewer re-
lenging to verify if all microbiology laboratories that  strictions that still mitigate the worst potential errors.
tested the isolates followed the most updated CLSI  After cleaning the dataset contains 34 antibiotics
guidelines. Lastly, at some hospitals, antibiograms and 10 species bacteria that combine to form 239
with fewer than 20 to 30 bacteria isolates may not antibiotic-bacteria pairs. 16 pairs inclu8einetobac-
have been reported to MDPH. While data quality has ter baumannii 22 pairs includeEnterobacter aero-
been consistently on the incline over the years, somegenes23 pairs includ&nterobacter cloaca&5 pairs
of these issues may still arise even in more recent data.include Escherichia coli 23 pairs includeKlebsiella
Knowing this, we implemented a series of measures oxytoca 24 pairs includélebsiella pneumonige21
to mitigate the possible impact that these described pairs includePseudomonas aeruginas24 pairs in-
data quality issues may cause, as described below. clude Serratia marcescend 8 pairs includesStaphy-

lococcus aureusot including isolates specified as
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MRSA or MSSA, and 3 pairs include
Stenotrophomonas maltophilia Additionally, 20
pairs include methicillin-resistanStaphylococcus
aureus (MRSA) and 20 pairs include methicillin-
susceptibleStaphylococcus aure 1SSA).
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Figure 1: 3-step methodology for predictive analytics.
2.3 Predictive Model Methodology

Our objective is to utilize the susceptibility percents

years of susceptibility for each antibiotic-bacteria
pair. For this, we divide the Massachusetts statewide
antibiogram dataset into a collection of data sub-
sets, namely, one subset for each targeted antibiotic-
bacteria pair. Our methods then apply the same
methodology to each subset independently to predict
susceptibility for each antibiotic-bacteria pair.

In particular, oumethodology for predictive an-
alytics takes a three-pronged approach, seen in Fig-
ure 1. Step 1 selects the parameters for the prediction
problem such as the antibiotic-bacteria data subset,
the methodM, the target yeaY, and the prior years of
dataH. Step 2 uses methdd to establish the model
that best captures the trends in the prior years of data
H to make a prediction for yea¥. Step 3 utilizes
evaluation metrics to measure the effectiveness of the
prediction against the observed data for yéar

As we are comparing the predicted susceptibility
percent for yealY against the actual data for year
Y, the prior years of datéd must consist of a sub-
set of the 14 years of data. The number of years
in this subset is further limited by two factors: (1)
yearY can be up to three years into the future and
(2) the results should not be year specific. As such,
in this study design, the prior years of dafacon-
sist of nine yearys,...,Yo Of historic susceptibility
percents. This historic data is used to predict the sus-
ceptibility percent for the tenth yegro, eleventh year
y11, Or twelfth yeary;». To ensure that the results of
our methodology are not year specific, we develop a
sliding window mechanism that enables us to repeat
the process for multiple target years, namely, 2013,
2014, and 2015. Thus, the input of our predictive
methods corresponds to the susceptibility percents for
yearsys,...,Yq and the output is a model that can be
used to predict the mean susceptibility percent for the
target yealyY, which is eitherysg, Y11, Or y12.

2.4 Regression-based Models

We apply the above methodology with four
regression-based methods: linear regression,
polynomial regression, linear support vector re-
gression (linear SVR), and Gaussian support vector
regression (Gaussian SVR). The same method is
applied uniformly to each antibiotic-bacteria pair
to create a collection of predictive models. If the
resulting predictions are below 0 or above 100, they
are readjusted to be 0 or 100, respectively, as the unit
of the predictions is a percent.

2.4.1 Regression Models

Regression methods build models that best describes

of the prior years of data to predict the next three the susceptibility percent over time. Statistically, re-
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gression is a method of analyzing the impact of an wheren corresponds to the number of data points in
independent variable, year, on a dependent variable,yearY for the specific antibiotic-bacteria paly, de-
susceptibility. By minimizing the sum of squared er- notes the number of isolates agdhe observed sus-
rors between the susceptibility of the data points and ceptibility of the isolates of the-th data point for
the model output, we are able to obtain a functionthat i =1,...,n.

best fits the data. By inserting into this resulting We use three evaluation metrics to determine the
function, we can predict the susceptibility for year quality of our prediction strategies, namely, the mean
Y. Thus, using the methodology described in Sec- absolute error of the predictions and the percent of
tion 2.3, the regression model can be used to predictpredictions for which the error is less than or equal to
susceptibility for future years. In this particular study, a constantthreshold or to a variable threshold, respec-
we select two types of regressions: linear regressiontively. While the former is a commonly used metric,

and second degree polynomial regression. the later two are customized to our problem at hand
. by incorporating guidelines of the domain.
2.4.2 Support Vector Regression Models The first evaluation metric, thmean absolute er-

ror (MAE), is acommon metric used for assessing the
Support vector regression (SVR) is a variation of re- quality of predictive techniques (Moore, 2007). The
gression that utilizes the support vector algorithm to mean absolute errdAE metric, defined in Equa-
find the function for modeling trends in the data. tion 2, simply measures the absolute difference be-
Specifically, SVR finds a function with a margin and  tween the predicted versus the actual mean suscepti-

the error is minimized only between the output of pjlity across all predicted antibiotic-bacteria pairs.
the function and the data points within this margin

(Smola and Scholkopf, 2004). In this way, SVR is il
more robust to outliers and generates different predic- MAE = m Zl|pj —aj (2)
tions than traditional regression. The merit of using =
SVR for predictive analytics is its generalization abil-
ity (Yang and King, 2009).

Additionally, the support vector algorithm can uti-
lize kernel functions to map the data into a higher di-
mensional input space. This is useful if the data does

not conform to a linear distribution. We use linear T ! .
SVR to compare the prediction ability between re- pf the pred|9t|ons fpethe d°”?a'”- 1his depds. us to
the introduction of a new metric based on the follow-

gression and SVR in this domain. We also generate . ! o i .
predictions with Gaussian SVR to determine if the in- ing observation. Namely, an antibiotic-bacteria pair's

put follows a Gaussian distribution instead of a linear predicted susceptibility is con&dergq o be close
distribution enough to the actual mean susceptibiityo be us-

able to guide prescription practices as long as it falls
within a threshold of at most five susceptibility per-
cent. This was affirmed by multiple domain experts
to be an acceptable error in the case when susceptibil-
ities frommultiple hospitals are aggregated.

We propose to capture this guideline by the new
evaluation metricpercent of useable pedictions
(PUP). ThePUP metric, defined in Equation 3, com-
putes the percent of antibiotic-bacteria pairs with an
absolute errofp — a| less than or equal to the five
susceptibility percent threshold.

where m denotes the number of antibiotic-bacteria
pairs, pj refers to the predicted susceptibility and
a; to the actual mean susceptibility for each of the
antibiotic-bacteria pair&B; from j =1,...,m.
However, common regression evaluation metrics,
such asvAE, fail to evaluate the potential usefulness

2.5 Metrics for Model Evaluation

To evaluate the prediction ability of the regression-
based models, we compare thetual mean suscep-
tibility ato ourpredicted susceptibility p for target
yearY for a specific antibiotic-bacteria pair. The ac-
tual mean susceptibility corresponds to the mean of
the actual observed susceptibility of the isolates re-
ported by the hospitals. This actual mean susceptibil-
ity ais calculated by weighing the observed suscepti-

bility, ranging from 0 to 100 percent, by the respective ) : .
et of be P Y o icolate {ABy: (Ip;— &y <5), je [1:m})

number of bacteria samples (also called isolates). The pup= (3)
definition of theactual mean susceptibilitymetrica m
is shown in Equation 1. where p; refers to the predicted susceptibility and
a; to the actual mean susceptibility for each of the
%(c- b)) antibiotic-bacteria pair&B; from j = 1,...,m. The
& closer to 100 percent thBUP metric is, the more
a= " 1) pairs are being predicted with sufficient accuracy to
.;(bi) guide prescription practices.
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Finally, we note that this PUP metric fails to take is, the more antibiotic-bacteria pairs are considered to
into consideration that the more data points are avail- have a prediction error considered to be insignificant.
able for each antibiotic-bacteria pair, the more the
actual mean susceptibilities are deemed reliable.
Thus, whether the predictiop is thought to be sig-
nificantly different from the actual mean susceptibil- Given that not all antibiotic-bacteria pairs may con-
ity a depends on the number of data points available form to the same distribution over time, as in-
for that particular antibiotic-bacteria pair. Using this deed confirmed by our experimental study in Sec-
observation, we now design a flexible threshold cus- tion 3.2, we design a strategy to provide customized
tomized to each pair in place of the above rigid con- model types fitting every antibiotic-bacteria pair sub-
stant threshold. set. To tackle this, in addition to the aforementioned

More specifically, when considering the suscepti- regression-based models applied uniformly to every
bility of a antibiotic-bacteria pair from singlehospi- antibiotic-pair, we propose higher-order model selec-
tal for two consecutive years, a change of more than tors that select among the predictive models for each
ten susceptibility percent is considered significant ac- pair.
cording to domain experts. It follows then that if there As such, we propose model selection method-
is only one data point in yeaf, a predictionp over ology composed of four steps. Step 1 selects the
ten susceptibility percents away from the actual mean parameters for the prediction problem such as the
susceptibilitya is significantly different. This means antibiotic-bacteria data subset, a set of methods, the
that the imposed population standard deviatiois target yealy, the prior years of datdl, and the selec-
ten for every antibiotic-bacteria pair. tion criteria. Step 2 uses each method in the method

2.6 Model Selection Methodology

Since averaging the susceptibility of the data
points mitigates the effects of potential errors, when
the number of data points i increases, the abso-
lute error|p — a| that is considered to be acceptable

set to establish a model that best captures the trends
of the prior years of datél. Step 3 selects the best

model for the antibiotic-bacteria subset based on the
chosen selection criteria and then uses that model to

decreases. We thus introduce the standard &&pr

formula, defined in Equation 4, to represent the flex-
ible error threshold customized for each antibiotic-
bacteria paiABj based on the number of data points

nin yearY for the pair (James et al., 2013).
SE o (4) We propose two model selectors with unique selec-
il tion criteria: minimizing the models’ mean squared
wheren; refers to the number of data points in year error and minimizing the models’ previous year’s pre-
Y for ABj ando = 10 is the imposed population stan-  diction error.
dard deviation. As the number of data poinis year
Y range from 4 to 64 in our cleaned dataset, based2.7.1 Mean Squared Error Model Selector
on Equation 4, theSE threshold thus ranges from
5 to 125 susceptibility percent. In other words, as Mean squared error (MSE) is a common metric used
the number of data points increases, the threshold be-to evaluate how well data points fit a regression. For
comes tighter. each model, we calculate the MSE between the actual
Lastly, we propose a new evaluation metric called mean susceptibility in yeays, ... ,ys and the model's
percent of insignificant errors (PIE). ThePIE met- estimated susceptibility for those years. This MSE se-
ric, formulated in Equation 5, computes the percent of lector then selects the model with the lowest MSE to
antibiotic-bacteria pairs with an absolute eror a| predict the susceptibility percent for the target yéar
less than or equal to the respective standard &Eor This process is repeated for each antibiotic-bacteria
pair to determine which model should be used to
make predictions for that particular pair.

make a prediction for yeaf. Step 4 uses evaluation
metrics to measure the effectiveness of the prediction
for target yealy.

2.7 Strategies for Model Selection
o)

[{AB; : (Ipj —&j[ < SE),j € [1:m]}]
m

where p; refers to the predicted susceptibility, to
the actual mean susceptibility, and tB& thresh-
old to the calculated standard error for the antibiotic- We now introduce a refined model selection strat-
bacteria pairAB; from j = 1,...,m as defined in  egy that aims to select the model that predicts the
Equation 4. The closer to 100 percent the PIE metric next three years the best, which we catkeyous

PIE =

5)
2.7.2 Previous Year Prediction Error Reduction
Model Selector

108



Predicting Future Antibiotic Susceptibility using Regression-based Methods on Longitudinal Massachusetts Antibiogram Data

year pediction eror reduction strategy, or in short 3 EXPERIMENTAL RESULTS
PYPER. PYPER uses the model that has the smallest

absolute error in the previous year to make a predic- For each antibiotic-bacteria pair, we use linear regres-
tion for the target yea. sion, polynomial regression, linear SVR, and Gaus-

Specifically, we will create models to capture nine sian SVR to make predictions for 2015, 2014, and
yearsyy,...,ys of data and use these models to pre- 2013. The models are constructed with nine years of
dict the susceptibility forys. The model with the  data from one, two, and three years prior to the tar-
smallest absolute error between the predicted and theget yearY. As mentioned in Section 2.5, the mean
actual mean susceptibility percent fgy is selected  absolute erroMAE, Equation 2 is most useful for
for that specific antibiotic-bacteria pair. If tied, the comparing models. Additionally, the percent of use-
model with the smallest aggregated mean absolute er-ful prediction PUP, Equation 3, and the percent of
ror MAE is chosen. The chosen method using suscep-insignificant error$|E are particularity useful in un-
tibilities from yy,...,Yo is used to make predictions  derstanding the effectiveness of the models in the do-
for the target yea¥ which is eitheryig, y11, Or y12. main.
This process of selecting a model and generating a
prediction is repea}ted foregch antibiotic-bacteria pair. 3 1 Evaluating Regression-based

Lastly, we design a variant of the PYPER model
selection family, referred to as PYPERed (for PYPER Methods
with error distinction). PYPERed selects an overall ) ] ] ) )
well-performing prediction model as default when- Ve use linear regression, polynomial regression, lin-
ever the previous year's prediction error falls un- €ar SVR, and Gaussian SVR to model the nine cases
der a specified threshold. This strategy is inspired created by combining of target years 2013, 2014, and
by the observation that for some antibiotic-bacteria 2015 with data points from one, two, and three years
pairs the susceptibility changes minimally over time. Prior. Gaussian SVR performs the best for predicting
PYPERed allows us to automatically utilize the previ- 2015 when predicting two and three years into the fu-
ous actual mean susceptibility for these cases, while ture for evaluation metrics|AE andPIE. The linear
selecting among the aforementioned predictive meth- methods perform best for predicting 2014 and 2013.
ods if the antibiotic-bacteria pairs experience more Polynomial regression performs worse than the other
notable susceptibility changes. The distance thresh-methods. Also, th®1AE of polynomial regression in-
old we use in this instance is calculated using the creases the most when predicting more years into the
standard erroBE formula, Equation 4, with the num- future,. mdu;atmg that the majority of the antibiotic-
ber of data points in yeaf. If the absolute differ- ~ bacteria pairs do not follow a polynomial trend over
andyy is less than the calculate8E, PYPERed se- the best predictions is highly dependen_t on not only
lects the actual mean susceptibiliyof yearys as the number of years into thg future predlcted but also
the prediction for yea¥. Otherwise, PYPERed em- the particular year that is being predicted.
ploys the PYPER model selection methodology de- To ensure that the results of our regression models
scribed above to select the best predictive model for are applicable to multiple years, we have aggregated

that antibiotic-bacteria pair. over the year predicted when predicting one, two, and
three years into the future. These results are displayed
2.8 Software Tools and Availability in Tables 1, 2, and 3, respectively. We observe that the

prediction abilities of linear regression, linear SVR,
This work was completed using Python 3.5.2. The and Gaussian SVR are relatively close on these ag-

libraries we used are Pandas (v.0.18.1) for data pre-9redated results. That s, the difference in the mean

processing, Numpy (v.1.11.1) for data preprocessing absolute erroMAE_rgnges from M4 susceptibility
and machine learning, scikit-learn (v.0.17.1) for ma- Percentwhen predicting two years ahead tsus-

chine learning, and Matplotlib (v1.5.1) for visual- ceptibility percent when predicting_ three years ahead.
izations. Specifically, the code used for the mod-  1h€ linear models perform slightly better when
els waslinear model.LinearRegressiongnd SVR() ~ Predicting two years ahead wiMAE under 25 sus-
with fit() and predict() Also, polyfit and polyld Ceptlb"lty percen?, Whl|e the SVR models pe_zrformed
are utilized for polynomial regressions. We have Petter when predicting three years ahead withAE
released the code along with additional plots at of just over 28 susceptibility percents. When predict-

https://github.com/mitiachac/HEALTHINF2018. ing one year ahead, linear regression and Gaussian
SVR are the best predictors withMAE barely over

two susceptibility percents. Given this, we conclude
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that linear regression, linear SVR, and Gaussian SVR SVR. This indicates that for just over 60 percent of
are equally valid choices as predictors when predict- antibiotic-bacteria pairs, the amount of error from the
ing either one, two, or three years into the future. SVR predictions is insignificant even when predicting

more than two years into the future. Thus, while our
Table 1: Comparison of regression model performance models perform better when predicting fewer years

when predicting 1 year into the future. into the future, there are some antibiotic-bacteria pairs
Method MAE | PUP | PIE that the SVR models continue to predict well even
Linear Regression 2.04 | 89.82 | 71.69 multiple years into the future.
Poly. Regression| 2.45 | 85.63 | 68.90 i
Linear SVR 217 | 8801 | 7057 3.2 Evaluatlng Model Selectors
Gaussian SVR | 2.04 | 8828 | 70.85

Upon analysis of which antibiotic-bacteria pairs were
predicted best using each method, we observe that
different prediction methods performed best for dif-
ferent pairs. In Tables 1, 2, and 3, the smallest

Table 2: Comparison of regression model performance
when predicting 2 years into the future.

Method MAE | PUP | PIE mean absolute errdviAE of the best uniformly ap-
Linear Regression 2.48 | 86.05 | 6541 plied regression-based method 64, 247, and 283
Poly. Regression| 3.59 | 79.22 | 55.93 susceptibility percents when predicting one, two, and

Linear SVR 247 | 8536 | 6527 three years into the future, respectively. If we select
Gaussian SVR | 2.52 | 85.08 | 66.11 the model with the smallest difference between the

predictedp and the actual mean susceptibil#yper-
cent for each antibiotic-bacteria pair, we can reduce
the MAE by over one susceptibility percent regard-
less of how many years into the future are predicted.

Table 3: Comparison of regression model performance
when predicting 3 years into the future.

_ Method _ MAE | PUP | PIE We can effectively consider the$8&AE values, seen
Linear Regression 3.00 | 8243 | 60.39 in the first row of Tables 4, 5, and 6, as our upper
Poly. Regression| 4.94 | 7141 | 47.14 bound for the prediction ability of the model selectors

Linear SVR 2.83 | 8326 | 6276 using linear regression, polynomial regression, linear

Gaussian SVR | 2.83 | 8229 | 6471 SVR, and Gaussian SVR. Given the ability to reduce

) . . the MAE by individually selecting a model for each
However, as noticed by the increasing averages gngipjotic-bacteria pair, a method selection technique

over time, the methods’ prediction abilities decline 414 improve our ability to predict future suscepti-
when predicting more years ahead. THMAE be- bility percents.

tween the predicted and mean susceptibility percents
increase almost.8 susceptibility percents when pre- 3.2.1 Evaluating the MSE Model Selector
dicting one year ahead to three years ahead. A simi-
lar decrease in prediction ability between years is ob- When the set of the models that the MSE selector
served for théPU P evaluation metric.PUP starts at can choose from includes polynomial regression, the
just over 88 percent for linear regression, linear SVR, resulting subpar values of the evaluation metrics are
and Gaussian SVR when predicting one year into the very similar to those of the evaluation metric val-
future. ThenPUP decreases about four percent each yes for polynomial regression. Given this, we re-
subsequent year into the future that is predicted. moved polynomial regression from the set of meth-
Linear regression, linear SVR, and Gaussian re- ods. The resulting evaluation metrics when predicting
gression all havPIE values of just over 70 when pre-  one, two, and three years into the future are depicted
dicting one year into the future. While lower than the in Tables 4, 5, and 6, respectively.
PUP values, this is expected as the maximum thresh-  The MSE selector performs better for every eval-
old for PIE is equal to constant threshold fBP. uation metric after removing polynomial regression.
The decrease in the values BfE evaluation met-  However, the MSE selector still performs worse than
ric are over 45 susceptibility percent when predict- the best uniformly applied regression-based method,
ing for all of these methods. However, whiliE as seen by the highelAE values. This suggests
continues to decrease at a similar rate for linear re- that the model that overall fits the historical data best
gression when predicting three years into the future, pased on minimizing the MSE is not the best model

the rate slows for the SVR methods. There is only to use for predicting the susceptibility of future years.
a 14 percent decrease when increasing from predict-

ing two years to three years into future for Gaussian

110



Predicting Future Antibiotic Susceptibility using Regression-based Methods on Longitudinal Massachusetts Antibiogram Data

Table 4: Comparigon of model selection performance when Smallest Absolute Error Chosen Model PYPER Chosen Model

Predicted 1 Year Ahead B Predicted 1 Year Ahead

predicting 1 year into the future.

Method MAE | PUP | PIE
Upper Bound| 1.01 | 96.09 | 88.00
MSE Selector| 2.11 | 8856 | 70.15

PYPER 1.80 | 9149 | 75.73

PYPERed | 1.61 | 91.91 | 81.59

Percent
Percent

Table 5: Comparison of model selection performance when Smallest Absolute Error Chosen Model phYPER Chosen Model
predicting 2 years into the future.

Method MAE | PUP | PIE
Upper Bound| 1.40 | 9317 | 81.73
MSE Selector| 2.59 | 8396 | 65.97

PYPER 2.21 | 8801 | 70.01

PYPERed 2.04 | 90.01 | 7322

Percent

SVR
Model

Smallest Absolute Error Chosen Model PYPER Chosen Model

Table 6: Comparison of model selection performance when Predicted 3 Years Ahead ; Predicted 3 Years Ahead
predicting 3 years into the future.

Method MAE | PUP | PIE
Upper Bound| 1.64 | 90.38 | 79.77
MSE Selector] 2.98 | 8145 | 61.37

PYPER 2.65 | 8452 | 6499

PYPERed 2.37 | 86.75 | 6862

Percent
Percent

3.2.2 Evaluating the PYPER Model Selector Figure 2: Frequency that models have the smallest absolute
error |p— a| compared against frequency that models are

The strength of PYPER is that it chooses the spe- chosg by PYRFG

cific method based only on the fit of the previous
year for each antibiotic-bacteria pair individually. Un- . - )
like the MSE selector, selecting models using PYPER Predicted into the future. ~According to tHeAE,
increases our ability to predict future susceptibilities PYPER_ performs worse than Gaussian SVR when
when results are aggregated by year. PYPER’s eval-P“?d'C“'_"g 2015 using data from 2004 to 2012. _De-
uation metrics when predicting one, two, and three SPIt€ this, when aggregated over the year predicted,
years into the future are in Tables 4, 5, and 6, respec-PYPER.St'” Qemonstrates a smallllncrease n pr_edlc-
tively. These results also only include linear regres- pon ability with "_"” evaluation metrics when_pr_edlct-
sion, linear SVR, and Gaussian SVR models as in- N9 three years_mto the future. When predicting one
cluding polynomial regression either decreased or has@"d tWo years into the future, PYPER decreases the
no impact on PYPER's prediction ability. gggregatecMAE by over two susceptibility percent,
Polynomial regression is never chosen when pre- Ncr€ases the aggregatédl) P by over 16 percent,
dicting two or three years into the future as seen in and !ncreases_the aggrega(E by over 39 per-
Figure 2. This further indicates polynomial regression C€Nt N comparison to the best performing regression-
is not an effective method for predicting susceptibil- based models.
ity percents multiple years into the future. In Figure 2, .
we can also see that the frequency each model is cho-3-2-3  Evaluating the PYPERed Selector
sen by PYPER closely mirrors the frequency that each
model has the smallest absolute erfpr a| in the We observed that some antibiotic-bacteria pairs show
target yealy. While the frequency PYPER chooses very little change in mean susceptibility or oscillate
Gaussian SVR is higher, this is understandable givenaround a consistent mean susceptibility over time. We
that Gaussian SVR is the chosen method in the occur-take advantage of this fact and set our default method
rence of a tie (Section 2.7.2). to be the mean susceptibility of the previous year. If
PYPER'’s prediction ability decreases steadily the the absolute difference between the actual mean sus-
more years into the future that are predicted. The ceptibilities of yeartys and yealyy is less tharSEin
MAE decreases by over®susceptibility percentand Equation 4 calculated with the number of reports in

thePIE by over five percent for each subsequent year
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yearyg, we use the mean susceptibility for yggras is another model with less error. Analyzing both
the prediction for the target yedr Otherwise, we use  of these scenarios, the antibiotic-bacteria pairs that
PYPER'’s methodology in Section 2.7.2 to select the are not predicted well can be sorted into three non-
method. The aggregated results for predicting one, exclusive categories: (1) the bacteria are known to
two, and three years ahead are in the last row of Ta- be resistant to that antibiotic, (2) there are not many
bles 4, 5, and 6, respectively. data points for that antibiotic-bacteria pair, and (3)
PYPERed performs better than all of the a change in CLSI guidelines caused a very sudden
other proposed methods including PYPER. When change in susceptibility.
PYPERed is compared to PYPER, the decrease in  The most common reason that antibiotic-bacteria

MAE is just under @ susceptibility percent when pairs has an absolute errfp— a| greater than five
predicting one and two years ahead, and ov@60  sysceptibility percent is that the antibiotic is known
susceptibility percent when predicting three years not to be effective in treating the bacterial infection.
ahead. Additionally, there is an increase in over tWo For instance antibiotics in the fluoroquinolone and
susceptibility percent foPUP when predicting two  macrolides families were repeatedly parts of pairs that
and three years ahead and an increase in over foufyere not predicted correctly. While also part of other
percent forPIE when predicting one and two years incorrectly predicted pairs, these antibiotics were fre-
ahead. PYPERed produces the best susceptibility pre-quently predicted badly when paired with any one of
dictions for every year predicted. the threeStaphylococcus aureusacteria to which it

is known to be frequently resistant. Ampicillin is also

not used to treabtaphylococcus aureirgfections be-
4 DISCUSSION cause of high prevalence of resistance. Thus, not sur-
prisingly, when paired with MSSA, ampicillin boasts
the largest absolute errop — a| of all pairs when
the target yealf is 2015. Nitrofurantoin, to which
Klebsiella ssp, Enterobacterssp, andPseudomonas
ssp are known to be resistant, is involved in multiple
pairs that cannot be predicted well. As these antibi-
otics are not being used to treat infections caused by
these bacteria, it is not as important for final medical
treatment if we can predict the future susceptibility of

Our results demonstrated that different models per-
form best depending on the year predicted, the
number of years predicted into the future, and the
antibiotic-bacteria pair. To combat the latter of these,
we apply model selection techniques as the suscepti-
bility of different antibiotic-pairs are best modeled by
different distributions over time. Experimental results
CEf(me iRy (e EEn D' PejtenpERictioagMiEn these antibiotic-bacteria pairs within five susceptibil-
these model selectors involve the previous year’s pre- it ts

dictions. PYPER, especially PYPERed, proved to Ity percents.

be effective at increasing the number of antibiotic- ~ The second cause for inaccurate predictions is a
bacteria predictions that can predicted within five sus- lack of data points each year. In particular, this is an
ceptibility percents of the actual susceptibility per- issue forStenotrophomonas maltophiledAcineto-
cent. Depending on if one or three years is pre- bacter baumannii There are only three antibiotics
dicted into the future, the percent of useable predic- tésted againsstenotrophomonas maltophiliaat met
tionsPUP for PYPERed is between ®1 and 8675 the minimum cleaning criteria. The two of these an-
percent, respectively. In Figure 3, the absolute errors tibiotics with fewest data points are also not consid-
|p _ a| Of |inear regression, po'ynomia' regression, ered genera”y effective at treatlng infections caused

linear SVR, and Gaussian SVR are shown Es- by Stenotrophomonas maltophilidemonstrating the
cherichia coliwhen predicting 2015 using data from non-exclusive nature of these three categories. While
the prior nine years. there are 16 pairs involvingcinetobacter bauman-

Even when the model with the smallest absolute Nil, some of them only just passed the minimum data
error|p—a| is chosen for each individual antibiotic- ~POINt requirement for each year. Depending on year
bacteria pair, not all of the pairs can be predicted Predicted and number of years into the future pre-
within five susceptibility percent of the actual mean dicted, up to half of the pairs involvingcinetobacter
susceptibility percent. This upper bound fBUP baumanniihad pred|ct|oqs where the .e.lbsolute error
is highly dependent on the number of years into the |P— al was greater than five susceptibility percent.
future being predicted, ranging from @8 percent This lack of data points is a particular problem
when predicting three years ahead ta®6percent  when predicting for target year 2013 due to the com-
when predicting one year ahead. Beyond that, therebination of fewer cleaning requirements and less re-
are pairs where PYPERed selected a model with anliable data in prior years. More rigorous clean-
absolute errofp — a| greater than five when there ing strategies could remove these antibiotic-bacteria
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Figure 3: Absolute errojp — a| of Escherichia colusing data from 2006 2014 to predict 2015.
Imipenem & ity of yearY. To demonstrate, Figure 4 contains the

Enterobacter aerogenes
100 T T T

actual mean susceptibility percergswith standard
deviation of the antibiotic-bacteria pair imipenem and
8o} 1 Enterobacter aerogenefsom 2002 to 2015. CLSI
guidelines changed from 2010 to 2013, resulting in
universal decreased susceptibility rates for carbapen-
ems (Rennie and Jones, 2014). This change in CLSI
guidelines explains the sudden observed decrease in
susceptibility percent and the varied adherence to
these new guidelines explains the sudden increase in
20¢ 1 standard deviation after 2010 f&nterobacter aero-
genesand imipenem, as seen in Figure 4. Thus, by
0 ‘ ‘ ‘ ‘ ‘ ‘ monitoring changes in CLSI guidelines, it is possible
Soronh o moe s o o R0 to anticipate certain antibiotic-bacteria pairs that may
not be able to be predicted reliably.

While we are not able to predict all antibiotic
e pairs within five susceptibility percent of the actual
mean susceptibility percemt we are able to spec-
ify whether to trust a prediction based on the an-
tibiotic's effectiveness at treating the bacterial in-
fection, the number of data points, and changes in
CLSI guidelines. In particular, predictions involving
Stenotrophomonas maltophiligdcinetobacter bau-
mannii fluoroquinolones, macrolides, and nitrofuran-
toin should be considered with some caution. How-
ever, even without further measures, our proposed
model selection technique PYPERed is still able to
predict over 90 percent of the 239 antibiotic-bacteria
pairs within five susceptibility percent when predict-
ing one year ahead.

60 -

40t

Susceptibility Percent

Figure 4: Mean susceptibility percent over time.

pairs. However, that cleaning would also remov
pairs that can be predicted well despite having fewer
data points in certain years, particularity given the

fluctuation of data points for some pairs over time.

As such, we simply recommend acknowledging that
models created with fewer data points should not be
expected to perform as well as models created with
more data points.

Lastly, there are a few antibiotic-bacteria pairs
with sudden changes in susceptibility percent due
to CLSI guidelines changes that a model based on
prior data could not anticipate. This is the reason
that important antibiotic-bacteria pairs, namefn-
terobacter aerogenewith carbapenems meropenem
and imipenem, are not always predicted within five
susceptibility percent of the actual mean susceptibil-
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