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Model transformations constitute the core essence of model-driven software development (MDSD) — a soft-

ware engineering discipline, which gained more and more attention during the last decade. While technology
for unidirectional batch transformations seems to be fairly well developed, tool support for bidirectional and
incremental transformations is still restricted. Results obtained with case studies carried out with popular bidi-
rectional approaches motivated us to set up our own light-weight framework for bidirectional and incremental
model transformations based on the Xtend programming language. Our approach provides several advan-
tages, as it reduces the cognitive complexity for transformation developers, and allows for a greater flexibility
in transformation specifications by providing procedural language constructs. In addition, it provides a higher
expressive power and allows for compact specifications at the same time.

1 INTRODUCTION

The motivation behind Model-driven software de-
velopment (MDSD) (Volter et al., 2006) is to re-
place low-level programming with the development
of high-level models. Starting from an initial model
capturing the requirements, a set of models over mul-
tiple levels of abstraction is derived until finally code
is generated. Modeling languages are usually de-
fined with the help of meta models in the context
of object-oriented modeling. In the academic world,
the de-facto standard for research dedicated to model-
driven engineering is the Eclipse Modeling Frame-
work (EMF) (Steinberg et al., 2009). It strictly fo-
cuses on principles from object-oriented modeling
and only provides core concepts for defining classes,
attributes and relationships between classes. EMF is
based on its meta model Ecore, which basically re-
sembles Essential MOF (EMOF), a subset of MOF
(OMG, 2015b).

Model-driven Architecture (MDA) (Mellor et al.,
2004) is the standard process for model-driven soft-
ware engineering. In the MDA context, model trans-
formations are typically chained. A platform inde-
pendent model (PIM) is refined to a platform spe-
cific model (PSM) using a series of subsequent model
transformations. Consequently, MDSD highly de-
pends on model transformations. A model transfor-
mation describes how a source model s, represented
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as an instance of an input meta model is transformed
into a target model # conforming to the output meta
model. Typically, we distinguish between model-
to-text (M2T) and model-to-model (M2M) transfor-
mations, depending on the representation of the tar-
get models. A wide range of formalisms have been
proposed in the past for defining model transfor-
mations (Czarnecki and Helsen, 2006). They vary
with respect to computational paradigms (procedural,
functional, rule-based, object-oriented), directional-
ity (unidirectional vs. bidirectional), support for in-
place, out-place, incremental or batch transforma-
tions, etc. Numerous model transformation languages
emerged accordingly, ranging from general ones, like
ATL (Jouault et al., 2008) or QVT (OMG, 2015a),
graph based languages like Henshin (Arendt et al.,
2010) or eMoflon (Anjorin et al., 2012) to domain-
specific languages such as, e.g., the Epsilon family of
transformation languages (Rose et al., 2014) or EMG
(Popoola et al., 2016). Our observations have shown
that tool support for (unidirectional) batch transfor-
mations is fairly well developed. However, in many
scenarios different kinds of transformations are re-
quired: After transforming a source model into a tar-
get model, additions or modifications to the target
model may be necessary. Consequently, changes to
the source model need to be propagated in a way
which allows to retain the manual modifications of
the target model. These change propagations de-
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mand for incremental rather than batch transforma-
tions. Additionally, changes to the target model may
have to be propagated back to the source model, re-
sulting in bidirectional transformations. While sev-
eral languages and tools for bidirectional and incre-
mental transformations have been proposed in the
past (OMG, 2015a; Schiirr, 1994), there are still a
number of unresolved issues concerning both the lan-
guages for defining transformations and the respective
supporting tools (Stevens, 2007; Westfechtel, 2016).

In this paper, we present BXtend, a light-weight
framework for bidirectional and incremental model
transformations based on the Xtend programming
language. The framework helps transformation de-
velopers to easily create a hand-crafted Triple Graph
Transformation System (TGTS) which will be used
for a bidirectional and incremental model-to-model
transformation. Moreover, it is an object-oriented and
imperative language with some functional parts al-
lowing for concise transformation specifications with
a high degree of expressive power. Our results ob-
tained from several case studies have shown that BX-
tend allows to reduce the cognitive complexity for
the transformation developer, by explicitly specify-
ing both transformation directions. Furthermore, the
procedural character of the language allows for a
greater flexibility in the transformation rules. How-
ever, the overall size of the transformation specifi-
cation is outperforms purely declarative and bidirec-
tional approaches, as QVT-R for example. The re-
sulting transformation seamlessly integrates into Java
code, which makes it easy for tool integrators to em-
power their tools with powerful model transforma-
tions.

2 RELATED WORK

Over the years, many approaches for model transfor-
mations have been proposed. In the following, we
will focus our discussion only on the ones providing
support for bidirectional and incremental model-to-
model transformations. Please note that rather than
comparing our framework against single tools, we
tried to categorize the existing formalisms and dis-
cuss the benefits and drawbacks of the chosen ap-
proach instead. Of course we will give examples of
tools belonging to the respective categories. However,
our own observations and case studies have revealed,
that all of the approaches listed below have limitations
when conditional creations of target elements are re-
quired. In this case, procedural approaches like BX-
tend are more powerful.

2.1 Rule-based Approaches

Approaches belonging to this category usually are
grammar-based and provide a high-level language al-
lowing for generating all consistent pairs of source
and target models. While this technique can be ap-
plied to strings, lists, or trees, the most prominent
representative are Triple Graph Grammars (TGG)
(Schiirr, 1994). TGGs have been implemented by
various tools, such as, e.g. eMoflon (Anjorin et al.,
2012), TGG Interpreter (Kindler and Wagner, 2007),
MOoTE (Giese et al., 2014) or EMorF (Klassen and
Wagner, 2012), just to name a few. The basic idea
behind TGGs is to interpret both source and tar-
get models as graphs and additionally have a corre-
spondence graph, whose nodes reference correspond-
ing elements from both source and target graphs, re-
spectively. The resulting model transformation lan-
guage is highly declarative, as the construction of
triple graphs is described with a set of production
rules, which are used to describe the simultaneous ex-
tension of the involved domains of the triple graph.
Please note that within the rules, no information about
a transformation direction is contained. The corre-
sponding rules for forward and backward transfor-
mation may be derived automatically by the TGG
engine. Trace information is stored in the corre-
spondence graph, which is exploited for incremental
change propagation. From the viewpoint of the trans-
formation designer, incrementality and bidirectional-
ity come for free and need not be specified explicitly
in the transformation definition, as well as modifica-
tions and deletions, which are also handled automati-
cally by the TGG engine.

2.2 Constraint-based Approaches

Constraint-based approaches are usually even more
high-level than grammar-based approaches, as they
only require a specification of the consistency relation
but all details how to restore this consistency relation
are left open. QVT-R (OMG, 2015a) is a language
following this principle. Unfortunately, there are only
very few tools which are based on this standard. QVT-
R allows of a declarative specification of bidirectional
transformations. The transformation developer may
provide a single relational specification which defines
relations between elements of source and target mod-
els respectively. This specification may be executed
in different directions (forward and backward) and in
different modes (checkonly and enforcement). Fur-
thermore, QVT-R allows to propagate updates from
the source model to the target model in subsequent
transformation executions (incremental behavior).
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2.3 Functional Programming-based
Approaches

In functional programming-based approaches, the ba-
sic idea is to program a single function (forward
or backward), which is used to infer the opposite
function (backward or forward) and providing a pair
which adheres to round tripping laws. These ap-
proaches origin from the BX community and are
based on lenses, which are used to specify view/up-
date problems. A different terminology is used for
forward and backward directions: the forward direc-
tion is referred to as get, while the backward direction
is called put. The round trip idea can be realised ei-
ther by using get to infer put, or vice versa. In all
cases, the underlying consistency relation is not spec-
ified explicitly. One representative of this approach is
BiGUL '

2.4 Our Approach

The main differences of our approach compared to
the approaches discussed above, is that BXtend is a
procedural and object-oriented framework, which is
implemented in the programming language Xtend®.
Besides its procedural and object-oriented charac-
ter, Xtend also provides powerful functional parts, as
lambda expressions. The procedural constructs al-
low for a greater flexibility in transformation speci-
fications. Our BXtend framework is a light-weight
framework helping transformation developers to eas-
ily create a TGTS as an internal DSL. It is easy to
use for Java developers, as Xtend directly builds upon
Java and just makes it less verbose. Thus, the trans-
formation developer does not need to learn a new
programming language. Furthermore, the resulting
M2M transformation may be integrated seamlessly
with any other Java application without requiring ad-
ditional dependencies, which makes it particularly in-
teresting for tool integrators. Transformation direc-
tions are specified independently in an unidirectional
language, which provides a greater flexibility for the
transformation developer, but provides not support to
check if the backward transformation matches the for-
ward direction. Nevertheless, our case studies un-
vieled, that although both transformation directions
need to be specified separately, the overall transfor-
mation script is still dense an compact and does not
require more LOC than approaches optimized for
bidirectional transformations.
'www.prg.nii.ac.jp/project/bigul/
*http://www.eclipse.org/xtend/
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3 BACKGROUND

3.1 Model Transformations

As stated above, model transformations constitute the
core essence of model-driven software development.
Given a source model s and a target model 7, both
conforming to their respective meta models, a model
transformation describes how s is converted to ¢. De-
pending on the representation of the models s and
t, we distinguish between model-to-model (M2M),
model-to-text (M2T), text-to-model (T2M), and text-
to-text (T2T) transformations.

Throughout the years, a wide range of languages
and tools for model transformations has been de-
veloped (Czarnecki and Helsen, 2006). These ap-
proaches differ from each other in several aspects:

Computational Paradigms: Computational
paradigms of model transformation languages
comprise procedural, functional, object-oriented,
or rule-based languages.

Transformation Direction: While some languages
only provide support for unidirectional (i.e., from
the source to the target model), other languages
allow to formalize and execute bidirectional trans-
formations (i.e., from source to target models and
vice versa).

Execution Modes: While batch transformations cre-
ate the complete target model in each transfor-
mation run from scratch, incremental transforma-
tions may be used to retain changes made to the
target model.

Source/Target Model Relationships: If source and
target model refer to the same model instance, the
transformation is called in-place transformation.
Out-place transformations operate on different in-
stances of source and target models.

Source/Target Language Relationships: If  both
source and target model are instances of the
same meta model, the transformation is called
endogenous. In an exogenous transformation,
the meta models or source and target models are
different.

Different model transformation languages exist,
ranging from general ones, like ATL (Jouault et al.,
2008) or QVT (OMG, 2015a), graph based languages
(e.g., Henshin (Arendt et al., 2010) or eMoflon (An-
jorin et al., 2012)) to domain-specific transformation
languages such as the Epsilon family of transforma-
tion languages (Rose et al., 2014) or EMG (Popoola
et al., 2016).
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3.2 Graph Transformations

Model instances may be interpreted as graphs, as a
model typically constitutes a spanning containment-
tree whose elements are interconnected with cross-
tree edges. As a consequence, a model transfor-
mation is regarded as a problem in the domain of
graph transformations (Ehrig et al., 2005). In general,
graph-based systems may be classified into two dif-
ferent categories: Graph-rewrite systems and graph
grammars. For the application scenario of bidirec-
tional model-to-model transformations, a special kind
of graph grammars — triple graph grammars (Schiirr,
1994) — are used typically. Graph rewriting implies
that the graphs are transformed by applying rewrite
rules, which specify the replacement of a graph pat-
tern (left-hand side) by a subgraph to be embedded
into the overall host graph. Triple Graph Grammars
(TGG) (Schiirr, 1994) interpret both source and target
models as graphs and additionally a correspondence
graph whose nodes reference corresponding elements
from both source and target graphs, respectively, is
used. TGGs allow to describe model transformations
in a highly declarative way by means of production
rules, which are used to describe the simultaneous ex-
tension of the involved graphs.

3.3 Triple Graph Transformation
System

As stated above, graphs may be used to represent
models in a natural way and graph transformations
declaratively describe modifications of graph struc-
tures. In order to maintain consistency between in-
terdependent and evolving models, a graph transfor-
mation system is necessary dealing with at least two
graphs: a source graph s, and a target graph t. When
incremental change propagation is required, an addi-
tional correspondence graph c is placed in between
s and ¢, in order to maintain traceability links. Al-
together, this results in a triple graph transformation
system (TGTS) comprising rules for defining source-
to-target and target-to-source transformations and ac-
tions for checking consistency and repairing inconsis-
tencies. TGGs are able to automatically derive a cor-
responding TGTS from a TGG specification but, as
described in (Buchmann et al., 2009) and (Buchmann
and Westfechtel, 2016), the TGG approach suffers
from certain limitations which have been unveiled
in our case study. As a consequence, we decided
to provide an alternative implementation by hand-
crafting the TGTS which deals with the models in-
volved in this use case. Please note that we intention-
ally decided to implement the TGTS manually rather

than using graph transformation tools, like Henshin
(Arendt et al., 2010), to specify the corresponding
forward and backward rules since we wanted to com-
pare the bidirectional approaches with manual imple-
mentations of model transformations in a current pro-
gramming language.

4 BXtend FRAMEWORK

Developing a Triple Graph Transformation System
by hand seems to be a laborious task at first glance:
Each alteration of the involved graphs needs to be
addressed, including generations, modifications and
deletions. Furthermore, each transformation direction
needs to be specified separately. In addition, rules
for checking consistency and establishing correspon-
dences are required. In the following, we present our
framework BXtend, which helps transformation de-
velopers to easily create a TGTS for bidirectional and
incremental model transformations. The framework
takes care of the correspondence model and detecting
modifications and deletions. Thus, the user can focus
on specifying the forward and backward rules for the
transformation.

4.1 Correspondence Model

In order to implement a TGTS, besides source and
target graph, a correspondence graph is needed. It
turned out, that a simple correspondence model, as
depicted in Figure 1 is sufficient for all transformation
problems that we encountered so far.

EJ Transformation

0.* |, correspondences

E|¢ Corr source
0.1
target
0.1

L4 EObject

Figure 1: Correspondence metamodel.

A Transformation contains an arbitrary number
of correspondence elements (Corr). In order to es-
tablish traceability links, such elements always refer
to at least one EObject from the source model and
one EObject from the target model. In general, the
easiest kind of mapping are 1:1 mappings. Thus, for
the Corr class at maximum one source and one tar-
get element are allowed. In case of 1:n mappings,
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which are also possible, no additional elements are
created in the correspondence model nor is the upper
bound for source or target elements extended. Rather
the additional elements (2-n) are maintained manu-
ally in the rule that covers the basic (1:1) mapping.
Please note that the user may also extend the corre-
spondence model by subclassing from the Corr class
and add m:n relationships between source and target
model elements if necessary.

The main purpose of the correspondence model is
to establish traceability links between source and tar-
get elements. The framework checks the correspon-
dence model before modifying source or target mod-
els in order to detect updates or deletions of model
elements.

4.2 Transformation Rules

As stated in Section 3.3, a triple graph transformation
system may be used for bidirectional and incremental
model transformations. Our BXtend framework im-
plements such a TGTS by using the correspondence
model as correspondence graph ¢. Maintaining the
correspondence graph is done by the framework, the
transformation engineer can focus on the respective
rule specifications for forward and backward transfor-
mations.

When specifying a model transformation, the soft-
ware engineer needs to decide in which direction the
spanning containment tree should be processed, i.e.
in a bottom-up way by starting at the leaves, or top-
down when the root element is considered first. As
declarative approaches, like QVT-R or TGGs perform
a topological sort of model elements, transformation
developers have very limited influence on the trans-
formation order. Thus, the developer must typically
assume the resulting ordering of the rules (and the ex-
ecution semantics), when the model transformation is
specified.

Contrastingly, in our approach, the transformation
order is fully under the control of the software en-
gineer. L.e., when strictly following a top-down order
the user can assume that container elements in the tar-
get model already exist, when their child elements are
created.

The common behavior (including management of
the correspondence model) is implemented in an ab-
stract base class, which all user-implemented trans-
formation rules need to inherit from. Listing 1 shows
a cutout of this class with the most important meth-
ods, which handle the correspondence model getOr-
CreateCorrModelElement and the on-demand cre-
ation of source and target model elements getOrCre-
ateSourceElem, getOrCreateTargetElem.
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Listing 1: Cutout of the abstract base class Elem2Elem.

abstract class Elem2Elem {

1

2 c

3 def getCorrModelElem(EObject obj) {

4 (corrModel.contents?.get (0) as Transformation) .

correspondences.
5 findFirst [corr |
6 corr.sourceElement == obj || corr.
targetElement == obj]

7 }

9 def getOrCreateCorrModelElement (EObject obj) {

10 var Corr corr = obj.getCorrModelElem

11 if (corr == null) {

12 corr = corrFactory.createBasicElem => [

13 if (obj.eClass.EPackage instanceof
sourcePackage)

14 sourceElement = obj

15 if (obj.eClass.EPackage instanceof
targetPackage)

16 targetElement = obj ]

17 (corrModel.contents.get (0) as Transformation).

correspondences += corr
18 }
19 }

20

21 def getOrCreateSourceElem(Corr corr, EClass clazz) {
22 var EObject source = corr.sourceElement

23 if (corr.sourceElement == null) {

24 source = sourceFactory.create(clazz)

25 corr.sourceElement = source

26 } return source

27 }

28

29 def getOrCreateTargetElem(Corr corr, EClass clazz) {
30 var EObject target = corr.targetElement

31 if (corr.targeteElement == null) {

32 target = targetFactory.create(clazz)

33 corr.targetElement = target

34 } return target

35 }

36 }

Listing 2 depicts a cutout of the class which
serves as an entry point for the transformation. The
class provides methods sourceToTarget() and tar-
getToSource(), which call the corresponding meth-
ods from the rule classes in the order specified by the
user (please note, these methods are omitted from the
listing due to space restrictions). Furthermore, this
class contains methods dealing with the deletion of
elements, as shown in the cutout in Listing 2.

Listing 2: Cutout of the entry class for the transformation.

class Source2TargetTransformation {

val List<EObject> deletionList = newArrayList

1

2 ...

3 def private deleteUnreferencedSourceElements () {
4

5 (corrModel.contents?.get (0) as Transformation) .

correspondences.
6 filter[c | c.sourceElement == null].
7 forEach[c |
8 if (c.targetElement != null) {
9 deletionlList += c.targetElement
10 }
11 deletionList += c
12 ]
13 deletionList.forEach[e | EcoreUtil.delete (e,
true)]
14 }

In order to determine elements which need to
be deleted, the correspondence model is checked at
the end of the transformation. In case of Listing 2,
the method deleteUnreferencesSourceElements
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is called at the end of the sourceToTarget() trans-
formation. If correspondence model elements exist,
in which the reference sourceElement is empty, the
corresponding target element is deleted. Afterwards
the correspondence element is deleted, too. An anal-
ogous method is used to determine deletions in the
target model.

S EXAMPLE

To demonstrate the flexibility and feasibility of our
approach, we chose the example “Families to Per-
sons” which is well-known in the model transforma-
tion community. Furthermore, the example is part of
the ATL (Jouault et al., 2008) transformation zoo. The
example was selected as a use case for the 2017 Trans-
formation Tool Contest (TTC)? and we contributed a
solution written with the help of the BXtend frame-
work presented in this paper and integrated it into the
Benchmarx framework (Anjorin et al., 2017), which
is intended to compare BX approaches. Please note
that our solution was provided as part of the reference
solutions and therefore it was not published yet.

5.1 Problem

E. FamilyRegister

0.4 families
E‘.g. Family

[E% name : String

0.1/ mother 0-*| daughters
0.1 [father, 0.*| son

Q FamilyMember

[E4 name : String

Figure 2: Families meta model.

Figures 2 and 3 depict the two meta models which
are involved in the transformation scenario. In the
following we refer to the families model as “source
model” and the persons model as the “target model”.
The root element of the source model is a Fami-
lyRegister which may contain an arbitrary number

3http://transformation-tool-contest.eu/

of families (Family). Each family has members who
are distinguished by their roles. The meta model al-
lows for at most one father and mother and an arbi-
trary number of sons and daughters. The Person-
Register on the other hand maintains a flat collec-
tion of persons (Person) who are either male (Male)
or female (Female). It is important to note that we
can not assume any key properties in neither model.
Consequently, there may be multiple families with the
same name and name clashes may also occur within
the same family. In the person register there may be
multiple persons with the same name and even the
same birth date. No specific ordering of the collec-
tion is assumed.

E'a_-. PersonRegister

0.%, persons
EJ. Person
[E% birthdate : Date

[E& name : String

i g

E‘... Male E‘.. Female

Figure 3: Persons meta model.

Consistency between a families and a persons
model is established, if a bijective mapping exists
which pairs mothers and daughters (fathers and sons)
with females (males) and the name of every person p
is “f.name, m.name”, where m is the member in the
family f paired with p.

Please note that in this example, the forward trans-
formation is straightforward by mapping each fam-
ily member to a person of the same gender and com-
posing the person’s name from the surname and first
name while leaving the birthday unset. The back-
ward transformation however is non-deterministic, as
a person may be mapped either to a parent or a child,
and persons may be grouped into families in differ-
ent ways. As a consequence, two boolean parame-
ters are introduced which control the behavior of the
backward transformation and allow for user-defined
configurations. One parameter controls whether a
new person is added to an existing family (if avail-
able), or a new family is created with the person as a
single family member. The other parameter controls
whether a person is mapped to the parent or child role
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within the family. In case both parameters are set to
true, the first one takes precedence, which means in
case there is a family with a matching surname but the
parent role is already occupied, the person is added as
a child.

This transformation scenario comes with informa-
tion loss in both directions, as in the forward direction
the distinction between parents and children as well as
the aggregation into families is lost. Birthdays are lost
in the backward direction. As a result, this case is an
example for a round-trip scenario, where both mod-
els may be edited and changes have to be propagated
back and forth.

5.2 Solution

We solved this transformation scenario with our
BXtend framework. Our solution comprises three
classes, implementing rules for transforming:

e a FamilyRegister to a PersonRegister and vice
versa

o fathers and sons (identified by the respective con-
tainment relation ships between Family and Fam-
ilyMember) to Male persons and vice versa

e mothers and daughters to Female persons and
vice versa

We did not need a separate rule dealing with Fam-
ilys as there is no counterpart for a family in the per-
son model.

Listing 3: Forward transformation of mothers and daughters
to female persons.

override sourceToTarget () {

1
2 sourceModel.allContents.filter (typeof (Family)
3 .forEach [
4 family |
5 val corrRegister = family.eContainer.
getCorrModelElement
6 val females = newArrayList
7 females.addAll (family.daughters
8 if (family.mother != null)
9 females.add (family.mother)
10 females.forEach|[
11 member
12 val corrFemale = member.
getOrCreateCorrModelElement ()
13 val female = corrFemale.
getOrCreatePersonElement (family.name + ",
" + member.name,
14 PersonsPackage.eINSTANCE. female)

e it is not clear to which family a person belongs,
especially if there are duplicate names

e a person may be added as a parent or a child

To this end, we developed a configurable back-
ward transformation which can be executed in three
different modes:

o using default values for the decision parameters

e a runtime-configurable version, where the param-
eters may be supplied via the API

e by providing a GUI where the user may edit corre-
spondences between family members and persons

Listing 4: Backward transformation of male persons.

1 override targetToSource() {
2 targetModel.allContents.filter (typeof (Male)) .forEach
[pl

3 val corr = p.getOrCreateCorrModelElement
4 val source = corr.getOrCreateSourceElem (
FamiliesPackage.eINSTANCE. familyMember) as
FamilyMember
5 val firstName = p.name.split (", ").get (1)
6 val familyName = p.name.split (", ").get (0
7 val sourceFamily = source.eContainer() as Family
8 val famRegister = p.eContainer().getCorrModelElem
() .source as FamilyRegister
9
10 source.name = firstname
11
12 if (sourceFamily == null || sourceFamily.name !=
familyName) {
13 val family = sourceFamily.getOrCreateFamily (p,
famRegister)
14 p.addToFamily (family, source, [family.father], [
family.father = it], [family.sons += it])
15
16 if (sourceFamily != null && sourceFamily.father
== null && sourceFamily.mother == null &&
17 sourceFamily.sons.empty && sourceFamily.
daughters.empty && decision.
deleteEmptyFamily (sourceFamily, source)
18 EcoreUtil.delete (sourceFamily, true)
19 }
20 ]

21}

Listing 5: Helper method for backward transformation.

1 def protected getOrCreateFamily (Family sourceFamily,
Person p, FamilyRegister fregister) {

2 val familyname = p.name.split (", ").get (0)

3 val families = fregister.getFamilies (familyname)

4 var family = decision.getFamily (families, p,

sourceFamily)

5 if (family == null) {

6 family = createFamilyElement (FamiliesPackage.
eINSTANCE. family) as Family => [name =
familyname]

7 fregister.families += family

8 decision.linkPersonToFamily (p, family)

9 }

0 family

1

As stated earlier, our BXtend framework works in-
crementally. To this end, we need to check the corre-
spondence model prior to each modification of source
and target models. This check is done in line 8 of
Listing 4.

As stated above, the backward transformation is
non-deterministic for the following reasons:
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Listing 4 depicts the backward transformation of
male persons. The transformation is invoked for any
male person in the target model. For each matching
model element, the correspondence model element is
retrieved (or created if there is no such element) as
shown in line 3 of Listing 4. Afterwards, the Family-
Member element of the source model is retrieved or
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created in line 4. As explained earlier, in the person
model only one attribute is used to store both first and
last names, separated by a comma. The value of this
attribute needs to be split in the backward direction
in order to obtain the corresponding attribute values
for Family and FamilyMember. FamilyMembers
are connected to their respective Family by a contain-
ment relationship. In order to get the family for a fam-
ily member, the generic eContainer method of the
EMF framework is used. In case no such family exists
(the family member has been newly created), or the
family name does not match the expected value (per-
son name has been changed), a helper method getOr-
CreateFamily (c.f., Listing 5) is called. The helper
method getOrCreateFamily retrieves all matching
families from the family register. Depending on the
value of the boolean parameters controlling the as-
sociation of family members to families a family or
null is returned. If no family was returned, it is cre-
ated in lines 6-8 of Listing 5. Afterwards the person
is added to the retrieved family in line 14 of Listing
4 by calling the helper method addToFamily, where
the family member is added to the family using the
proper containment relation and taking into account
the configuration parameters. E.g., a male person may
be added as a father (in case the boolean variable is set
accordingly), or as a son otherwise. Please note, that
in case the parent role of the family is taken already,
the family member will be added as a son, regardless
the value of the configuration parameter.

6 EVALUATION

In order to demonstrate the feasibility of our frame-
work, we tested it in several bidirectional transfor-
mation scenarios. For the transformation tool con-
test, we implemented the Families 2 Persons example
as discussed in Section 5. Our solution was able to
pass all provided test cases, while the TGG and QVT-
R based solutions implemented with eMoflon(Anjorin
et al., 2012) and medini QVT* failed in some of them.
Surprisingly, when applying LOC metrics on the re-
spective transformation descriptions it turned out that
our solution did not require significantly more imple-
mentation effort. Even if the other formalisms are de-
signed explicitly for bidirectional transformations and
they provide a highly-declarative syntax,

Table 1 summarizes the result of a comparison of
our solution to the Families 2 Persons test case of
the transformation tool contest 2017 with other tools.
The provided transformation case contains 34 differ-

*http://projects.ikv.de/qvt

ent JUnit test cases, classified into forward and back-
ward tests with both batch and incremental behavior.
Our solution written with the BXtend framework pre-
sented in this paper was able to pass all supplied test
cases. We compared the BXtend solution with the
other provided reference solutions for this transfor-
mation case, which are all based on bidirectional lan-
guages. Please note that BX languages have a pre-
defined semantics for consistency analysis and repair,
which can be adopted to the specific use case only to a
very limited extent and thus the provided transforma-
tion tool does not always fit the specific requirements
of the transformation case.

We also evaluated our BXtend solution in a
real-world scenario: Round-trip engineering between
UML class diagrams and Java source code. The
transformation problem was solved using three differ-
ent formalisms: TGGs and the tool TGG Interpreter
(Buchmann and Westfechtel, 2016), QVT-R (Greiner
et al., 2016) and a hand-crafted triple graph transfor-
mation system (Buchmann and Greiner, 2016). The
following lessons have been learned and motivated us
to provide the BXtend framework:

Implementation Effort. The most surprising result
was that the BXtend solution outperforms the
QVT-R solution in terms of LOC metrics. Even
if TGGs and QVT-R provide support for bidirec-
tional and incremental model-to-model transfor-
mations, both approaches required significant ef-
fort to specify bidirectional rules for the round-
trip engineering use case. 1032 lines of BXtend
code were required compared to 1905 lines of
QVT-R code (in the round-trip engineering use
case).

Redundancy of the Rule Set. The TGG approach
suffers from the redundancy of the rule set, caused
by inherent properties of triple rules: As each
rule describes a synchronous extension of source,
correspondence and target graph respectively, the
subgraph to be added is fixed in the rule. Con-
sequently, it has to be defined statically, which
nodes and edges of which types have to be cre-
ated and how the attribute values have to be cal-
culated. As aresult, variability in right hand sides
of rules leads to several similar rules. We ob-
served a similar effect in the QVT-R specification,
as it does not support variability either and thus,
slight differences have to be addressed in differ-
ent rules where large parts of the rule body needs
to be copied & pasted. The BXtend solution does
not suffer from this problem, since language fea-
tures like inheritance, genericity or control struc-
tures are available and extensively exploited in our
solution.
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Table 1: Results of running the test cases for the transformation tool contest.

Total test cases | BXtend | eMoflon | BiGUL | QVT-R
Batch forward 7 7 7 7 7
Batch backward 11 11 11 11 11
Incremental forward 8 8 5 3 4
Incremental backward 8 8 5 4 0
Total 34 34 28 25 22

Cognitive Complexity. From the three solutions,
QVT-R imposes the highest cognitive complex-
ity to the transformation developer for several rea-
sons: The rules are quite complex, even if there is
a declarative way of specifying them using a tex-
tual syntax. Often, it is not clear in which order
statements in when and where clauses are actu-
ally executed. Equations play a dual role, as de-
pending on the binding state of its left and right-
hand side, an equation may serve as an additional
constraint or as a simple assignment. Neverthe-
less, the transformation developer needs to spec-
ify rules which can be executed in both directions,
which means that operational semantics of QVT-
R needs to be taken into account carefully. In the
TGG approach, the transformation engineer has
to specify the rules in a way which allows for a
correct interplay, without explicitly specifying de-
pendencies between rules. Again, the execution
in both transformation directions has to be con-
sidered. In the BXtend approach, the cognitive
complexity for the developer is reduced, as there
are separate rules for each transformation direc-
tion. On the other hand, the developer needs to
make sure that both transformation directions ac-
tually match.

Level of Abstraction. The TGG specification is
highly declarative, allowing for transformations in
both directions from only a single rule set. Fur-
thermore, the TGG engine deals with changes in
the participating models. Triple rules may be
specified in an intuitive graphical syntax and a
large number of rules in the considered transfor-
mation scenario have modest size and complexity.
QVT-R rules are also highly declarative and they
also only require one single rule set for execut-
ing transformations in both directions. Further-
more, QVT-R employs OCL statements in both
queries and when/where clauses allowing for a
compact and concise specification of dependen-
cies between relations. The BXtend solution re-
sides on the lowest level of abstraction, as Xtend
(the programming language on which our solution
is based) primarily is a procedural object-oriented
language augmented with some declarative lan-
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guage constructs like lambda expressions. How-
ever, in the use cases considered so far this fact
did not cause negative effects on the required im-
plementation effort or on the complexity of the re-
sulting forward and backward rules.

7 CONCLUSION AND FUTURE
WORK

In this paper, we presented a light-weight frame work
for specifying bidirectional and incremental model-
to-model transformations based on the Xtend pro-
gramming language. We showed the feasibility of
our approach by comparing it to standard M2M ap-
proaches in the popular Families 2 Persons trans-
formation scenario. Furthermore, we also applied
our approach in a real-world case study dealing with
round-trip engineering between UML class diagrams
and Java source code, which was also solved using
TGGs and QVT-R. This case study unveiled several
drawbacks of the TGG and QVT-R approach which
are not present in our BXtend solution.

Current work addresses the implementation of fur-
ther model-to-model transformation scenarios, as de-
scribed in (Westfechtel, 2016). Once the solutions are
implemented, we plan to add respective test cases to
the Benchmarx framework (Anjorin et al., 2017) to
obtain further results comparing our BXtend frame-
work with other solutions based on TGGs or QVT-R.
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