
Towards Domain-specific Flow-based Languages

Bahram Zarrin1, Hubert Baumeister1 and Hessam Sarjoughian2

1DTU Compute, Technical University of Denmark, Kgs Lyngby, 2800, Denmark
2School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ 85281, U.S.A.

Keywords: Domain-specific Languages, Flow-based Programming, Metamodeling Languages, Parallel Computing.

Abstract: Due to the significant growth of the demand for data-intensive computing, in addition to the emergence of
new parallel and distributed computing technologies, scientists and domain experts are leveraging languages
specialized for their problem domain, i.e., domain-specific languages, to help them describe their problems
and solutions, instead of using general purpose programming languages. The goal of these languages is to
improve the productivity and efficiency of the development and simulation of concurrent scientific models and
systems. Moreover, they help to expose parallelism and to specify the concurrency within a component or
across different independent components. In this paper, we introduce the concept of domain-specific flow-
based languages which allows domain experts to use flow-based languages adapted to a particular problem
domain. Flow-based programming is used to support concurrency, while the domain-specific part of these
languages is used to define atomic processes and domain-specific validation rules for composite processes.
We propose a modeling language that can be used to develop such domain-specific languages. Since this
language allows one to define other languages, we often refer to it as a meta-modeling language.

1 INTRODUCTION

Modern parallel and distributed computing tech-
nologies coupled with exponential growth in data-
intensive computing increasingly require scientists to
use specialized, domain-specific languages. The aim
is to, on one hand, reduce the amount of time and
effort it takes to develop or simulate concurrent sci-
entific models or systems, and, on the other hand,
benefit from the state-of-the art computing technolo-
gies given the inherent parallelism and concurrency
among modular components.

Flow-based programming (Morrison, 2010) is a
parallel programming paradigm that divides an ex-
pensive computation into a directed graph of process-
ing nodes in which each node embodies part of the
original computation, while edges between nodes rep-
resent dependencies. The applications developed on
the basis of this paradigm are inherently parallel and
they can utilize parallel architectures, from multi-core
machines to full grid systems. This paradigm not only
improves the performance of the developed applica-
tions, it also improves their modularity. It can re-
duce the coupling between different parts of the ap-
plications by dividing the computation into nodes of
a graph that communicate via message passing. This
makes it easier to maintain and evolve each part of
the network independently, and it also serves as an

essential first step toward migrating such applications
to run in a more distributed setting including cloud-
based environments.

Domain-specific languages (DSLs) are languages
that are particularly expressive in certain problem do-
mains. They directly use the domain concepts and
terminology that are understandable by domain ex-
perts to model the problems in their domains. They
can improve user’s efficiency and achieving higher
quality products. The motivation of this work is
to utilize flow-based programming methodology and
model driven architecture (MDA) (MDA, 2001) to
design domain specific languages that are inherently
parallel, and allow scientists to exploit this paradigm
and benefit from the mentioned advantages. These
DSLs can be used by domain experts to model and de-
velop scientific applications, such as simulations, data
intensive computations, etc. Since the development of
DSLs is expensive in terms of time and cost, a proper
framework to develop such DSLs can help with their
development and to reduce the development cost.

In this paper, we first introduce domain-specific
languages which inherently utilize the FBP paradigm
and then we propose a meta-modeling language and
a systematic approach for designing and developing
these DSLs.

The remainder of this paper is organized as fol-

Zarrin, B., Baumeister, H. and Sarjoughian, H.
Towards Domain-specific Flow-based Languages.
DOI: 10.5220/0006555903190325
In Proceedings of the 6th International Conference on Model-Driven Engineering and Software Development (MODELSWARD 2018), pages 319-325
ISBN: 978-989-758-283-7
Copyright © 2018 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

319



lows. In Sec. 2 we provide a brief introduction to
flow-based programming. In Sec. 3 we introduce
domain-specific flow-based languages (DSFBL). In
Sec. 4 we propose the meta-modeling language and
the framework for developing these DSLs. In Sec. 5
we consider related work. And finally, Sec. 6 con-
cludes the paper.

2 FLOW-BASED PROGRAMMING

FBP was first introduced in the early 1970s by J. Paul
Rodker Morrison (Morrison, 1978) and it has re-
cently become an active topic again in computing
science (Morrison, 2010; IBM, 2014; PyF, 2014;
DSPatch, 2014; Bergius, 2014). FBP decomposes an
expensive computation into a directed graph with pro-
cessing nodes that communicate via message passing.
Each processing node computes part of the main com-
putation, and edges represent data-flow dependencies
between the nodes. Computation in a node is trig-
gered upon data arrival. Parallelism is realized when
nodes can execute concurrently. FBP is a visual pro-
gramming language at first level. The network defini-
tion is diagrammatic, and it will be transformed into a
connection list in the lower-level languages. Process-
ing nodes in the network are instances of components
which are either atomic or composites. The atomic
components are defined using non-visual languages
and their instances can be connected in a sub-network
to define a composite process. This helps FBP to sup-
port a hierarchic structure of processes that reduce the
complexity in the network’s level and it provides en-
capsulation for process definitions (Morrison, 2010).

The processes monitor the connections on their in-
put ports. Once an Information Packets (IPs) becomes
available on these connections, they will take the IPs,
transform the data, and make the results available to
the output ports of the processes. This triggers the
connected connections at the output ports and propa-
gates the IPs within the network. If a connection be-
comes full, processes feeding it will be suspended. If
a connection becomes empty, the process attached to
the connection will be suspended (Morrison, 2010).

3 DOMAIN-SPECIFIC
FLOW-BASED LANGUAGES

Flow-based languages (Morrison, 2010; Chen and
Johnson, 2013), e.g. Pypes (Pypes, 2014),
NoFlo (Bergius, 2014), DSPatch (DSPatch, 2014),
utilize two types of models in order to define an ap-
plication; atomic processes and composite processes.
Atomic processes are defined using general-purpose

languages (GPL) such as Java, C++, C#, while com-
posite processes are defined by connecting the in-
stances of atomic or composite processes. The atomic
and composite processes are stored in the process
library. An application is defined as a composite
process. Additionally, these languages use a lan-
guage with well-known semantics to describe and ex-
ecute the composite processes. This language is also
generic and does not have any domain knowledge.
Based on these definitions, although a software de-
veloper can develop a set of atomic process libraries
for a specific domain for domain experts, these li-
braries can not be considered a DSL due to the fol-
lowing reasons: Firstly, it is challenging for domain
experts to use GPL to define an atomic process. Sec-
ondly, although the language for expressing the com-
posite processes or applications has a simple syntax
that can be used by domain experts, it does not pro-
vide any validation or verification of the composition
of the processes in a network. This makes the de-
bugging and the maintenance of the application more
difficult, especially when the number of the processes
in the network increase.

To address these issues, we introduce domain-
specific flow-based languages that, on one hand, al-
low domain experts to define atomic processes by
themselves, and on the other hand, provide a mech-
anism with which to validate the composite processes
according to a specific domain. The definition of
these languages is given as follows:

DSFBL = 〈Amm,Acs,AS,Tmm,Cmm,Ccs,CS〉 (1)

Where:

• Amm is the metamodel of the DSL to be used by
domain experts to design atomic processes.

• AS is the behavioral specification, or semantics, of
the DSL given by Amm.

• Acs is the concrete syntax of the DSL and is con-
forming to the metamodel given by Amm. The con-
crete syntax can be graphical or textual.

• Cmm is the metamodel of the composition lan-
guage. In this paper, we use the composition
language of aspect-oriented flow-based program-
ming (AOFBP) presented in (Zarrin and Baumeis-
ter, 2015) .

• CS defines the semantics of the composition lan-
guage.

• Ccs is the concrete syntax of the composition lan-
guage.

• Tmm is the metamodel of a constraint language
which defines the domain ontology and con-
straints of the atomic and composites processes.

MODELSWARD 2018 - 6th International Conference on Model-Driven Engineering and Software Development

320



In DSFBLs, a DSL i.e. a triple (Amm,Acs,As), is
used instead of a GPL to define atomic processes.
The DSL designer defines the syntax and semantics
of this DSL and the domain experts use this language
to define the atomic processes. A second language
i.e. Tmm, also designed by the designer of the DSL,
is used to express the domain constraints on atomic
and composite process definitions. In this paper, we
use a simple declarative language that, on one hand
classifies all the different types of processes that ex-
ist in the domain, and on the other hand, defines the
requirements and constraints of each process type. A
process type can be considered an abstract definition
of a process which defines inputs, outputs, and the
parameters of the process, plus the composition con-
straint for these process types i.e. the process cannot
be carried out before, after, or within other processes.
Each atomic or composite process in the process li-
brary should be associated with a process type. This
means that the process realizes the associated process
type in the domain and it should be validated accord-
ing to the requirements and constraints of the process
type. If two processes (composite or atomic) are as-
sociated with the same process type, this means that
these processes are equivalent and that they can be
exchanged.

We use the syntax and the computation model of
AOFBP as the composite language Cmm and its se-
mantics CS. This makes it easier for the DSFBLs’
designers to modularize any cross-cutting concerns
within the language. To this end, this paper provides
a formal specification of AOFBP and we utilize this
specification in the given framework. We use ForSpec
to specify the metamodel, structural and behavioral
semantics of AOFBP. In the following sections we
describe a metamodeling language and a systematic
approach for designing and developing DSFBLs.

4 PROPOSED FRAMEWORK

In this section we propose a framework that can be
used by the DSL designers to implement their desired
DSFBLs. The framework relies on Microsoft DSL
Tools and FORMULA (Jackson et al., 2011; Jack-
son et al., 2010) which has been developed by Mi-
crosoft Research. We integrated these technologies
under the umbrella of Microsoft Visual Studio IDE to
specify the syntax and semantics of DSFBLs. The de-
velopment of domain specific languages is typically
divided into two categories: syntax and semantics.
Syntax is related to the specification of the structure
of conforming models. Semantics involves specify-
ing the meaning of those conforming models. In this
framework we use MS DSL Tools to define the syntax

of the DSFBLs and FORMULA is used to define their
semantics. In the following, first we give a brief intro-
duction to FORMULA, then we propose our approach
to designing domain-specific flow-based languages.

4.1 FORMULA

FORMULA is a constraint logic programming lan-
guage based on fixed-point logic over algebraic data
types. It can deduce a set of final facts that is the least
fixed-point solution for the specifications based on an
initial set of facts specified using algebraic data types
and a set of inference rules. In this section we only
describe the notation of FORMULA that are used
in this paper. A more detailed description of FOR-
MULA can be found in (Jackson et al., 2011; Jackson
et al., 2010). Each program in FORMULA consists
of several constructs called Modules. Different kinds
of Modules are defined in this language of which the
most important ones are Domain, Model, and Trans-
form. The domain module is a blueprint for a set of
models which are composed of type definitions, data
constructors, rules, and queries.

There are several built-in types that are supported
by FORMULA such as enumerations, union types
and composite types. The built-in types include Inte-
ger, Real and String. Composite types define the well-
formed structure of facts in models and are specified
with data constructors. A data constructor takes the
form CompType ::= new (a:String, b:Integer). where
the new keyword is optional and distinguishes be-
tween constructors that can be used to instantiate ini-
tial knowledge in a model and constructors that can
be used to derive facts from rules.

Set comprehensions are defined in the head|body
form which denotes the set of elements formed by the
head that satisfies the body. They are used by built-in
operators such as count or toList. For example, given
a relation “Pair ::= new (State,State)”, the expression
“x is State, n = count(y | Pair(x,y))” counts the number
of states paired with state x. Rules are described using
Horn clauses with stratified negation-as-failure. The
following rule means that the facts A(x,y) and B(z,1)
should be derived for all matchings of the clause on
the right hand side of the :-.

A(x,y), B(z,1) :- C(x,_,z), x is Real, y is D, no E(y,_)

The types of the variables x, y and z must resolve to a
subtype of those specified in the constructors of A and
B. The constraint “y is D” defines y as a fact of type
D from the knowledge base. All constants are part of
a model’s initial knowledge base. The constraint no
E(y, ) means that a match for E(y, ) cannot be found
in the knowledge base. Variables used inside a no
statement must be defined outside of the statement.

Towards Domain-specific Flow-based Languages

321



Type constraint x:A is true if and only if variable x is
of type A, while “x is A” is satisfied for all derivations
of type A. FORMULA supports relational constraints
such as equality of ground-terms, and arithmetic con-
straints over Real and Integer data types. The special
symbol denotes an anonymous variable that cannot
be referenced anywhere else.

FORMULA also supports model transformations
using the Transform kind of Module. A Transform
Module consists of rules for deriving initial facts in
an output model from initial and derived facts in an
input model as well as input parameters. The rules are
the same as for domains, except that the left hand side
contains facts in the output model and the right hand
side contains facts from the input and output models.
The transformation can also contain data construc-
tors and type declarations for Transform-local derived
facts and union types.

4.2 Integration

In order to make it easier for the DSL designer to
develop a new DSL, we have integrated the Mi-
crosoft DSL tools with the language FORMULA.
Whenever the DSL designer creates a new DSFBL
project, a DSL definition file with a FORMULA file
will be generated by our IDE which is based on
MS Visual Studio. The different constructs related
to the structural and behavioral specifications of the
language will be generated automatically within the
FORMULA file. The IDE automatically translates
the specification of the meta-model described in the
DSL definition file to the FORMULA specification
and generates the related domains for the abstract syn-
tax of the DSL in the FORMULA file.

4.3 Meta-modeling Language

FORMULA

«metaclass»
Domain

«metaclass»
Transform

«metaclass»
Atomic Process Domain

«metaclass»
Atomic Process Semantic

«metaclass»
Advice

ProcessType

«instance» 

«metaclass»
Module

«metaclass»
Aspect 1..*

FBP Built-in DataTypes

Figure 1: Extension of the proposed meta-modeling lan-
guage from FORMULA.

In this section, we introduce an extension of FOR-
MULA for expressing DSFBLs. Fig. 1 presents the
elements of this extension and their relationships to
the FORMULA elements (shown in grey). The FBP-
related data types (such as Input and Output ports)
are defined within FORMULA Domain instances
and they have been included in the core of the lan-

guage. The domain called “EProcess” includes EIn-
port and EOutport data types to identify the inports
and outports of the processes, EProcessType to iden-
tify the process type associated to the processes, and
EdataType to define the data types that are expected to
be communicated through the process ports. This do-
main defines the generic structure of a process and it
provides the basic validation for the process models.
Another domain called “FBPIO” is defined to spec-
ify the values assigned to input and output ports of a
process during its execution.

We also defined a meta-model to express the
process types, i.e., Tmm, that exist in the domain.
The meta-model is implemented as a Domain in
FORMULA and is included in the core library of
the meta-modeling language. The DSL designer
must define each process type of the domain as a
model that corresponds to this domain. The domain
allows the DSL designer to define the ports and
parameters for the process type. In addition, it
enables the designers to define constraints related to
the child process, parent process, and the incoming
connections and outgoing connections of the process.
It also validates the process type models to have at
least one port defined for the process.

domain ProcessType {

Port::= new(EPort).
Parameter::=new (EParameter).

ProcessConstraint::=new (ConstraintExp).

ConstraintExp ::= Constraint + ParExpr + UnNot + BinExpr.

Constraint::= ContextConstraint+ ConnectionConstraint+

EProcessType.

ContextConstraint::= ChildConstraint + ParentConstraint.

ChildConstraint ::= new (EProcessType , Integer).

ParentConstraint ::= new (EProcessType , Integer).

ConnectionConstraint::= InConConstraint + OutConConstraint.

InConstraint::=new (EProcessType , Integer).

OutConstraint::=new (EProcessType , Integer).

ParExpr ::= new (ConstraintExp).

UnNot ::= new (ConstraintExp).

BinAnd ::= new(ConstraintExp , ConstraintExp).

BinOr ::= new(ConstraintExp , ConstraintExp).

BinExpr ::= BinAnd + BinOr. }

A classifier extended from the Domain element is
proposed to specify the meta-model, Amm, for the
atomic processes. Another classifier extended from
the Transform element is proposed to specify the be-
havioral specification, AS, for the atomic processes,
by providing a transformation specification from a
model of the atomic process domain, i.e., a model of
FBPIO that contains values for the input ports, to an-
other model of FBPIO that contains the values for the
output ports of the process. The transformation has
two parameters, the first parameter is a model of the
meta-model, Amm, and the other is a model of a do-

MODELSWARD 2018 - 6th International Conference on Model-Driven Engineering and Software Development

322



main that extends the FBPIO domain. This domain
is usually considered as the semantic domain of the
DSL proposed to define atomic processes.

4.4 Development Approach of DSFBLs

In this section we explain the approach that the DSL
designer needs to follow in order to design a DSFBL.
The proposed meta-modeling language is located at
level M3 of Fig. 2, and it provides the tools for the
DSFBL designer to define the domain specific lan-
guages used to define atomic processes, Amm, their
semantics, As, and process types, Tmm.

At level M2, the DSFBL designer uses the tools
provided at level M3 to specify the DSLs for design-
ing atomic processes and process types. To this end,
the designer starts by creating a DSL for the specifica-
tion of atomic processes using Microsoft DSL tools.
This creates the abstract- and concrete syntax of the
DSL, i.e. Amm and Acs, respectively. The IDE auto-
matically translates the meta-model specification Amm
of the DSL to a FORMULA specification by gener-
ating an instance of “AtomicProcessDomain”. Then
the DSL designer has to create an instance of a stan-
dard FORMULA domain construct and to extend it
by the FBPIO domain, which is part of our exten-
sion to FORMULA, to define the semantic domain
of the DSL. Finally, the designer has to create an in-
stance of “AtomicProcessSemantic”, which is a spe-
cial Transform construct needed to describe the op-
erational semantic AS of the DSL by providing trans-
formation specifications from the syntactic domain to
the semantic domain.

In addition to the definition of the DSL for atomic
processes, the designer needs to classify and extract
different kinds of process in the domain based on the
domain ontology, and then, for each kind of process,
he or she has to define a process type corresponding
to the process type domain Tmm.

Given the DSLs defined by the DSL designer,
the domain experts are able to define models of the
atomic processes at level M1, Am, that conform to
the meta-model Amm. They can compose instances
of these atomic processes to form composite pro-
cesses on level M0. We use the composite language
AOFBP (Zarrin and Baumeister, 2015), which we
have extended by process types, to define the com-
posite processes. The domain experts need to spec-
ify the process types for both atomic and composite
processes. As presented in Figure. 2, the atomic pro-
cess models and composite processes developed by
domain experts (at M1 and M0) should satisfy the
constraints of the associated process type model de-
fined by the DSFBL designer at M2.

M3- Meta modeling Language

«metaclass»
Atomic Process Domain

«metaclass»
Atomic Process Semantic

ProcessType

M2- Meta-model

Process Types 
in the domain

Meta-model of domain 
specific atomic processes

Behavioral semantics of domain 
specific atomic processes 

«model of» «instance of» «instance of» 

M1- Model

Domain Specific Atomic Process Model

M0- Object 

Atomic Process 1 Composite Process1

M2- Meta-model

FBP Network 
Meta-model

«validate to» 

«validate to» 

«instance of» 

«model of» 

«instance of» 

Figure 2: The overall view of the framework for developing
Domain Specific Flow-based Languages.

atomic process domain MaterialProcess {

...

}

domain Material extends FBPIO {

...

}

atomic process semantic MaterialProcess

(in::MaterialProcess,input Material) returns
(out::Material) {

...

}

4.5 Execution

To execute the M0 level models defined by the do-
main expert, we extend the AOFBP execution engine.
As presented in Fig. 2, the AOFBP engine utilizes
both the structural and behavioral semantic specifica-
tion for atomic processes that are given by the DSFBL
designer at level M2 to execute the composite pro-
cesses designed by the scientists and domain experts.
Whenever data arrives on the process’ input ports, the
AOFBP engine generates an FBPIO model that con-
tains the updated values for the process ports. Then
it executes the related transformation specification AS
for the process. The FBPIO model and the process
model are used as the input arguments for this trans-
formation and another FBPIO model will be gener-
ated as the result of this transformation. The AOFBP
engine then extracts the updated values of the output
ports from the produced FBPIO model and propagates
the data through the outgoing connection of the pro-
cess.

5 RELATED WORK

At the moment most of the FBP platforms and frame-
works, such as Groovys GPars (Limena, 2012), Intels
TBB Flow Graph (TBBIBM, 2014), or Microsofts

Towards Domain-specific Flow-based Languages

323



TPL Dataflow (TPL, 2014), use a general purpose
programming language to define the atomic pro-
cesses. JFlow (Chen and Johnson, 2013) provides
a practical approach for the software developer to
refactor their code based on flow-based parallelism.
However, none of these works are targeted at help-
ing domain experts to utilize parallelism technologies
directly by themselves. Several works (Cieślik and
Mura, 2011; Pelcat et al., 2009) have applied FBP for
specific domains. In (Friborg and Vinter, 2011), the
authors suggested using Python and PyCSP to struc-
ture scientific software through using Communicating
Sequential Processes. There are a number of scien-
tific workflow platforms, such as Taverna (Taverna,
2014), Pegasus (pegasus, 2014), and Triana (Taylor
et al., 2007), with various capabilities and purposes
and little compliance with standards. These work-
flows are often difficult to author, using languages
that are at an inappropriate level of abstraction, and
requiring too much knowledge of the underlying in-
frastructure. In this work we proposed a middle-ware
to design domain-specific flow-based languages that
can directly be used by domain experts to define their
domain specific applications that are inherently paral-
lel and highly reusable and simpler to maintain.

6 CONCLUSION

In this paper, we have introduced domain-specific
flow-based languages and described their specifica-
tions and the requirements to design a DSFBL. We
also introduced a framework and a meta-modeling
language to specify the different constructs of these
DSLs. We extended the meta-modeling language
from FORMULA which provides comprehensible
syntax for describing domains along with their struc-
tural semantics, as well as for describing behavioral
semantic mappings with transformations.

We have integrated the meta-modeling language
with MS DSL tools under the umbrella of MS Visual
Studio IDE. The DSL designers utilize DSL tools to
define the concrete syntax of the DSL and use the
meta-modeling language to formally specify the se-
mantics of the DSL. Since we developed this frame-
work based on the existing technologies and lan-
guages, the users do not need to learn new program-
ming languages or tools in order to develop these
DSLs. In addition, they do not need to provide any
code-generation or undertake further implementation
to integrate the DSL within a composite language like
FBP. We also provided a mechanism to validate the
composite processes by introducing a constraint spec-
ification language that can classify the different types
of processes in the domain.

The presented framework has two limitations.
One is, that since the process types are defined at
level M2, domain experts are not able to define a user-
defined process type. To tackle this problem another
DSL must be defined that allows domain experts to
define a process type and to use model transforma-
tions to translate it to a model of the process language
described here. The other is, the constraint language
for composition of the processes is simple and not ex-
pressive enough to specify complicated constraints.
In future work, we want to utilize existing process
constraint languages, such as Cascade, to specify flow
patterns in composite processes.

REFERENCES

Bergius, H. (2014). NoFlo. http://noflojs.org/ .
Chen, N. and Johnson, R. (2013). Jflow: Practical refac-

torings for flow-based parallelism. In Automated Soft-
ware Engineering (ASE), 2013 IEEE/ACM 28th Inter-
national Conference on, pages 202–212.

Cieślik, M. and Mura, C. (2011). A lightweight, flow-
based toolkit for parallel and distributed bioinformat-
ics pipelines. BMC bioinformatics, 12:61.

DSPatch (2014). DSPatch - C++ flow-based programming
library. http://www.flowbasedprogramming.com/.

Friborg, R. M. and Vinter, B. (2011). Rapid development
of scalable scientific software using a process ori-
ented approach. Journal of Computational Science,
2(3):304 – 313.

IBM (2014). IBM InfoSphere DataStage. http://www
01.ibm.com/software/data/infosphere/datastage/.

Jackson, E. K., Bjørner, N., and Schulte, W. (2011). Canon-
ical regular types. ICLP (Technical Communications).

Jackson, E. K., Kang, E., Dahlweid, M., Seifert, D., and
Santen, T. (2010). Components, platforms and possi-
bilities: towards generic automation for mda. In Pro-
ceedings of the tenth ACM international conference
on Embedded software, pages 39–48. ACM.

Limena, C. (2012). Gpars: un ambiente evoluto per la pro-
grammazione concorrente in Java/Groovy. PhD the-
sis, UNIVERSITA DI PADOVA.

MDA (2001). Omg, model driven architecture. a technical
perspective. OMG Document-ormsc/01-07-01.

Morrison, J. P. (1978). Data stream linkage mechanism.
IBM Syst. J., 17(4):383–408.

Morrison, J. P. (2010). Flow-Based Programming, 2nd Edi-
tion: A New Approach to Application Development,
CreateSpace. CreateSpace Independent Publishing
Platform.

pegasus (2014). pegasus. http://pegasus.isi.edu/.
Pelcat, M., Piat, J., Wipliez, M., Aridhi, S., and Nezan, J.-F.

(2009). An open framework for rapid prototyping of
signal processing applications. EURASIP J. Embed-
ded Syst., 2009:11:3–11:3.

PyF (2014). PyF Python FBP implementation.
http://pyfproject.org/.

MODELSWARD 2018 - 6th International Conference on Model-Driven Engineering and Software Development

324



Pypes (2014). Pypes scalable, standards based,
extensible platform for building ETL solutions.
http://www.pypes.org/ .

Taverna (2014). Taverna. http://www.taverna.org.uk/.
Taylor, I., Shields, M., Wang, I., and Harrison, A. (2007).

The triana workflow environment: Architecture and
applications. In Workflows for e-Science, pages 320–
339. Springer London.

TBBIBM (2014). Intel Threading Building Blocks.
http://www.threadingbuildingblocks.org/.

TPL (2014). Microsoft Dataflow (Task Parallel Li-
brary). https://msdn.microsoft.com/en-us/library/
hh228603(v=vs.110).aspx.

Zarrin, B. and Baumeister, H. (2015). Towards separation of
concerns in flow-based programming. In Companion
Proceedings of the 14th International Conference on
Modularity, MODULARITY Companion 2015, pages
58–63. ACM.

Towards Domain-specific Flow-based Languages

325


