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Abstract: Many Neurofeedback softwares allow clinicians to develop modular protocols. Some even allow to be per-
formed quantitative Electroencephalography (QEEG) analysis. However, an all-in-one solution does not exist, 
with built-in decision tree, that permits to perform a QEEG analysis, apply a protocol decision, and perform 
subsequent iterated mini-QEEG analysis, and subsequente protocol decisions and training, in the same sys-
tem. Our application, besides being able to make the identification of the brain dysfunctional patterns con-
cerning its electrophysiology, and accurately choose the Neurofeedback training protocols to apply, performs 
real-time Neurofeedback. We compared our system with a conventional EEG and QEEG system in a proof of 
concept rational, obtaining an average Pearson Correlation Coefficient of 0.89 regarding the dysfunctional 
patterns and protocols, as well as remitted dysfunctional patterns. In conclusion, our application is pervasive, 
scalable and potentially ubiquitous. And it can be extended into multiple and different consumer fields. 

1 INTRODUCTION 

This extended abstract aims to present the model be-
hind an application for Neurofeedback (NF) training. 
Our model purposes a multi-modal integrated mini 
quantitative Electroencephalography (mini-QEEG) 
solution with results, training protocols and NF in 
real-time. Firstly, we present the theory behind brain 
performance optimization and how it differs from 
clinical NF. Secondly, we present how this theory can 
be applied to our software architecture model and 
how the system architecture is organized. To finalize, 
we present some preliminary results on how this sys-
tem is as accurate and valid as a conventional clinical 
EEG and NF system. 

Neurofeedback is a brain performance technique 
that uses processes of operant conditioning which leads 
to self-regulation of brain activity (Ute Strehl, 2014). 
Recent studies suggest that EEG Neurofeedback repre-
sents feasible and promising a tool for therapeutic in-
terventions, and cognitive enhancement (Enriquez-
Geppert et al, 2017), and that critical brain dynamics 
can be modulated with closed-loop stimulation in an 
automatic, involuntary fashion (Zhigalov et al, 2016). 

We developed an application that processes EEG 
signal from 16 channels in real-time, computes met-
rics, e.g., power, frequency, phase, for each electrode, 

and, according to inter- and intra-hemispheric physi-
ological ratios and asymmetries of the main fre-
quency bands (theta, alpha and beta), it assesses the 
main dysfunctional brain electrophysio-logical pat-
terns in each user, and the main Neurofeedback pro-
tocols to perform according to a severity order. 

We also programmed a decisional tree that as-
sesses the success of each Neurofeedback session and 
outputs which protocol of the list should be done af-
terwards, up to 10 sessions per protocol. A user’s 
block is composed of 3 protocols and, in the end of 
the block, another QEEG is automatically registered 
for verification of the overall improvement. If the im-
provement is satisfactory according to a defined 
threshold, the training is finished. However, if not, 
another block of 1 Neurofeedback protocol (up to 10 
sessions) is recommended. The program repeats this 
process until the improvements are satisfactory. 

2 METHODS 

To develop this application, we have used the Pro-
cessing Software, based in Java, to write and compile 
all the code. 

The system architecture was based on a fixed 
main steps model: 
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1. Pre-processing: EEG signal Processing; 

2. Post-processing: metrics computation; 

3. QEEG: rules and protocols decisional tree; 

4. Neurofeedback: mini-QEEG and training 
analysis 

5. Validation of the whole application and ex-
tracted metrics. 

For the first (1) step, we applied Fast Fourier 
Transform (FFT), with a 0.98 Hz resolution, to 16 
scalp electrodes (Fp1, Fp2, Fz, F3, F4, Cz, C3, C4, 
T3, T4, Pz, P3, P4, O1, O2, Oz (this channel is repre-
sented as the average between O1 and O2). We use 
linked-ears reference and ground is located on AFz 
site. Based on the frequency spectrum, a known lead-
off detection current and Ohm’s Law, we also com-
pute the impedance in each electrode.  

For the second (2) process, we computed the spec-
tral power for each electrode and for different fre-
quency bins and frequency-bands, in real-time. 

We also developed a blink and jaw clench detec-
tion routine. When one of these events is detected, the 
software assumes the value of the referred metrics as 
the result of the linear interpolation of the last 4 val-
ues computed.  

For the third (3) process of this work, we com-
puted dysfunctional patterns, such as dysfunctional 
power ratios, asymmetries inter-hemispheric and in-
tra-hemispheric, among others. 

These dysfunctional patterns were based in devi-
ations of the normal brain electrophysiology, grouped 
as instabilities (frontal alpha asymmetry, frontal beta 
asymmetry, antero-posterior beta inversion) (Da-
vidson, 1979, 2004; Harmon-Jones, 2004; Minnix et 
al., 2004; Nitschke, et al., 2004; Sutton and Davidson, 
1997; Wiedemann et al., 1999), disconnection (dis-
rupted Hibeta at T3 and/or T4) (Coan and Allen, 
2004), blocking (disrupted Hibet:beta ratio at Fz 
and/or Pz, also known as Swingle ratio) (Swingle and 
Paul, 2015); hot temporals (high percentage of beta 
and hibeta at T3 and/or T4), and dystonus (hypertonus 
and hypotonus) (Hagemann, 2004). 

Our software has a table of rules of dysfunctional 
patterns grouped according to the groups referred 
above and every-time there is a ratio that is inverted 
or not-present the rule is turned-on, thus, the dysfunc-
tional pattern is considered. 

Our software ranks the dysfunctional patterns of 
the user according to an serial order, based on their 
score, and link that dysfunctional order to a specific 
training protocol. As soon as a NF training session is 
completed, the efficiency of the protocol is automati-
cally assessed by a mini-QEEG, in such a way that 

the program will decide if the user will need to train 
the same protocol again or will jump to the next one 
in the serial order. In this application, the minimum 
training sessions per protocol are 6 sessions and the 
maximum are 10 sessions. Each training block is 
composed by 3 training protocols and each block has 
a minimum of 18 sessions (3x6) and a maximum of 
30 sessions (3x10). 

In the end of each block, the program performs a 
post-block QEEG to assess the success of the training. 
If the overall dysfunctional patterns are not corrected, 
the client will be indicated to do another block, this 
process being repeated until the dysfunctional pat-
terns normalize. All the computation is done instanta-
neously. 

For the fourth (4) process, we have programmed a 
real-time feedback related to a base-line measured in 
each training session that indicates the positive and 
negative feedback to be given to the user according to 
the dysfunctional pattern rule (reinforce or inhibit a 
certain frequency band in specific electrodes). This 
feedback is adaptive relative to a moving base-line, of 
60 seconds, that dictates its difficulty level. Thus, we 
created a generative feedback, according to the level 
of the user’s learning. 

 

Figure 1: Example of the generative adaptation of the feed-
back of one user. First plot – user’s performance in blue and 
feedback given in orange. Second plot – Maximum limit 
used to compute the feedback. Third plot – feedback given 
(from worst to best: red, pink, dark blue, light blue). We can 
see that the maximum limit goes up because the metric be-
ing trained rises in the moving base-line. Thus, the user 
stops receiving a positive feedback because now the level 
is more difficult. Then, since it became “too hard”, the max-
imum limit drops down again, and the user starts receiving 
more positive feedback again.  

 



 

To validate (5) this application: 

1) we compared it to a standard QEEG system; 

2)  and perform NF sessions to assess the training 
efficiency of the system. 

Regarding the QEEG system comparison we used 
the Neuronic E8.5 system (neuronicsa.com) for the 
EEG registration and the Neuroguide software (ap-
pliedneuroscience.com) for editing and processing 
EEG data. 

We have made 4 recordings with 4 different users, 
3 males and 1 female, mean age 34,75, with eyes 
closed. Each recording is composed by 2 consecutive 
1 minute acquisitions using Neurobica (our system) 
and Neuronic. The same electro-cap (http://electro-
cap.com) was used with both systems and only the 
connections to the EEG acquisition system was 
changed, so all the practical physical conditions were 
maintained for both systems. We verified the imped-
ances with Neurobica, maintaining their values below 
10 KΩ before recording the signal.  

Regarding the clinical validation of the NF train-
ing, 1 user made 11 sessions of approximately 5 
minutes, in two days (6 in the first and 5 in the fol-
lowing day). All sessions were done with the same 
NF protocol (based on the reinforcement of β band in 
F3 channels relatively to F4) to study its metric evo-
lution with the training. 

3 RESULTS 

In this section, we present the preliminary results for 
the comparison of the metrics (a) computed with the 
Neuronic system and ours (b) as well as the Neu-
rofeedback training results. 

3.1 Systems Comparison 

Figure 3 shows the comparison between the results of 
the 2 sets of one minute acquisitions, Neuronic and 
Neurobica, for the four users included in the study. 
This comparison was done based on the values com-
puted for the metrics corresponding to the dysfunc-
tional patterns scores. Neuronic values were com-
puted offline, after acquisition, using MATLAB 
(www.mathworks.com), and Neurobica results were 
computed online by our application. 
 

 
 

 
 

 
 

 

Figure 2: Comparison between results computed after of-
fline processing of Neuronic acquisition (x axis) and online 
processing during Neurobica acquisition (y axis). 



 

 

 

Figure 3: Dysfunctional pattern metric score across NF 
training sessions in the first (above) and second (below) 
days. Some values are missing because they were not rec-
orded. Optimal value should be above 1. In the beginning 
of the first day, the score is significantly below that value. 
It rises as the sessions are made, until it reaches a value 
higher than 1. In the second day, it maintains its value 
around 1. 

As it can be seen in the plots of  the correlation results 
are statistically significant (for all users, p-value < 
0.001), with an average Pearson Correlation Coeffi-
cient of 0.89. 

3.2 Neurofeedback Training 

For preliminary assessment of NF training efficiency, 
one users spent two consecutive afternoons perform-
ing NF with the same protocol. Each NF session 
lasted for 5 minutes and small breaks between ses-
sions were made. The specific dysfunctional pattern 
metric relative to the protocol was computed before 
and after NF training. Figure 3 shows this metric evo-
lution across time in the two afternoons of training. 

4 DISCUSSION 

4.1 Systems Comparison 

The preliminary results indicate that the online anal-
ysis performed by the Neurobica system is strongly 
correlated with the offline analysis made after the ac-
quisition with Neuronic, which leads us to suggest 
that we are measuring and computing reliable data. 

4.2 Neurofeedback Training 

Neurofeedback training  preliminary  results  are  very 

satisfying and encouraging because they show the ef-
fectiveness of the NF training in the regularization of 
the dysfunctional pattern metric score, in the first day. 
They also show that, after regularized, the metric sta-
bilizes in the following day. This is an important con-
clusion relatively to Neurofeedback effectiveness in 
general and more studies based on this approach are 
going on, with more users and different follow-up 
periods. 

4.3 Future Work 

For this work, we programmed all the metrics and ra-
tios computation. Efforts are being made for in the fu-
ture to work on the mining of all the intra and inter 
user data in a local server. During this process, all the 
data will be returned to the users in a dashboard with 
the following information: 1) scheme of the training 
sessions accomplished according with the training 
proposed by the application that self-organizes ac-
cording to the success in the correction of the dys-
functional patterns; 2) information about the training 
protocol used in each session and how was the evolu-
tion of the metrics and rations of that protocol; 3) in-
formation about the dysfunctional patterns assesses in 
the QEEG of each user; 4) topographic maps of the 
respective metrics and ratios of each user; 5) we are 
also working on the assessment of cognitive perfor-
mance improving, symptom reduction and behav-
ioural and well-beingness changes after the  
Neurofeedback training and ; 6) we are preparing the 
extension this pilot study to more subjects in order to 
accomplish the final validation of this integrated 
system. 
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