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Abstract: A Markovian system model for a contact center chat function is considered and partially validated. A hypoth-
esis test on real chat data shows that it is reasonable to model the arrival process as a Poisson process. The
arrival rate can be estimated using Maximum likelihood. The service process is more involved and the estima-
tion of the service rate depends on the number of simultaneous chats handled by an agent. The estimation is
made more difficult by the low level of detail in the given data-sets. A missing data approach with Gibbs sam-
pling is used to obtain estimates for the service rates. Finally, we try to capture the generalized behaviour of
the service-process and propose to use generalized functions to describe it when little information is available
about the system at hand.

1 INTRODUCTION

Contact centers usually offer several types of media
to enable customer communication. Chat function-
ality is one such type of media that in recent years
has grown in popularity. This stresses the importance
of good modeling and parameter estimations for chat
based systems.

In this paper a Markovian chat system model is
considered (Enqvist and Svensson, 2017). The chat
system is viewed as a queue-based state-space model,
akin to traditional queueing systems of inbound tele-
phone call centers, described in detail elsewhere such
as in (Koole, 2013; Gans et al., 2003; Aksin et al.,
2007). However, chat systems behave slightly differ-
ent than traditional telephone queues in that an agent
can work with several customers simultaneously. We
make the assumption that the number of customers
an agent is serving effects the service rate with which
the service is provided. A queueing based state-space
model should capture both how many customers each
agent is currently serving and how many customers
there are in the system in total, as well as the varying
service rates.

The main goals of this paper are to argue that such
a queueing-based state-space model is reasonable, to
support such a model by use of real world data and
to propose methods for estimating the rate parameters
for a chat system from real but incomplete data-sets.

The quality and level of detail of the underlying
data can severely limit the choice of methods and the
uncertainty of estimates. When there exist limitations
on available data it may be necessary to rely more on
prior information and thus we propose that general
parameterized functions are used to lower the vari-
ance of the estimates by including empirical informa-
tion about chat systems general behaviour.

Due to the strong dependence on data we propose
a data classification structure that pertains to chat sys-
tems. The classification of underlying data would in-
dicate which technique is appropriate. The accuracy
and choice of any, realistic, model will be data de-
pendent. For a statistical analysis of a call center see
(Brown et al., 2005).

It is natural to divide the problem into two parts,
one part for the arrival rate process and one for the
service rate process. The former lends itself to stan-
dard methods of estimation when the level of detail of
the underlying data is good enough. While the latter
often leads to complications due to data on aggregated
or mean value form, i.e., low level of detail.

We show that it is reasonable to describe the ar-
rival process in terms of a homogeneous Poisson pro-
cess on 15-minute or 30-minute intervals. We sup-
port this position by χ2-square hypothesis testing at
five percent significance level on two data-sets. For
more on nonhomogeneous arrival processes we refer
to (Green and Kolesar, 1991) and (Whitt, 2007).
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When estimating at the service rate process the sit-
uation gets more complicated. One possible cause
of complications occur if the start and finish times
of chat dialogues are not recorded. In our data-sets
only the number of initiated chats per agent and in-
terval is available. Since an agent can serve several
customers in parallel we make the assumption that
the service per customer is a non-increasing func-
tion in the number of currently served customers. In
(Bekker et al., 2004) the authors explore varying ser-
vice levels and in (Bekker et al., 2011) adapting ser-
vice rates are investigated. In computer systems pro-
cessor sharing is a common phenomena, see (Cohen,
1979). Our model is inspired by both the previous
situations, where an agent has capacity to perform si-
multaneous tasks but at varying rates. A further com-
plication is due to data often only being available on
an aggregated level. Thus it is not possible to dis-
cern the actual (pointwise) workload distribution for
the interval. We suggest a missing data approach,
via the expectation maximation algorithm and Gibbs
sampling, to handle this problem.

There might also exist general information about
the system, such as how likely it is that there are cus-
tomers waiting in the queue and the arrival rate from
a previous estimation. One might also include data
from other chat systems and assume that there are
similarities. Hence we propose to model service rate
per customer as a continuous non-increasing func-
tion, depending on the state of the chat system and
the specific agent. Such a function can provide an-
swers about the maximum allowed chats in parallel to
fullfill some quality of service goal, like maximizing
throughput through the system or to support staffing
decisions.

In Section 2, data is discussed and the data-sets are
presented. In Section 3, the proposed queueing-based
state-space model is introduced and parametrized.
The parameters to be estimated are also stated. In
Section 4, the estimation models for the arrival pro-
cess is explained and the hypothesis testing is show
for specific data-sets. Also the missing data approach
for estimation of the service rates is presented.

2 DATA CHARACERISTICS

What can be achieved in terms of reliable estimates, in
a contact center environment, is highly dependent on
the amount and quality of the available data. There-
fore, it makes sense to categorize data in terms of
quality. We identify three major aspects that deter-
mine the overall quality and three subsets that are im-
portant for estimations in queueing systems, namely:

1. Number of data records, 2. The level of detail,
3. Relevant data-sets. The data-sets can be split into
general system, agent specific and customer specific
data.

The number of data records is an important factor
in determining the level of accuracy of estimates. The
level of detail determines how easily one can perform
estimations. Furthermore, in the context of queue-
ing systems, it is meaningful to differentiate between
three types of data-subsets. The first set concerns
data on a system level, such as offered load per inter-
val. The second subset pertains to agent specific data,
data like agent-id and number of initiated chat dia-
logues per interval. The third subset of data records
contain information on individual customers, such as
customer-id, arrival time to the system and waiting
time in queue.

In cases where there are few data records, low de-
tail level or when not all three subcategories are avail-
able leads to uncertainty in the estimations. This type
of uncertainty has to be managed, which motivates
why we need methods to provide reliable estimates in
the face of poor data quality.

The given data-sets, on which this paper is based,
come in two subsets, where the first subset contain
general queue data and the second contain agent spe-
cific data. Thus customer specific data is missing
in all cases. The data deemed useful in the context
of this paper is presented, while other data posts not
deemed to influence the procedings is supressed.

After discussing the matter with responsible data
base administrators it is found that the data is not
completely machine generated and thus may contain
errors due to human factors. This type of problem
requires serious attention but for the purposes of this
text it is ignored apart from some pre-processing with
respect to outliers and records with low information
content.

2.1 General Queue Related Data

In the first type of data subset the important data posts
are the ones representing date, intraday intervals and
offered load. The data is given per date and per in-
terval, thus we introduce d ∈ D = {1, . . . ,D} index-
ing the days, i ∈ I = {1, . . . , I} indexing the intraday
intervals and wd ∈ {1, . . . ,W} index the day of the
week, where W = 7. Let Nd,i ∈ N represent the num-
ber of arrivals on day d in interval i, i.e., offered load.
The notation was inspired by (Gans et al., 2009).
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2.2 Agent Specific Data

In the second type of data subset the important data
posts are the ones representing date, intraday interval,
agent identity, number of initialized chats and aggre-
gated time spent with open chat dialogues. The time
spent chatting is the sum of all chat dialogues, thus
the total time can be greater than the length of the
corresponding interval.

2.3 Customer Specific Data

Many contact centers neglect to record customer spe-
cific data, such as arrival time, time waiting, time in
service, service provided by agent-id, time of aban-
donment, etc. When such level of detail exists it is
straight forward to estimate service rates and related
parameters. The customer specific data-sets are miss-
ing for the chat systems investigated in this paper.

2.4 Given Data-Sets

Information of given data-sets. The size is measured
as the raw data text file size.

Table 1: Given data-sets.

Data-set Syst. data Ag. data Size
TA: queue yes no 5.3 MB
TA: agent no yes 49.7 MB

TC: queue1 yes no 3.5 MB
TC: queue2 yes no 2.3 MB
TC: agent no yes 8.4 MB

Where TA is a large travel agent company and TC
is a large telecom company. Syst. data is short for
System data and Ag. data is short for Agent data.

3 STATE-SPACE QUEUEING
MODEL DESCRIPTION

The queue-based system considered here is approx-
imated by a Markovian state-space model that is de-
scribed in detail in (Enqvist and Svensson, 2017). The
states represent the total number of customers in the
system, the number of agents working during that in-
terval and also contains information about the num-
ber of customers that each agent is currently serving,
possibly up to some maximum number. We refer to
(Asmussen, 2003) for queueing theory in general.

State transition rates are determined by new ar-
rivals and completed service sessions. New arrivals
are either placed in a common queue or start recieving

service from an available agent according to a routing
rule.

Completed services depend on the number of
agents, the number of customers in parallel that each
agent is serving and the corresponding service rates
according to a generalized processor sharing model,
as in (Cohen, 1979), for each agent.

An example, of a chat queue with one agent and a
maximum of three jobs in parallel, is shown in Figure
1. The lower chart shows the jobs as they are seen
by the agent. When a new job starts recieving service
the number of customers waiting in line, if any, drops
by one, as seen in the top figure. The example can be
expanded to include more agents which, together with
exponential service times and Poisson arrivals, quite
naturally gives rise to a Markovian state-space model.
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Figure 1: An example of a one agent chat queue. In the
upper graph the number of customers currently waiting in
queue is depicted. In the lower chart the different jobs are
shown, from the time they start recieving service until they
leave the system. The maximum number of customers that
can be served in parallel, in this example, is three.

3.1 The Arrival Process

New customers enter the system according to an ar-
rival process that is assumed to be Poisson with pa-
rameter λwd ,i, where wd correspond to the day of the
week and i to the interval. We assume that arrivals
are independent and identically distributed. That this
is a reasonable assumption is demonstrated in Section
4.1, as part of the model validation process.

Newly arrived customers either have to wait in line
or are assigned an agent according to the routing rule.
In this paper they are routed to the agent with the least
number of customers in service. In the case that there
are more than one agent serving the same, least num-
ber, of customers then random selection is used.
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3.2 The Service Process

The service rates of the agents can be studied per
agent, by groups of agents or by assuming all agents
perform at the same rate of service. The two former
situations require more data and can cause the under-
lying state-space to grow extremly large, hence in this
paper we choose to treat all agents as equivalent. It
might also be considered that agents provide the same
kind of service during different intraday intervals or it
may be assumed that the service rates vary depend-
ing on the interval. The latter case requires more data
and may be impractical due to the need to solve many
versions of the system.

The state of an agent will be taken as the number
of currently served customers in parallel, possibly up
to some maximum number.

Furthermore, we assume that the service times of
the agents are exponentially distributed with rate pa-
rameters µ j, where j ∈ {0,1, . . . ,m} represents the
number of currently served customers. These service
rates are dependent on the state of the agent and rep-
resent the fact that an agent serving several customers
simultaneously cannot devote the same type of atten-
tion to all of them as to a single customer.

The service times of the agents are assumed to be
independent of each other and identically distributed,
only depending on the number of customers in par-
allel. Here we assume that the different customers
served by the same agent at the same time are inde-
pendent.

In Section 4.2, we consider the estimation of the
service rates of the agents.

4 PARAMETER ESTIMATION
AND MODEL VALIDATION

This section will be divided into two major parts, the
first account for the arrival process and the validity of
the Poisson assumption and the second part consid-
ers the service process and the estimation of the ser-
vice rates for the agents, subject to varying numbers
of chats in parallel.

4.1 The Arrival Process

Data is given on the form of date, 15- or 30-minute
interval and offered load, i.e., number of arrivals Nd,i
per day and interval. We collect all data-points per-
taining to each day of the week and intraday interval
in a vector, denoted by ãwd ,i of length Lwd ,i.

All the {ãwd ,i}:s are then pre-processed by remov-
ing outliers and entire vectors that contain too little in-

formation. Let {āwd ,i} denote the resulting processed
set of vectors, now containing only trusted data. As-
suming that the arrivals are independent and identi-
cally distributed and specifying the likelihood func-
tion to be the joint function for all observations in the
specified vector āwd ,i

L(λwd ,i; āwd ,i) = f (awd ,i
1 , . . . ,awd ,i

Lwd ,i
|λwd ,i). (1)

Lwd ,i varies from vector to vector depending on the
given data-set. Then a maximum likelihood esti-
mation (MLE) of the Poisson parameter can be per-
formed to obtain the corresponding arrival rate per in-
terval and day of the week. The estimation is unbiased
and given by the sample mean (Haight, 1967, Ch. 5)

λ̂wd ,i =
1

Lwd ,i

Lwd ,i

∑
l=1

awd ,i
l . (2)

An example of estimated arrival rates for a chat
system of a travel agency are shown in Figure 2.
The actual arrival rates have been modified by request
from the company, but the general behaviour is cap-
tured. It is shown for 30-minute intervals.
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Figure 2: MLE of the arrival rates for one day of the week
with half hour intervals. (Rates are modified by request
from the company).

A common assumption for many queueing sys-
tems is that arrivals can be modeled by a homoge-
neous Poisson process. To show that this is plausible
the data is tested via a Pearson χ2-test, with test statis-
tic given by

χ2 =
n

∑
i=1

(Oi−Ei)
2

Ei
(3)

where n represents the maximum observation value
category, Oi the number of observations of type i and
Ei the expected number of observations of type i. The
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null hypothesis, H0, is defined to be that data is Pois-
son distributed with parameter λ̂wd ,i, and the test is
performed at 5% significance level.

Examining the data-sets it is found that the as-
sumed Poisson arrival rate is not rejected for the ma-
jority of the intervals and day of the week, results
given in Table 2.

Table 2: Example showing the number of non-rejected and
rejected H0-hypothesises for two different pre-processings
of the same 15-minute interval data-sets.

Data Pre-process Not rejected Rejected
TA Low 277 110
TA High 260 52

TC2 Low 232 210
TC2 High 232 46

The intervals for which the Poisson assumption is
rejected are mostly found in the beginning and at the
end of the day. When the data is aggregated into half
hour intervals the frequency of rejections decrease.
In Table 2 it can be seen that the result is dependent
on the pre-processing of the data, thus non-automated
data processing was needed to obtain the results. In-
formation to this end was supplied by the data-base
administrators.

Considering the results we find it reasonable to
model the arrivals as a Poisson process for the intents
and purposes of this work, for a similar but detailed
paper see (Brown et al., 2005)

4.2 The Service Process

The queue and service are modelled as a Markov pro-
cess, where the service rates of each agent depends on
the number of current clients. To decide if this model
assumption is reasonable we would like to perform a
hypothesis test. However, such a test could be per-
formed in the full information case, where client data
is available, but for the given data sets such a test is
not easily performed.

To illustrate the difficulties arising from data on
an aggregated format we introduce an example case
as can be seen in Figure 3, were the cumulative ar-
rivals and the cumulative number of answered chats
is shown. Note that only the interval in which arrivals
and answered chats occur is known.

Assuming that the model setup is suitable, we con-
centrate on the problem to estimate the various service
intensities of the agents.

For the full data case the intensities can be esti-
mated from information about the state transitions of
the system, by using a MLE method. However, the
given data-sets lack this level of detail and a direct
MLE is not feasible.

Interval
10 15 20 25 30 35 40 45

C
um

ul
at

iv
e 

co
un

ts

0

20

40

60

80

100

120

140

160

180
Cumulative chat arrivals and answered chats

Cumulative Arrivals
Cumulative Answered

Figure 3: Example showing the cumulative number of ar-
rivals and answered chats for a chat queue where data is
aggregated per interval.

One approach is to try to estimate the missing data
first and then apply the MLE approach. Consider one
agent over a sequence of time windows i = 1, · · · ,n in
I. Let xi denote the information about block i needed
to determine the MLE, and let yi denote the informa-
tion about block i that is observable, i.e., the informa-
tion provided by the considered data set. Assume that
θ contains all the unknown intensities µ j. It would
be very difficult, or even impossible, to determine a
closed form expression for the probability of observ-
ing the provided data given the intensities θ, i.e., for
Prθ(y1:n). Here, y1:n denotes the values of y1 to yn.
Therefore, we propose to apply the expectation max-
imization (EM) algorithm (Moon, 1996) and (Demp-
ster et al., 1977) to determine the estimate of θ. Start-
ing from an initial guess θ0 we want to determine

Q(θ;θ0) = Eθ0 [logPrθ(x1:n,y1:n)|y1:n] , (4)

for the expectation step of the EM algorithm. To
take the expectation under θ0 it is necessary to have
Prθ0(x1:n,y1:n). It can be determined using single site
Gibbs sampling (Gelfand and Smith, 1990) where
we should make use of the given observable data.
Sequentially determine Prθ0(xi|x1:i−1,xi+1:n,y1:n) for
each i = 1, · · · ,n. If y1:n contains information about
the number of arrivals and working time in the blocks
it should be used to determine the probabilities. Thus
we need the xi:s to contain the missing informa-
tion needed to determine the intensities. Let xi =
{di,B1, . . . ,Bdi ,T1, . . . ,T`i}, where di represents the
number of finished chats in interval i, B j are the inter-
departure times, Tj the inter-arrival times and `i the
number of new arrivals in interval i, which is observ-
able. The maximum number of customers in block i is
bounded by the number of customers at the beginning
of the interval, Ni, and the number of arrivals during
the interval `i. Let zi = {x1:i−1,xi+1:n,y1:n}, then the
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conditional probabilities

Pr(xi|zi) =
Ni+`i

∑
j=1

Pr(x1|zi,di = j)Pr(di = j|zi), (5)

can be determined. These correspond to all possible
combinations of jumps in an interval.

The final piece is to use that we can observe the to-
tal chat time in interval i. This impose a linear equal-
ity constraint on the variables in xi.

In the maximization step of the EM algorithm an
updated estimate θ1 is determined from

θ1 = argmax
θ

Q(θ;θ0). (6)

This process is repeated until sufficient conver-
gence has been achieved.

4.3 Proposed Service Rate Function

In order to reduce the number of parameters to esti-
mate we propose that a parametric function represen-
tation of the service rate is used. This function class
can be chosen to represent physical properties of the
rate parameters. We propose the following function
class.

f (ñ) =

{
0, ñ < 1
ña
(

1− 1
1+bec(d−ñ)

)
, ñ≥ 1 (7)

where ñ ∈ R is the continuous version of the num-
ber of customers per agent, and a,b,c and d are non-
negative model parameters. The function captures the
desired shape but fitting the parameters from data is
not trivial. With this representation we ensure that the
service rate per customer is nonincreasing.

5 CONCLUSIONS

We have shown that it is reasonable to model the ar-
rival process as a Poisson process via hypothesis test-
ing. An approach for estimating the service rate pa-
rameters from observed data has been proposed.

Implementation and further validation of the
model and estimation procedure is currently in pro-
cess. Other further work would be to use an alterna-
tive Bayesian approach.
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