Privacy Preserving Data Classification using Inner-product Functional Encryption

Damien Ligier, Sergiu Carpov, Caroline Fontaine, Renaud Sirdey

Abstract

In the context of data outsourcing more and more concerns raise about the privacy of user’s data. Simultaneously, cryptographers are designing schemes enabling computation on ciphertexts (homomorphic encryption, functional encryption, etc.). Their use in real world applications is difficult. In this work we focus on functional encryption schemes enabling computation of inner-product on encrypted vectors and their use in real world scenarios. We propose a protocol combining such type of functional encryption schemes with machine learning algorithms. Indeed, we think that being able to perform classification over encrypted data is useful in many scenarios, in particular when the owners of the data are not ready to share it. After explaining our protocol, we detail the implemented handwritten digit recognition use case, and then, we study its security.

References

  1. Abdalla, M., Bourse, F., De Caro, A., and Pointcheval, D. (2015). Simple functional encryption schemes for inner products. In IACR International Workshop on Public Key Cryptography, pages 733-751. Springer.
  2. Agrawal, S., Libert, B., and Stehlé, D. (2015). Fully secure functional encryption for inner products, from standard assumptions.
  3. Bishop, A., Jain, A., and Kowalczyk, L. (2015). Functionhiding inner product encryption. In International Conference on the Theory and Application of Cryptology and Information Security, pages 470-491. Springer.
  4. Boneh, D. (1998). The decision diffie-hellman problem. In International Algorithmic Number Theory Symposium, pages 48-63. Springer.
  5. Boneh, D., Sahai, A., and Waters, B. (2011). Functional encryption: Definitions and challenges. In Theory of Cryptography Conference, pages 253-273. Springer.
  6. Bottou, L., Cortes, C., Denker, J. S., Drucker, H., Guyon, I., Jackel, L. D., LeCun, Y., Muller, U. A., Sackinger, E., Simard, P., et al. (1994). Comparison of classifier methods: a case study in handwritten digit recognition. In International conference on pattern recognition, pages 77-77. IEEE Computer Society Press.
  7. Brakerski, Z. and Segev, G. (2015). Function-private functional encryption in the private-key setting. In Theory of Cryptography Conference, pages 306-324. Springer.
  8. Dietterich, T. G. (2000). Ensemble methods in machine learning. In International workshop on multiple classifier systems , pages 1-15. Springer.
  9. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., and Waters, B. (2013). Candidate indistinguishability obfuscation and functional encryption for all circuits. In Foundations of Computer Science (FOCS), 2013 IEEE 54th Annual Symposium on, pages 40-49. IEEE.
  10. Geurts, P., Ernst, D., and Wehenkel, L. (2006). Extremely randomized trees. volume 63, pages 3-42. Springer.
  11. Goldwasser, S., Kalai, Y., Popa, R. A., Vaikuntanathan, V., and Zeldovich, N. (2013). Reusable garbled circuits and succinct functional encryption. In Proceedings of the forty-fifth annual ACM symposium on Theory of computing, pages 555-564. ACM.
  12. Hart, W., Johansson, F., and Pancratz, S. (2013). FLINT: Fast Library for Number Theory. Version 2.4.0, http://flintlib.org.
  13. ILOG, I. (2006). ILOG CPLEX: High-performance software for mathematical programming and optimization. http://www.ilog.com/products/cplex/.
  14. LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning applied to document recognition. volume 86, pages 2278-2324. IEEE.
  15. Mangasarian, O. L., Wild, E. W., and Fung, G. M. (2008). Privacy-preserving classification of vertically partitioned data via random kernels. ACM Trans. Knowl. Discov. Data, 2(3):12:1-12:16.
  16. McCullagh, P. and Nelder, J. A. (1989). Generalized linear models, volume 37. CRC press.
  17. Safavian, S. R. and Landgrebe, D. A. (1991). A survey of decision tree classifier methodology. volume 21, pages 660-674.
  18. Sahai, A. and Waters, B. (2005). Fuzzy identity-based encryption. In Annual International Conference on the Theory and Applications of Cryptographic Techniques, pages 457-473. Springer.
  19. Shanks, D. (1971). Class number, a theory of factorization, and genera. In Proc. Symp. Pure Math, volume 20, pages 415-440.
  20. Yang, Z., Zhong, S., and Wright, R. N. (2005). Privacypreserving classification of customer data without loss of accuracy. In Proceedings of the 5th SIAM International Conference on Data Mining.
Download


Paper Citation


in Harvard Style

Ligier D., Carpov S., Fontaine C. and Sirdey R. (2017). Privacy Preserving Data Classification using Inner-product Functional Encryption . In Proceedings of the 3rd International Conference on Information Systems Security and Privacy - Volume 1: ICISSP, ISBN 978-989-758-209-7, pages 423-430. DOI: 10.5220/0006206704230430


in Bibtex Style

@conference{icissp17,
author={Damien Ligier and Sergiu Carpov and Caroline Fontaine and Renaud Sirdey},
title={Privacy Preserving Data Classification using Inner-product Functional Encryption},
booktitle={Proceedings of the 3rd International Conference on Information Systems Security and Privacy - Volume 1: ICISSP,},
year={2017},
pages={423-430},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0006206704230430},
isbn={978-989-758-209-7},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 3rd International Conference on Information Systems Security and Privacy - Volume 1: ICISSP,
TI - Privacy Preserving Data Classification using Inner-product Functional Encryption
SN - 978-989-758-209-7
AU - Ligier D.
AU - Carpov S.
AU - Fontaine C.
AU - Sirdey R.
PY - 2017
SP - 423
EP - 430
DO - 10.5220/0006206704230430