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Abstract: Current signature-based malware detection systems are heavily reliant on fixed patterns that struggle with
unknown or evasive applications, while behavior-based solutions usually leave most of the interpretative work
to a human analyst. In this paper, we propose a system able to explain anomalous behavior within a user session
by considering anomalies identified through their deviation from a set of baseline process graphs. To minimize
computational requirements we adapt star structures, a bipartite representation used to approximate the edit
distance between two graphs. Baseline templates are generated automatically and adapt to the nature of the
respective process. We prototypically implement smart anomaly explication through a number of competency
questions derived and evaluated using the decision tree algorithm. The determined key factors are ultimately
mapped to a dedicated APT attack stage ontology that considers actions, actors, as well as target assets.

1 INTRODUCTION

IT infrastructures are threatened by an ever-growing
number of different cyber-attacks. With the emer-
gence of Advanced Persistent Threats (APTs), the fo-
cus shifted from off-the-shelf malware to attacks tai-
lored to one specific entity. While APTs use malware
like most conventional attacks, the level of complex-
ity and sophistication is usually much higher. This is
problematic especially since defensive measures of-
fered by security vendors often utilize the same detec-
tion approaches that have been used for many years –
with mixed results. The major drawback of these pri-
marily signature-based systems is that the binary pat-
terns required for detection are unlikely to exist at the
time of attack, as most APTs are tailored to one spe-
cific target. In addition, packers, meta- and polymor-
phic techniques are employed to throw off signature-
based systems while the multi-stage nature of APTs
makes it generally difficult to interpret findings out of
context (Luh et al., 2016a). This increased complex-
ity makes it necessary to explore novel techniques for
threat intelligence and malicious activity detection on
multiple layers.

Behavior-based approaches are a promising
means to identify illegal actions. No matter the stealth
techniques employed, the attacker will sooner or later
execute his or her action on target – be it data theft
or sabotage. Anomalies signifying a deviation from a

known behavioral baseline can then be used to detect
the threat. However, most existing systems do not dis-
seminate the offending behavioral data and contribute
little to aid in their interpretation. We argue that clos-
ing the resulting semantic gap is a vital next step in
holistic IT system threat mitigation.

To achieve this goal, we introduce a system capa-
ble of dealing with a variety of targeted attack sce-
narios. Specifically, we contribute by presenting a
holistic approach to collecting and correlating host
and network events able to describe all APT attack
stages coupled with a transparent anomaly detection
and baseline graph extraction system based on star
structures and edit distance computation. Anomalies
are disseminated and interpreted using a semantic de-
cision tree approach in combination with a compre-
hensive targeted attack ontology. This position paper
presents an overview of this approach.
Related work – Anomaly-based malware or intrusion
detection systems are found in many proposed solu-
tions. However, it is rare to see it combined with a se-
mantic component that is dedicated to the automated
interpretation of the generated traces, logs or alerts.
Noble and Cook (2003) explore graph-based anomaly
detection through the detection of repetitive substruc-
tures within graphs as well as by determining which
subgraph of interest consists of the highest number of
unique substructures. The introduced system is also
able to measure the regularity of a graph using con-
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ditional entropy. Being mostly formal in nature, the
approach does not consider attack semantics. Most
other graph-based systems for intrusion detection sce-
narios discuss attack graphs, which put the focus on
vulnerability analysis and the sequence of events lead-
ing to a state of compromise (Sheyner et al., 2002).

Dolgikh et al. (2012) conduct dynamic behavioral
analysis of applications capable of automatically cre-
ating application profiles for both malicious and be-
nign samples. Their system considers recorded API
calls that are subsequently transformed into a labeled
graph representing a stream of system calls. Graphs
are compressed using a genetic data processing algo-
rithm in order to extract behavioral profiles.

On the network traffic side, Münz and Carle
(2007) present TOPAS, a traffic flow and packet anal-
ysis system compatible with NetFlow and IPFIX. The
system’s detection algorithm uses threshold-based de-
tection via pre-defined values as well as outlier detec-
tion through the comparison of a sample to previously
learned, normal behavior. While this offers a good
foundation for traffic anomaly detection, the link to
local processes and applications is not investigated.

The shift of focus towards semantic awareness
is visible in several, more general works. For ex-
ample, Anagnostopoulos et al. (2005) present a sys-
tem for the application of semantics to general in-
trusion scenarios. The authors seek to classify and
predict attacker intentions using a Bayesian classifier
and a probabilistic inference algorithm. Their seman-
tic model includes both legitimate and illegitimate ac-
tors, activities in the form of sequential events, con-
crete commands issued, and an overall state of attack.

As above works exemplify, none of the solutions
quite manage to bridge the gap between system events
(be they function calls or traffic flows) and a truly
meaningful representation of an attack in its entirety.
Closing this semantic gap is one of the main goals of
the system presented in this paper.

2 REQUIREMENTS

There are several formal, semantic, and strategic re-
quirements that have to be met before the technical
implementation can be approached. The design of
the system is based on the roadmap for a conceptual
APT defense system introduced in a survey by Luh
et al. (2016a). In order to fulfill the requirements for
the comprehensive detection and analysis of targeted
attacks we followed the authors’ system capabilities
checklist and extended the design with the ability to
explain detected anomalies in behavioral data.

2.1 Threat Definition and Modeling

For threat definition, we decided to use the cyber kill
chain model by Hutchins et al. (2011). In order to
combine and interpret data sources and the events
they generate, we constructed a top-down view on a
potential targeted attack by combining a streamlined
version of the model with the construction of an APT
ontology first introduced in Luh et al. (2016b).

Ontologies are a promising way of approaching
the challenge of formalizing threats and threat re-
sponses in a semantics-aware manner. Originally a
discipline of philosophy, ontologies in information
science have become an accepted formal approach
to describing data types, properties, and interrelation-
ships of entities within a specific domain. Their rea-
soning capabilities and data formats set them apart
from semantics-unaware relational databases. De-
pending on general requirements and desired granu-
larity, system designers can choose from numerous
languages or systems. Several semantics-based works
(see survey by Luh et al. (2016a)) successfully utilize
ontologies as part of their threat mitigation approach.

In preparation for the technical system design in-
troduced below, we used Protégé to create aforemen-
tioned attack ontology. For concrete threat actions
(including assets and actors), we used a goal mod-
eling approach based on GRL. Attack specifics were
derived and expanded from a formal definition of mal-
ware behavior introduced by Dornhackl et al. (2014)
as well as from the aforementioned kill chain model.

2.2 Data Provider Selection

Following the definition of the ATP ontology and its
inherent rules, we linked each attack stage and ac-
tivity to specific system events or, as discussed be-
low, to specific behavioral anomalies. In order to
retrieve event data that depicts a wide range of pos-
sible attacker actions, it is prudent to choose data
providers capable of collecting both host-based as
well as network-based information. To be in line with
this requirement, our system design is based upon the
use of kernel event traces and network flow informa-
tion. The information is processed to gather intelli-
gence on the attack, correlate the two classes of data
providers, detect an attack through an anomaly-based
approach, and analyze the outcome to extract seman-
tically relevant information. In combination, the sys-
tem is able to counter the threats of malware, host in-
trusions in general, as well as several classes of net-
work attacks. Mapped onto the kill chain model, our
proposed design is capable of processing reconnais-
sance, delivery, exploitation, installation, command &
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Figure 1: System design overview.

control, as well as action on target activity. We also
formally checked our technical design against Luh et
al.’s system design checklist (Luh et al., 2016a) in or-
der to confirm aforementioned capabilities.

3 SYSTEM DESIGN

The proposed system is composed of several compo-
nents enabling the underlying anomaly detection and
knowledge explication process. The initial tasks en-
compass the acquisition of data from a number of
monitored devices as well as the transmission and
translation of kernel events to a clean database format.
Afterwards, we link events by their contextual par-
ent and construct traces in the form of star structures,
simple graphs that describe the operations conducted
by each process within a specific time range. From
a baseline of benign system behavior we then extract
one or several process-unique templates that are sub-
sequently used to check new activity for anomalies by
measuring the edit distance between the graphs.

Our approach not only calculates deviations but
also returns a list of actions that constitute the iden-
tified anomaly. Combined with an APT property ex-
traction routine based on decision trees, we are ulti-
mately able to map each behavioral pattern to afore-
mentioned ontology.

3.1 Data Collection

The proposed system is based on two data types col-
lected on both the hosts as well as on a network device
connecting these endpoints:

Event traces are typically defined as descriptions
of OS kernel behavior invoked by applications and, by
extension, a legitimate or illegitimate user. More of-
ten than not, these events are abstractions of raw sys-
tem and API calls (e.g. CreateProcess) that yield
information about the general behavior of a sample
(Wagner et al., 2015). In the context of our system,

event data is collected directly from the Windows ker-
nel. This gives us unimpeded access to events depict-
ing operations related to process and thread control,
image loads, file management, registry modification,
network socket interaction, and more.

Network traffic analysis, on the other hand, comes
in two distinct flavors (Sperotto et al., 2010): Packet
inspection, where the payload of certain (or all) pack-
ets is analyzed, and flow-based detection systems.
The latter focus on communication patterns instead
of individual packets. Such patterns typically include
source and destination IP addresses, port numbers,
transmission times, as well as the amount of data
and number of packets sent. Our system correlates
network flows captured at a central switch or border
gateway with local network events captured at each
monitored host. This way we are able to link specific
processes to conversations over the network – be it a
host-to-host exchange or the interaction with remote
Internet resources.

The relative ease of monitoring as well as the se-
mantic expressiveness of kernel events and network
flows make them ideal for dynamic smalware analysis
and application classification. The design introduced
in this paper uses this rich repository of behavioral
data to compile a graph-like star structure of event
sequences that can describe not only a single appli-
cation, but also a system session as a whole. This
process is detailed in the following:

Event linking: All previously collected events are
subsequently linked through their parent process in
order to establish a semantic connection between ac-
tion and cause. This is realized through 3 attributes
that are present in all the data collected by the host
monitoring agent: Creation time, and the PID that
forms a unique identifier for each process. Threads
work in a similar fashion. Like PIDs, thread IDs
(TIDs) are logged by other event types (e.g. reg-
istry events) and can therefore also be used for event
linking. It becomes possible to reconstruct the entire
event flow (tree) or determine specific dependencies
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between processes or general events. Concatenated
into a full system graph, the sequence of events of the
monitored session can be assembled. In a follow-up
step, these graphs are reduced to star structures cen-
tered around a process triggering a specific event.

Star construction: In subgraph search, star struc-
tures are a means to reduce the complexity of a known
NP problem to polynomial complexity (Hu et al.,
2009). Instead of searching entire system session
graphs for matching patterns, the star structure ap-
proach breaks down the computation into a triplet
of vertices connected by a labeled edge, denoted as
G = (U,V,E), where U and V are nodes and E is the
respective edge. The edge label is used as basis for
minimal cost calculation of same-size star structures.
Specifically, it utilizes bipartite graph matching based
on the Hungarian algorithm (Kuhn, 1955), where ev-
ery star is processed as a matrix. Graph edit distance
calculation determines the minimal costs of relabeling
the nodes and edges of a graph G to match a graph H.
The edit path PG,H can be understood as a sequence of
transformation operations σ. The final graph edit dis-
tance is determined by the cheapest of all edit paths
between G and H.

Compared to full graph matching, this approach is
typically a faster, but less precise approximation, as
it only matches the immediate neighborhood of one
node at a time. In our system, we use an adaptation
of Hu et al. (2009) approach that combines n bipar-
tite graphs into one star representing a single process.
This makes the effect on result accuracy far less pro-
nounced: With a focus on individual processes, our
input data can already be reduced to star structures
without significantly compromising trace semantics.
This is due to the fact that we anchor every event to
a trigger (parent) process (see Section 3.1) that ac-
tively invokes respective actions, making this process
the natural center vertex of a star-shaped graph. In
our system, elemental operations for determining the
minimal cost graph edit distance between individual
elements are not limited to relabeling nodes, but con-
sider edges as well. Vertex edit operations encompass
single vertex relabeling σRV operations as well as both
an insert vertex operation σIV and a delete vertex op-
eration σDV . Semantically speaking, each vertex is
akin to a system event (event type plus parameter) as
introduced in Section 3.1. Edge edit operations, on
the other hand, primarily consider the edge relabeling
cost σRE . We opted to dynamically assign individual
relabel costs based on the type of event considered,
making the approach fully capable of assessing event
similarities. Specifically, σ∗V will drastically increase
in cost when converting a semantically expensive pro-

Figure 2: Example transformation of baseline (left) to target
graph (right) for process svchost.exe.

cess event to a relatively low-impact registry event. At
the same time, the type of operation (numerical repre-
sentations of create, modify, delete, start, and stop op-
erations) considered by σRE determines the final cost
of edge relabeling.

Figure 2 shows a simplified example. In the de-
picted case, the base graph consists of various ver-
tices representing events such as the creation of a
file, the start of a process and an open/read oper-
ation conducted in the HKLM/Security hive of the
Windows registry. When comparing the graph to an-
other, the introduced Hungarian graph edit distance
approach will use σ to determine the minimal cost of
transforming G to H. In case of the exemplary file
event file.txt, this edit distance is a mere 0.25,
since a single σRE operation is sufficient to trans-
form the biparte graph G(svchost.exe,1.5, f ile.txt) to
H(svchost.exe,1.75, f ile.txt).

This approach of determining the minimal edit
distance between two star-shaped graphs is used as
the foundation for context-aware anomaly detection
utilizing supervised learning on a per-process basis.

3.2 Anomaly Detection & Explication

The required transformation operations and, by exten-
sion, the minimal graph edit distance between to star
structures can be used to determine the event-level de-
viation between two instances of the same process.
In order to automatically determine unique thresholds
for each observed process, we first need to create a
template from a benign environment. Only then can
we match base to target graphs and disseminate dif-
ferences.

We have implemented the generation of templates
in 3 different ways. In each case we take a set of
benign process graphs and extract an optimal repre-
sentative: The perfect match approach extracts iden-
tical events found in each iteration of a process and
assembles an entirely new graph. This creates a sleek
template that enables the analyst to primarily focus
on hitherto unobserved events. However, there is
an performance-for-accuracy trade-off that results in
higher mean edit distance values. More accurate than
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’perfect match’, the majority approach picks the most
common base graph from the input set and converts
it to a template without altering its contents. How-
ever, this approach struggles with processes that show
greater deviations between multiple benign instances
due to their multifaceted nature. Lastly, we imple-
mented the prototype extraction approach that is es-
pecially useful for diverse processes. It uses the Mal-
heur algorithm (Rieck et al., 2011) to extract not one,
but several prototypes representative of the various as-
pects of a single process. While template generation
and distance calculation is most performance-heavy,
it also promises the best accuracy by far.

Before any anomaly detection can be imple-
mented, we need to set alert thresholds. In our case,
they are determined by comparing the generated tem-
plate(s) to the remainder of the benign input graphs.
This yields a minimum, mean, and maximum lower-
bound edit distance for each process. Depending
on the level of scrutiny, both mean and maximum
distance can be used as anomaly threshold. Armed
with one or several templates for each process, we
can now check unknown graphs against the predeter-
mined thresholds.

As our system focuses on the interpretation of
anomalies and not entire unclassified system traces,
the amount of data processed in the explication stage
is drastically reduced. Specifically, we explain why
the anomaly detection routine has identified a star
structure as significantly deviating from the template,
thereby disseminating the in-depth knowledge gained
in the process. Only afterwards can we commence
with anomaly interpretation:

One of the advantages of our anomaly detection
approach lies in the fact that the star depiction of of
a graph allows for the comprehensive dissemination
of semantic information that details each and every
anomaly in a simple fashion. The analyst is presented
a report detailing the events that constitute each devi-
ation. Below snippet shows an example process being
checked against one of its prototype templates:

==> s v c h o s t . exe [ D e v i a t i o n ( t h r e s h o l d ) :
3 0 0 .5 ( 1 2 3 . 3 ) −−> ANOMALY]

s v c h o s t . exe spawns 13 a d d i t i o n a l t h r e a d s
s v c h o s t . exe l o a d s 54 a d d i t i o n a l images
=> a t l . d l l
=> b c r y p t . d l l

( . . . )
s v c h o s t . exe s e t s 6 a d d i t i o n a l r e g i s t r y e n t r i e s
=> /HKLM/ System

( . . . )
s v c h o s t . exe m o d i f i e s / d e l e t e s 6 a d d i t i o n a l f i l e s
=> 21253908 f3cb05d51b1c2da8b681a785

The system allows for several levels of granular-
ity. Registry paths can either be normalized to hive

Figure 3: Stage affinity determined by the decision tree.

names as seen above or be processed in their entirety.
Abstraction of ID numbers, memory addresses, user
IDs is implemented as well – as is anonymization of
private file names, IP addresses, and other personally
identifiable information. This knowledge dissemina-
tion offers interesting information to the analyst but
does not yet help with its interpretation. One of the
key components of our proposed system is to expli-
cate certain combinations of anomalous events and
map them to the APT attack stages contained in the
ontology. To this end, we explore event combinations
via a decision tree in combination with the intelligent
tagging of over 1,700 known Windows modules. In
the first step, a number of competency questions that
are expected to aid in the decision of whether a fac-
tor contributes to a malicious action were identified.
These questions include simple Boolean queries into
the presence of events over another event (e.g. if the
number of thread terminations exceed the number of
thread spawns) as well as decisions based on the pres-
ence of certain activity tags describing the base func-
tionality of a module (e.g. networking, security, user
interface, kernel, etc.). In order to support the devel-
opment of expressive competency queries we manu-
ally defined a number of questions and continuously
test them against the decision tree.

The decision tree is rooted in the six aforemen-
tioned APT categories. By answering all competency
questions, we get a probability describing the graph’s
affinity towards a certain APT stage (see Figure 3).
The key factors leading to the decision are identified
as well, providing opportunities for future prediction
and enabling aforementioned self-improvement of the
decision system. Based on the response to the com-
petency questions, we infer rules that describe the de-
tected malicious actions. There are two stages to this
process: In the learning stage, use genetic algorithms
(Papagelis and Kalles, 2000) to directly evolve the
decision tree. We then extract and feed the identi-
fied high-impact rules into our ontology, which links
them to pre-specified APT stages, actors, assets, and
concrete attack scenarios. During the matching stage,
the decision tree becomes the means to determine and
map newly discovered anomalies to the already pop-
ulated ontology.
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4 CONCLUSION

The current prototype of the system has been imple-
mented in a test-bed environment consisting of 10
physical Windows machines actively used by devel-
opers and office personnel. The deployed kernel mon-
itoring agent logs all the event types described in sec-
tion 3.1 to a central listener that in turn writes the
events to a database server. SQL is used to query
the database and to construct the star structures that
are the basis for all further processing. Our approach
is able to selectively retrieve entire system sessions
or pick out individual processes, whereby any tem-
poral range can be specified. For example, we can
process only the first n seconds after an application’s
launch or extract data from a specific point within its
lifetime. The resulting set of CSV-formatted graphs
is converted into matrices that are the foundation of
Hungarian distance calculations implemented in R.
The correlation of network flow events and process
information is handled by a Python-based framework
capable of grouping destination IP addresses by do-
main owner. For prototype-based template genera-
tion, we utilize a local Malheur (Rieck et al., 2011) in-
stallation configured to accept non-MIST input data.
Decision trees are computed in GAtree (Papagelis and
Kalles, 2000). Initial evaluation puts the computa-
tional requirements of the anomaly detection routines
in the span of seconds to minutes, depending on the
size of the graphs. Preliminary tests using the Win-
dows generic host process against 18 automatically
generated prototype templates have yielded correct
anomaly detection results for a total of 81 out of 83
system sessions infected by over 15 classes of mal-
ware. The remainder was deemed inconclusive due
to a lack of activity. A detailed evaluation of the sys-
tem’s anomaly detection accuracy and its reasoning
capabilities will be discussed in future works. Fur-
ther research will also be conducted into the improve-
ment of the decision tree as well as the automation of
the ontology mapping process. Ultimately, the intro-
duced anomaly detection and explication system will
offer invaluable aid to malware analysts and security
operators alike.
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