
Creating and Analyzing Source Code Repository Models
A Model-based Approach to Mining Software Repositories

Markus Scheidgen, Martin Smidt and Joachim Fischer
Institut für Informatik, Humboldt-Universität zu Berlin, Unter den Linden 6, Berlin, Germany

Keywords: Reverse Engineering, Software Evolution, Metrics, Mining Software Repositories, Metamodels, OCL.

Abstract: With mining software repositories (MSR), we analyze the rich data created during the whole evolution of
one or more software projects. One major obstacle in MSR is the heterogeneity and complexity of source
code as a data source. With model-based technology in general and reverse engineering in particular, we
can use abstraction to overcome this obstacle. But, this raises a new question: can we apply existing reverse
engineering frameworks that were designed to create models from a single revision of a software system to
analyze all revisions of such a system at once? This paper presents a framework that uses a combination
of EMF, the reverse engineering framework Modisco, a NoSQL-based model persistence framework, and
OCL-like expressions to create and analyze fully resolved AST-level model representations of whole source
code repositories. We evaluated the feasibility of this approach with a series of experiments on the Eclipse
code-base.

1 INTRODUCTION

Software repositories hold a wealth of information
and provide a unique view of the actual evolutionary
path taken to realize a software system (Kagdi et al.,
2007). Software engineering researchers have devised
a wide spectrum of approaches to extract this infor-
mation; this research is commonly subsumed under
the term Mining Software Repositories (MSR). A spe-
cific branch of MSR uses statistical analysis of code
metrics that are computed for each software revision
to understand the evolution of software projects (Gy-
imothy et al., 2005).

Recent advances in big-data processing (i.e.
Map/Reduce) allowed to extend this research to large-
or even ultra-large-scale software repositories that
comprise a large number of software projects (Dyer
et al., 2015). Examples for large-scale repositories are
the Apache Software Foundation or the Eclipse Foun-
dation, and ultra-large-scale repository examples are
software project hosting services (sometimes refered
to as open-source software forges (Williams et al.,
2014b)) like Github (250.000+ projects) or Source-
Forge (350.000+ projects) (Dyer et al., 2015).

But analyzing many heterogeneous software
projects has limits. While existing approaches (Ba-
jracharya et al., 2009; Gousios and Spinellis, 2009;
Dyer et al., 2015) manage to abstract from dif-
ferent code versioning systems (e.g. CVS, SVN,

Git), different programming languages are still an
issue. Especially, if the full AST’s of the code-
base is necessary: A lot of software evolution and
MSR research (Gyimothy et al., 2005; Basili et al.,
1996; Subramanyam and Krishnan, 2003; Yu et al.,
2002) depends on object-oriented metrics (e.g. CK-
metrics (Chidamber and Kemerer, 1994)) or more
precise complexity-based size metrics (e.g. Halstead
or McCabe) that aggregate the occurences of concrete
language constructs and therefore require the analy-
sis of abstract syntax trees (AST). Furthermore, other
MSR techniques, like mining for common API-usage
patterns (Livshits and Zimmermann, 2005) or design
structure matrices (Milev et al., 2009) also require a
language dependent syntax-based (AST-level) analy-
sis.

Based on different goals, reverse engineering is
used to find abstract representations of source code
that are suited to derive knowledge from existing
code-bases (Chikofsky et al., 1990). Concrete reverse
engineering frameworks (e.g. Modisco (Bruneliere
et al., 2010)) suggest a multi-stage model transfor-
mation process that goes from source code over lan-
guage dependent models (e.g. via Modiscos’ Java
metamodel or OMG’s ASTM) to language indepen-
dent information representations (e.g. via the OMG
metamodels KDM and SMM). We can therefore as-
sume that reverse engineering can solve the men-
tioned heterogeneity to create MSR applications more

Scheidgen M., Smidt M. and Fischer J.
Creating and Analyzing Source Code Repository Models - A Model-based Approach to Mining Software Repositories.
DOI: 10.5220/0006127303290336
In Proceedings of the 5th International Conference on Model-Driven Engineering and Software Development (MODELSWARD 2017), pages 329-336
ISBN: 978-989-758-210-3
Copyright c© 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

329



SCR

A1 B1

A2

A1 B1

A2 B1 B1

A1 B1

A2

1.2

1.6 

3.2

3.2

model store model store

checkout

parse

save/load save/load

merge

increment

analyze

r1

r2

compilation units compilation unit
models

snapshot 
models

results
(e.g. metrics)

B1

Figure 1: Different artifacts and operations involved in
model-based MSR.

efficiently with model-based technology like meta-
models, and query/transformation languages. But, we
still need to show that model-based technology can
scale from processing individual repository snapshots
to complete reversion histories.

In this paper, we evaluate the scalability of model-
based MSR. We build a model-based MSR framework
called Srcrepo on top of EMF and Modisco (Brune-
liere et al., 2010) as described in a previous publica-
tion (Scheidgen and Fischer, 2014). Here, we eval-
uate the scalability with the code-base of the Eclipse
Foundation as an example for a large-scale software
repository. In this evaluation, we gather datasets from
a subset of the CK-metrics suite (Chidamber and Ke-
merer, 1994). The following section 2 gives a brief
overview of our approach and framework. Section 3
evaluates the scaleability of the approach. We present
related work and conclusions in sections 4 and 5.

2 A MODEL-BASED MSR
FRAMEWORK

We assume that in general a MSR application needs
to visit each revision of a source code repository and
that it needs to analyze each revision based on a fully
resolved AST-level model representation of all code
in that revision (snapshot model). Figure 1 shows
the operations and artifacts involved in model-based
MSR.

Each analysis starts with a source code repository
(SCR). Here, source code is organized in compilation
units (CU) (e.g. Java source files) which are them-
selves organized in revisions. All version control sys-
tems provide a checkout operation to access individ-
ual revisions of individual CUs. After checkout, we
need to transform CUs into CU models through pars-
ing. Of course the code from different CUs is not in-
dependent and we need to merge models for individ-
ual CUs into snapshot models that represent all code
in one revision. This can either be done by merging

all CUs from one revision or by incrementally updat-
ing an existing older snapshot model with data from
changed CUs. References between CUs have to be re-
solved for each snapshot. Finally, we need to actually
analyze the source code models (e.g. compute met-
rics data). The intermediate model representations for
CUs and snapshots can be stored to omit all previous
steps in future analysis runs.

Srcrepo is build on top of Eclipse and the follow-
ing frameworks and libraries: JGit, Modisco (Brune-
liere et al., 2010), EMF, JDT, Xtend, and EMF-
Fragments (Scheidgen et al., 2012).

Clients can transform existing Git repositories and
the contained Java source code into EMF-models (re-
fer to Figure 2 for the meta-model). This is a two
step process. First, Srcrepo creates a model of the
revision tree. The revision tree is a lattice of nodes.
Each node represents a single commit of changes to
the source code repository. Each revision relates to
the files that were added, modified, or deleted within
the corresponding commit. Srcrepo uses the JGit
plumbing API to read the revision tree from Git con-
trolled source code repositories. Secondly, Srcrepo
performs a checkout on each revision of the tree us-
ing JGit’s porcelain API. For all differences in each
revision that refer to Java source files, Srcrepo cre-
ates a model of these compilation units (CU) with
Modisco (Bruneliere et al., 2010). Modisco uses JDT
to parse and analyze the Java code. The resulting CU
models are AST-level models that contain instances
for all language constructs from classes to literals.
Modisco collects all named elements and references
within the Java code. At this point, we only resolve
local references within the same CU, because we pro-
cess each CU individually. All names and the remain-
ing unresolved references are added to the model and
are later used to resolve cross-references in snapshot
models. The CU models are added to the revision
tree model. The whole model is persisted with EMF-
Fragments (Scheidgen and Zubow, 2012) in a Mon-
goDB.

Once this repository model is created, clients can
use Srcrepo to analyze it repeatedly. Srcrepo can tra-
verse the revision tree and can create snapshot mod-
els for each visited revision. These snapshots contain
a model of all current CUs, not just of the CUs that
were changed in the last revision. Therefore, each
snapshot represents the whole code-base of the cur-
rently visited revision. Srcrepo uses the stored data
on named elements and references to resolve all ref-
erences and creates fully resolved snapshot models.
Of course, Srcrepo does not create all snapshots at
once, but only one at a time. This allows us to per-
form this step within a single runtime (i.e. JVM)

MODELSWARD 2017 - 5th International Conference on Model-Driven Engineering and Software Development

330



without running into memory issues. But this also
means that snapshots have to be processed individu-
ally based on the assumption that typical MSR appli-
cations only need to analyze snapshots sequentially
or only need to analyze the differences between two
successive snapshots. If possible, Srcrepo incremen-
tally updates snapshots. It takes the snapshot model
from the previous revision and only processes the
CUs that have changed in the current revision. For
each changed CU, Srcrepo first removes the old ver-
sion, unresolves all references to this CU, and then
adds the new version to the snapshot and re-resolves
all references.

Srcrepo offers clients different options to analyze
snapshot models. First, they can use an OCL-like
language to count and aggregate occurrences of lan-
guage constructs. This is sufficient to calculate most
existing code metrics. For metrics that only rely
on containment and do not require reference data,
clients can skip snapshot creation on calculate met-
rics on the bare CU models. The CU and snap-
shot models are regular EMF-models. Therefore,
clients can use model comparison frameworks such
as EMF compare to identify and analyze the matches
and differences between snapshots. This is for exam-
ple valuable to analyze typical change patterns/refac-
torings (Williams and Hollingsworth, 2005). Since
matches and differences can themselves be repre-
sented as models, they could also be processed via
OCL. EMF-based model transformation languages
are a third option. Finally, there is always the pos-
sibility to use plain Java code to analyze all models.

The artifacts created during analysis (e.g. code
metrics, difference models, metrics on differences,
etc.) could also be represented as models (e.g.
instances of OMG’s SMM or KDM metamodels).
These result models could also be stored within the
same storage that is used to persist the repository
models. Clients could also maintain cross-referen-
ces between model elements that represent results and
model elements that these results were created from.
For example, we can use Srcrepo to calculate Mc-
Cabe’s cyclomatic complexity for each method and
link the resulting numbers to the corresponding meth-
ods. Thus, we calculate this metric once and can use it
repeatedly in following analysis runs (e.g. use them as
weights to calculate the CK-metric weighted methods
per class (WMC) (Chidamber and Kemerer, 1994),
also refer to section 3).

As a final step, clients need to export the produced
data (e.g. as XML, JSON, comma separated values)
to load the data into statistics software such as R or
Matlab. The statistics software can then be used to
process and analyze the gathered ”raw”-data into hu-

so
ft

w
ar

e 
re

po
sit

or
ie

s
so

ur
ce

-co
de

 re
po

sit
or

y r
ev

isi
on

 tr
ee

s
so

ur
ce

-co
de

 re
po

sit
or

y c
om

pi
la

tio
n 

un
tis

M
od

isc
o

Rev

commiter : EString

author : EString

name : EString

time : EDate

message : EString

Ref

name : EString

isSymbolic : EBoolean

isPeeled : EBoolean

Di�

newPath : EString

oldPath : EString

type : ChangeType

<<datatype>>
ChangeType

ParentRelation

AbstractFileRef

path : EString

CompilationUnitRef

projectID : EString

Model
(from java)

SourceCodeRepository

ASTNode
(from java)

Target

id : EString

NamedElement
(from java)

CompilationUnitModel

SoftwareRepository

Repository

name : EString

description : EString

url : EString

UnresolvedReference

id : EString

featureID : EInt

featureIndex : EInt

parentRelations0..*childRelations0..*

referencedCommit
0..1

parent0..1 child0..1

allRevs
0..*

rootRevs
0..*

allRefs

0..*

�le
0..1

di�s
0..*

compilationUnitModel
0..1

javaModel 0..1

sourceCodeRepositories0..*

source0..1target0..1

targets
0..*

target0..1

unresolvedLinks0..*

«fragments»

«fragments»

«fragments»

Figure 2: Srcrepo’s meta-model for repository and compi-
lation unit models.

man readable charts and other forms of usable knowl-
edge.

3 EXPERIMENTS

3.1 Setup

The subject for our experiments is a corpus that com-
prises a subset of the Eclipse Foundation’s source
code repositories. The Eclipse Foundation maintains
code (and other artifacts, like documentation, web-
pages, etc.) in over 600 Git repositories. Each repos-
itory contains the code of one Eclipse project or sub-
project. The repositories themselves may contain the
code of several Eclipse plug-ins. We took the largest

Creating and Analyzing Source Code Repository Models - A Model-based Approach to Mining Software Repositories

331



200 of those repositories that actually contained Java
code. These 200 repositories contain about 600 thou-
sand revisions with a total of over 3 million compila-
tion unit (CU) revisions that contain about 400 mil-
lion SLOC (lines of code without empty lines and
comments). The Git repositories take 6.6 GB of disk
space. The generated model representation of these
repositories comprises over 4 billion objects and takes
about 230 GB of diskspace in EMF-Fragment’s bi-
nary serialization format. The model of all 200 repos-
itories is a single connected 4 billion object EMF-
model.

We run all experiments on a server computer with
four 6-core Intel Xeon X74600 2.6 GHz processors
and 128 GB of main memory. However, Srcrepo op-
erates mostly in a single thread with the exception of
JVM and Eclipse maintenance tasks. Srcrepo runs on
Eclipse Mars’ versions of EMF, Modisco, JDT, JGit,
and Xtend in a Java 8 virtual machine. All operations
were run with a maximum of 12 GB of heap mem-
ory. The database runs locally in a not distributed
MongoDB 3.0.6. The database store lays on a reg-
ular local hard disk drive. All Git working copies
and corresponding operations were performed on the
same local hard drive. However as the data will in-
dicate, hard disk IO is not the issue and disk activity
was relatively throughout all experiments. The sys-
tem runs on GNU/Linux with a 3.16 kernel. Srcrepo
operations are long running computations over thou-
sands of revisions and CUs and respective algorithms
are invoked over and over again. As usual for such
macro-benchmark measures, we are therefore ignor-
ing JIT warm-ups and other micro-benchmark related
issues (Wilson and Kesselman, 2000).

3.2 Execution Time

First, we compare the execution time for creating
a repository model with the time necessary to ana-
lyze it. Can we create repository models in reason-
able time? Does the transformation/analysis execu-
tion time difference justify the added efforts to persist
the created models? Snapshot models may only be
necessary for certain kinds of analyses. How much of
the execution time has to be dedicated to which oper-
ation?

To answer these questions, we measure the accu-
mulated execution time of the operations introduced
in section 1 checkout, parse, save, load, merge/incre-
ment, and analysis. Checkout comprises all version
control system operations necessary to checkout all
revisions of the repository (i.e. everything Git does).
Parse refers to all actions necessary to derive model
representations of the source code (i.e. everything

Modisco does). Save/load refers to the time for per-
sistence operations (i.e. everything EMF-Fragments
does). Merge/increment refers to the operations that
incrementally merge snapshot models from individual
CU models. Analysis refers to the user defined func-
tion (UDF) that constitutes the actual analysis (i.e. the
client code that is executed on the provided snapshot
models).

In our experiments the UDF calculates the
weighted methods per class (WMC) metric with Hal-
stead length as weight. The UDF also counts WMC
with fixed weight 1, number of Java types, and of
overall model elements. To measure the Halstead
length, we count methods and method calls in addi-
tion to operators and operator usages. This computa-
tion relies on resolved method calls. Therefore, this
example analysis is a representative of the class of
analyses that requires fully resolved snapshot models.
A simpler version counts only standard Java opera-
tors. This is an example that does not require such
resolved models and can be computed from individ-
ual CU models.

Figure 3 shows the execution times for 10 large
example projects accumulated over all revisions. The
left bars represent the model creation operations and
the right bars the analysis operations. The box plot
in Figure 5 shows the same measurements for all
projects as an average per revision.

The figures show that the execution times of save,
load, and our example UDF have a lower magnitude
than those of checkout, parse, and merge/increment.
Save, load, and in the case of simple size metrics
also UDF basically boil down to simple model con-
tainment traversals with the added efforts for saving
and loading binary representations to/from the data-
base. These are very simple operations with linear
complexity in model size.

At first glance, checkout should be a very fast op-
eration as well; it should be comparable to loading or
saving CU models. But, Git compresses many revi-
sions of the same file into a so called pack file. The
whole pack file has to be decompressed in order to ob-
tain a single file revision. Since each checkout is an
individual operation, Git has to decompress pack files
containing many file revisions for each individual re-
vision again and again. This also explains the wide
distribution of average checkout times over all repos-
itories: pack files tend to be larger for larger repos-
itories. Git was simply not designed to successively
checkout all revisions.

Less surprising are the results for parse. It is a
complex operation that includes refreshing the un-
derlying Eclipse workspace, reading and parsing of
Java code files, checking static semantics, creating

MODELSWARD 2017 - 5th International Conference on Model-Driven Engineering and Software Development

332



 jd
t.u

i

 x
te

xt

 e
cl

ip
se

lin
k

 jd
t.c

or
e

 s
w

t

 c
dt

 o
cl

 p
tp

 o
rg

.a
sp

ec
tj

 c
do

udf (right)
merge/increment (right)
load (right)

save (left)
parse (left)
checkout (left)

tim
e 

(h
ou

rs
)

0

2

4

6

8

10

12

14

Figure 3: Execution times for model creation and analysis
related operation for 10 example projects accumulated for
all revisions.

 jd
t.u

i

 x
te

xt

 e
cl

ip
se

lin
k

 jd
t.c

or
e

 s
w

t

 c
dt

 o
cl

 p
tp

 o
rg

.a
sp

ec
tj

 c
do

udf (right)
merge (right)
load (right)

save (left)
compress (left)
parse (left)
checkout (left)

tim
e 

(h
ou

rs
)

0

2

4

6

8

10

12

14

Figure 4: Hypothetical execution times for model creation
and analysis with delta-compression based on meta-class-
based matching.

EMF-models from ASTs, providing name-tables, and
resolving all local references. Merge/increment has
similar execution times. This is also not surpris-
ing, since it processes similar data as parse. To up-
date a snapshot model, this operation has to remove
changed CU data from the snapshot, replace it with
the data from the new revision of the same CU, and
re-resolve references. Both of these operations have
to process CUs as a whole, even though only a small
part of the CU might have changed between revisions.
Different dimensions of average CU sizes (especially
for projects that incorporate generated or boilerplate
heavy code as part of their code-base) explain the
wide distribution of execution times between differ-
ent repositories. Larger CUs tend to have more de-
pendencies between each other, which leads to larger
and more often changed CUs, which leads to more
changes between revisions and therefore longer exe-
cution times for parse and merge/increment.

For an analysis based on snapshot models, the dif-
ferences between model creation and analysis execu-
tion times are apparent, but they have similar magni-
tudes. Therefore, we do not gain much from existing
models for successive analysis runs. For an analysis
where we can omit merge/increment and can operate
on individual CU models, the situation is different.
Model creation takes hours, analyses run in minutes.

It is hard to compare our system to other MSR
tools, because most existing tools (section 4) either do
not support a AST-level analysis or analyze only parts
of the code-base. Different MSR applications also
have different performance characteristics, since they
require vastly different functionality. As a rough com-
parison, Livshits and Zimmermann describe a similar

AST-level analysis performed on a smaller part of the
Eclipse code-base of about 4 million SLOC that they
claim completed in about 24h on a slightly slower sys-
tem. Similar to our results, their UDF (API pattern
mining) required only very low computing effort once
the AST-data was created. In general, MSR is often
(especially for large-scale repositories) done in dis-
tributed computing environments and hours to days
of computing seems to be accepted as a reasonable
time frame (Gousios and Spinellis, 2009; Bajracharya
et al., 2009; Livshits and Zimmermann, 2005; Dyer
et al., 2015).

checkout parse save load merge/
increment

udf

0
20

0
40

0
60

0
80

0

av
g 

tim
e 

pe
r r

ev
is

io
n 

(m
s)

Figure 5: Execution times for model creation and analysis
related operations for all measured projects as averages per
revision.

Creating and Analyzing Source Code Repository Models - A Model-based Approach to Mining Software Repositories

333



3.3 CU Comparison and Compression

Usually only a small part of a CU changes between
revisions, and most of the increment time in the pre-
vious experiment is wasted on those parts in a CU that
do not change between revisions. If there was a way
to identify matches and differences between two revi-
sions of the same CU, we might reduce the increment
execution time significantly.

Existing frameworks for model compari-
son (Kolovos et al., 2009) use two steps. First, model
elements are matched, i.e. pairs of elements in both
model revisions that represent the same element are
identified. In a second step, framework find the differ-
ences between matching elements. Here, frameworks
apply the same minimum editing distance algorithms
as regular line-by-line diff programs. However, while
matching lines of code is pretty straight forward,
matching model elements is not. Existing model
comparison frameworks employ rather complex
heuristics (based on names, size, place, structure,
etc.) to establish matching elements. Their goal is to
find the smallest possible set of differences. But, the
comparison quality has to be traded for comparison
execution time.

We therefore started to experiment with two sim-
pler, less time consuming matching algorithms. The
first algorithm matches elements only by names (and
signatures, i.e. for methods): two named elements
match if they have the same name and do not match
otherwise. All elements without names (e.g. the con-
tents of code-blocks) only match if they are equal.
A second algorithm also matches named elements by
name, but all other elements are matched if they have
the same meta-class. We compare the results of these
algorithms with traditional line-based comparison on
the original Java files.

All three provide vastly different granularity for
comparison. With named element matching, a
method is completely replaced even though only a
small part of it has changed. With meta-class-based
matching, all elements are considered for matching,
but their meta-class is only a very weak measure of
similarity. The basic rationale behind this is that in
a code block consecutive statements have mostly dif-
ferent meta-classes. Line-based comparison is some-
where in between, with the added benefit that com-
paring two lines is very robust and fast. Please note
that line-based matching is only added here to have
a base-line to compare the other algorithms to. Line-
based comparison itself does not help our problem,
because we cannot easily map line matches and dif-
ferences to matches and differences in models.

Using comparison to process differences between

models is a form of delta compression. The result
of matching and finding differences is a difference-
or delta-model. With such a delta-model and one of
the compared original models, we can later recon-
struct (de-compress) the other original model. Of
course, we can use sequences of delta-models to
delta-compress successive revisions.

We applied this form of delta-compression to the
compilation units in the created repository models.
Figure 6 shows the results. The top row of bar plots
compares the size of the original repositories (left
bars) with the size of compressed models (right bars)
for some example projects. For model-based compar-
ison, size is plotted in terms of serialized model size in
bytes; for line-based comparison we user number of
lines. The compressed size is split into uncompressed
initial CU revisions and compressed CU revisions (i.e.
delta-models). The box plot on the lower left shows
the compression data for all projects relative the orig-
inal uncompressed size.

Apparently, the simple named elements-based
matching performs badly, but the still simple meta-
class-based matching get close to line-based match-
ing. If we compare the execution time for named
element- and meta-class-based matching in terms of
time needed to find the differences and time needed
to reproduce models from delta-modes (lower middle
and right), named elements-based matching also per-
forms much worse. Even though the matching itself
is simpler with named elements-based matching, it re-
quires much more consequential comparisons of con-
tained model elements than the meta-class matching
algorithm. Compared to the time necessary to parse
all CUs, compression only requires a reasonable ad-
dition in execution time.

We did not yet implement compression-based
snapshot increments, but we can extrapolate the ex-
ecution times for model creation and analysis with
compression. We assume that save, load, and incre-
ment execution times scale linearly with the amount
of compression and that the execution time for com-
pressing needs to be added to model creation. Fig-
ure 4 shows the hypothetical results. Now, even a
snapshot-based analysis runs a magnitude faster than
model creation and this strategy promises signifi-
cantly performance gains for sequential analyses.

4 RELATED WORK

The field Mining Software Repositories is as old as
software repositories; an overview of recent research
can be found here (Kagdi et al., 2007). One facet of
this research is gathering large metrics-based data-set

MODELSWARD 2017 - 5th International Conference on Model-Driven Engineering and Software Development

334



 c
dt

 w
eb

to
ol

s

 g
m

f−
to

ol
in

g

 ra
p

 jd
t.c

or
e

delta-models
initial revisions
uncompressed

Named element matching

G
B

0

2

4

6

8

10

12

14

 c
dt

 w
eb

to
ol

s

 g
m

f−
to

ol
in

g

 ra
p

 jd
t.c

or
e

detla-models
initial revisions
uncompressed

Meta-class matching

G
B

0

2

4

6

8

10

12

14

 c
dt

 w
eb

to
ol

s

 g
m

f−
to

ol
in

g

 ra
p

 jd
t.c

or
e

delta-lines
initial revisions
uncompressed

Line matching

M
Li

ne
s

0

20

40

60

80

100

initial
revisions

delta
models for
meta-class

delta
lines

delta models
for named 
elements

0
20

40
60

80

Compressed relative to full size

(%
)

parse compress
named 

elements

compress
meta-class

decompr.
meta-class

decompr.
named

elements

parse compress
named 

elements

compress
meta-class

decompr.
meta-class

decompr.
named

elements

0
50

0
10

00
15

00
Avg. execution times

av
g.

 ti
m

e 
pe

r r
ev

is
io

n 
(m

s)

10
50

20
0

10
00

Avg. execution times (logarithmic)

av
g.

 ti
m

e 
pe

r r
ev

is
io

n 
(m

s)

Figure 6: Compression related measurements.

from large and ultra-scale repositories. This is also
what our framework aims at.

A lot of projects that create MSR-datasets with
traditional text- or grammar-based technology ex-
ist (Gousios and Spinellis, 2009; Bajracharya et al.,
2009; Falleri et al., 2013). BOA (Dyer et al., 2015)
even produces AST’s of complete revision histories
and a query-language for analysis of Java reposito-
ries. While these approaches, specifically design from
scratch for MSR, exceed our work in performance,
they provide little means for possible future abstrac-
tion and multi-language support.

The OSS-Meter project uses model-based tech-
nology to measure and analyze source code repos-
itories, communication channels, and bug-tracking
systems, and other relevant meta-data to measure
the quality and activity of open-source software
projects. This includes efforts to abstract from dif-
ferent (ultra-)large-scale software repositories (a.k.a.
open-source software forges) with a common meta-
model (Williams et al., 2014b).

MSR should not be limited to source code writ-
ten in general purpose programming languages. It can
also be applied to repositories containing models and
metamodels as Williams et al. and DiRocco et al. sug-
gest (Williams et al., 2014a; Di Rocco et al., 2014).
There are also attempts to create version control sys-
tems for models; (Altmanninger et al., 2009) pro-
vides an overview of recent research. The approach
in (Barmpis and Kolovos, 2013) is (to our knowledge)

the first approach that uses a NoSQL-backend.

5 CONCLUSIONS

We presented Srcrepo, a model-based framework for
the creation and analysis of source code repository
models as a model-based approach to mining software
repositories. We started with support for a single type
of version control system and one programming lan-
guage. Of course, this does not prove a possible ab-
straction from different programming languages and
version control systems yet, but we could show that
reverse engineering, which promises the necessary
abstraction, can be practically applied to all revision
in large-scale software repositories.

Our experiments have shown that we can analyze
a large set of source code repositories in a reason-
able time frame. We can persist repository models to
reuse them and reduce execution time in sequential
analyses. Furthermore, analyses of independent soft-
ware projects can be run in parallel. In summary, we
can be confident that model-based MSR can be run
on large-scale software repositories. Independent of
MSR and from a scalable modeling technology per-
spective, we could show that EMF can practically be
scaled to models of several billion model elements.
The presented experiments only showed the principle
scalability of model-based technology for the use in
MSR. In the future, frameworks like MoDisco have

Creating and Analyzing Source Code Repository Models - A Model-based Approach to Mining Software Repositories

335



to adopt support for multiple-languages to actually fa-
cilitate the use of abstractions and allow us to harness
the heterogeneity of large scale software repositories.

REFERENCES

Altmanninger, K., Seidl, M., and Wimmer, M. (2009).
A survey on model versioning approaches. IJWIS,
5(3):271–304.

Bajracharya, S., Ossher, J., and Lepos, C. (2009).
Sourcerer: An internet-scale software repository. In
Proceedings of SUITE‘09, an ICSE‘09 Workshop,
Vancouver, Canada.

Barmpis, K. and Kolovos, D. (2013). Hawk: Towards a
scalable model indexing architecture. In Proceedings
of the Workshop on Scalability in Model Driven Engi-
neering, BigMDE ’13, pages 6:1–6:9, New York, NY,
USA. ACM.

Basili, V. R., Briand, L. C., and Melo, W. L. (1996). A
validation of object-oriented design metrics as quality
indicators. IEEE Trans. Softw. Eng., 22(10):751–761.

Bruneliere, H., Cabot, J., Jouault, F., and Madiot, F. (2010).
Modisco: A generic and extensible framework for
model driven reverse engineering. In Proceedings
of the IEEE/ACM International Conference on Auto-
mated Software Engineering, ASE ’10, pages 173–
174. ACM.

Chidamber, S. R. and Kemerer, C. F. (1994). A metrics
suite for object oriented design. IEEE Trans. Softw.
Eng., 20(6):476–493.

Chikofsky, E. J., Cross, J. H., et al. (1990). Reverse engi-
neering and design recovery: A taxonomy. Software,
IEEE, 7(1):13–17.

Di Rocco, J., Di Ruscio, D., Iovino, L., and Pierantonio,
A. (2014). Mining metrics for understanding meta-
model characteristics. In Proceedings of the 6th In-
ternational Workshop on Modeling in Software Engi-
neering (MiSE), pages 55–60.

Dyer, R., Nguyen, H. A., Rajan, H., and Nguyen, T. N.
(2015). Boa: Ultra-large-scale software repository
and source-code mining. ACM Transactions on
Software Engineering and Methodology (TOSEM),
25(1):7.

Falleri, J.-R., Teyton, C., Foucault, M., Palyart, M., Moran-
dat, F., and Blanc, X. (2013). The harmony platform.
CoRR, abs/1309.0456.

Gousios, G. and Spinellis, D. (2009). A platform for soft-
ware engineering research. In Godfrey, M. W. and
Whitehead, J., editors, MSR, pages 31–40. IEEE.

Gyimothy, T., Ferenc, R., and Siket, I. (2005). Empirical
validation of object-oriented metrics on open source
software for fault prediction. IEEE Trans. Softw. Eng.,
31(10):897–910.

Kagdi, H., Collard, M. L., and Maletic, J. I. (2007). A sur-
vey and taxonomy of approaches for mining software
repositories in the context of software evolution. Jour-
nal of Software Maintenance and Evolution: Research
and Practice, 19(2):77–131.

Kolovos, D. S., Di Ruscio, D., Pierantonio, A., and Paige,
R. F. (2009). Different models for model matching:
An analysis of approaches to support model differ-
encing. In Proceedings of the 2009 ICSE Workshop
on Comparison and Versioning of Software Models,
pages 1–6. IEEE Computer Society.

Livshits, V. B. and Zimmermann, T. (2005). Dynamine:
finding common error patterns by mining software re-
vision histories. In Wermelinger, M. and Gall, H., ed-
itors, ESEC/SIGSOFT FSE, pages 296–305. ACM.

Milev, R., Muegge, S., and Weiss, M. (2009). Design Evo-
lution of an Open Source Project Using an Improved
Modularity Metric. Open Source Ecosystems: Diverse
Communities Interacting, 299:20–33.

Scheidgen, M. and Fischer, J. (2014). Model-based mining
of source code repositories. In Amyot, D., Fonseca i
Casas, P., and Mussbacher, G., editors, System Anal-
ysis and Modeling: Models and Reusability, volume
8769 of Lecture Notes in Computer Science, pages
239–254. Springer International Publishing.

Scheidgen, M. and Zubow, A. (2012). Emf modeling in
traffic surveillance experiments. In Duddy, K., Steel,
J., and Raymond, K., editors, Modeling of the Real
World. ACM Digital Library. to appear.

Scheidgen, M., Zubow, A., Fischer, J., and Kolbe, T. H.
(2012). Automated and transparent model fragmen-
tation for persisting large models. In Proceedings of
the 15th International Conference on Model Driven
Engineering Languages and Systems (MODELS), vol-
ume 7590 of LNCS, pages 102–118, Innsbruck, Aus-
tria. Springer.

Subramanyam, R. and Krishnan, M. S. (2003). Empiri-
cal analysis of CK metrics for object-oriented design
complexity: Implications for software defects. IEEE
Trans. Softw. Eng., 29(4):297–310.

Williams, C. C. and Hollingsworth, J. K. (2005). Auto-
matic mining of source code repositories to improve
bug finding techniques. IEEE Trans. Software Eng.,
31(6):466–480.

Williams, J., Matragkas, N., Kolovos, D., Korkontzelos, I.,
Ananiadou, S., and Paige, R. (2014a). Software ana-
lytics for MDE communities. CEUR Workshop Pro-
ceedings, 1290:53–63.

Williams, J. R., Ruscio, D. D., Matragkas, N., Rocco, J. D.,
and Kolovos, D. S. (2014b). Models of OSS project
meta-information: a dataset of three forges. Proceed-
ings of the 11th Working Conference on Mining Soft-
ware Repositories, undefined(undefined):408–411.

Wilson, S. and Kesselman, J. (2000). Java Platform Per-
formance: Strategies and Tactics. Addison-Wesley,
Boston, MA.

Yu, P., Systä, T., and Müller, H. A. (2002). Predicting
fault-proneness using OO metrics: An industrial case
study. In Proceedings of the 6th European Confer-
ence on Software Maintenance and Reengineering,
CSMR ’02, pages 99–107, Washington, DC, USA.
IEEE Computer Society.

MODELSWARD 2017 - 5th International Conference on Model-Driven Engineering and Software Development

336


