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Abstract: In 1998, Boneh, Durfee and Frankel introduced partial key exposure attacks, a novel application of Copper-
smith’s method, to retrieve an RSA private key given only a fraction of its bits. This type of attacks is of
particular interest in the context of side-channel attacks. By applying the exponent blinding technique as a
countermeasure for side-channel attacks, the private exponent becomes randomized at each execution. Thus
the attacker has to rely only on a single trace, significantly incrementing the noise, making the exponent bits
recovery less effective. This countermeasure has also the side-effect of modifying the RSA equation used
by partial key exposure attacks, in a way studied by Joye and Lepoint in 2012. We improve their results by
providing a simpler technique in the case of known least significant bits and a better bound for the known most
significant bits case. Additionally, we apply partial key exposure attacks to CRT-RSA when exponent blinding
is used, a case not yet analyzed in literature. Our findings, for which we provide theoretical and experimental
results, aim to reduce the number of bits to be recovered through side-channel attacks in order to factor an
RSA modulus when the implementation is protected by exponent blinding.

1 INTRODUCTION

At Eurocrypt 1996 Don Coppersmith presented a
novel method to find small solutions of univariate
modular polynomials, with some applications to the
RSA cryptosystem (Coppersmith, 1996b). He ex-
tended the method to bivariate equations, which al-
lowed to factor an RSA modulus given half of the bits
of one of its prime factors (Coppersmith, 1996a).

In 1998, Boneh, Durfee and Frankel introduced
partial key exposure, a family of attacks on RSA re-
quiring the knowledge of some consecutive most sig-
nificant bits (MSB) or least significant bits (LSB)
of the private exponent (Boneh et al., 1998). The
main idea behind their methods, for the common
cases where the factorization of the public exponent
is known, is to use the given partial information on
the private exponent to obtain partial information on
a prime factor of the modulus, and then apply Cop-
persmith’s method to factor.

This application is of high interest in the context
of side-channel attacks. Side-Channel attacks, intro-
duced in 1996 by Paul Kocher (Kocher, 1996), are
attacks on physical implementations of cryptographic
algorithms. In these attacks a side-channel informa-
tion of the computation (such as power consumption,

electromagnetic emission, acoustic emission, etc.) is
used to recover the secret used during the computa-
tion.

Most side channel attacks leverage on combining
the side-channel leakages, i.e. traces, of several exe-
cutions of the cryptographic algorithm with same se-
cret but different input. The first attack of this family
is Differential Power Analysis (DPA) (Kocher et al.,
1999). Its main feature is the ability to significantly
reduce the random noise, by averaging a large amount
of traces, compared to Simple Power Analysis (SPA),
where only one trace is used.

The reader may now wonder why an attacker
might be able to obtain information on a part of the
secret exponent and not on the entire exponent. The
reason is that some countermeasures can be adopted
by implementers to thwart side channel attacks.

A common countermeasure used for RSA is expo-
nent blinding, originally introduced in (Kocher, 1996)
but often attributed to (Coron, 1999). It consists of
adding a random multiple ofφ(N) to the RSA pri-
vate exponent at each execution. This countermea-
sure has the feature to change the private exponent at
each computation, thus not permitting the use of mul-
tiple traces, as required for DPA. This results in the
need of using a single trace to discover the secret key.
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A method for this was originally proposed in (Walter,
2001), for a particular exponentiation algorithm, and
generalized for regular exponentiation algorithms in
(Clavier et al., 2010) and named horizontal attack.

The practical issue that the adversary faces in the
horizontal setting is the high noise. Therefore, the ad-
versary is able to correctly guess only a partial num-
ber of the bits of the exponent and not the entire ex-
ponent.

The application of partial key exposure, when ex-
ponent blinding is used as side-channel countermea-
sure, would allow the imperfect attacker to still re-
cover the correct private exponent. However, the
equation exploited by Boneh, Durfee and Frankel is
modified by the introduction of exponent blinding and
their attacks don’t apply anymore.

The question as to whether partial key exposure
could be applied in this setting was answered in (Joye
and Lepoint, 2012). The authors presented two tech-
niques to recover the full exponent, knowing enough
MSB or LSB portions of it, leaving the open question
as up to which extent it is possible to apply partial
key exposure when exponent blinding is applied to
the CRT variant of RSA (Quisquater and Couvreur,
1982).

Our contribution consists of new methods for par-
tial key exposure when exponent blinding is used, im-
proving the results of (Joye and Lepoint, 2012) for
common RSA settings and providing novel attacks for
the CRT variant. Specifically, in this work, we:

• reduce the number of required bits for the MSB at-
tack and make it to not rely on a common heuristic
assumption;

• provide a more efficient technique for the LSB at-
tack, requiring to reduce a lattice basis of lower
dimension;

• present novel attacks against CRT-RSA imple-
mentations that make use of exponent blinding.
This particular case has never been analyzed be-
fore.

This work is organized as follows. In Section 2 we
recall some basic information about RSA. In Sec-
tion 3 we give a brief introduction about lattices and
Coppersmith’s method. In Section 4 we present two
partial key exposure attacks on RSA with exponent
blinding and in Section 5 on CRT-RSA with exponent
blinding. Experimental results are then provided in
Section 6.

2 RSA APPLICATIONS

In literature, Coppersmith’s method has been applied
with very different, and unusual, RSA parameters.

For example the case wheree is of the same bitsize
of N has been analyzed in (Ernst et al., 2005). In this
work we preferred to focus our analysis on more com-
mon RSA settings.

Let (N,e) be a RSA public key. The modulusN =
pq has prime factorsp andq of equal bit-size. We
assume wlog thatp> q, that implies

q<
√

N < p< 2q< 2
√

N

and √
N < p+q< 3

√
N.

It is common practice to choose 1024 or 2048-bit
modulusN.

The most common value for the public exponente
is 216+1. This is also the default value for the pub-
lic exponent in the OpenSSL library. Other common
values are 3 and 17. NIST mandates thate satisfies
216< e< 2256 (Kerry et al., 2013). Therefore, to be as
generic as possible but still adhering to realistic sce-
narios, we will consider in our analysis 3≤ e< 2256,
but we will provide experiments only for the most
common casee= 216+1.

The private exponentd satisfiesed− 1 = kφ(N)
for some integerk, whereφ(N) denotes the Euler to-
tient function. The exponentd is commonly chosen
to be full size, namely as large asφ(N). In order to
speed-up the decryption process, someone suggests
to use smallerd. However, this choice may lead to
security problems as Wiener’s attack (Wiener, 1990).
Therefore, it is usually avoided.

The side-channel countermeasure considered in
this work is the exponent blinding introduced by
Kocher (Kocher, 1996). It consists of adding a ran-
dom multiple of φ(N) to d, thus RSA exponentia-
tion is computed by using the new exponentd∗ =
d+ ℓφ(N), for someℓ > 0. The dimension ofℓ is a
tradeoff between security and efficiency. Ifℓ is 32-bit
long or smaller, it allows some combination of brute-
forcing and side-channel as in (Fouque et al., 2006),
where a brute-force onℓ is required. Thus, it is a safer
choice to useℓ with bit-size 64. A larger dimension
would make the decryption process less efficient.

In our analysis, to maintain generality, we will
consider 0≤ ℓ < 2128 and in our experiments we will
test bit-sizes of 0, 10, 32, 64 and 100. Our methods
never require the capability of brute-forcing the val-
ues ofk or ℓ, sometimes needed in other works.

In order to speed up the exponentiation compu-
tation, some RSA implementations make use of a
technique based on the Chinese Remainder Theorem
(CRT). In particular, one can use exponents

dp = d mod(p−1) and dq = d mod(q−1)

to compute

xdp mod p and xdq modq.
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Then, the two results can be combined using the CRT
to obtainxd modN (Quisquater and Couvreur, 1982).

Also CRT-RSA can be protected with exponent
blinding. Thus, exponentiation is computed by using
d∗

p = dp+ℓ1(p−1) andd∗
q = dq+ℓ2(q−1), for some

ℓ1, ℓ2 > 0.
In this work we will consider both RSA and CRT-

RSA implementations that make use of the exponent
blinding countermeasure. Our RSA settings will con-
sider moduli of 1024 and 2048 bits, public exponent
such that 3≤ e< 2256, private exponent of full size
and a randomization factor up to 128 bits.

To derive theoretical bounds in next sections, we
prefer to express the restrictions one andℓ with re-
spect to the modulusN. In general, we translate
them to the less restrictive conditions:ℓ < 2N

1
8 and

e< 2N
1
4 . When necessary, we will consider more re-

strictive bounds.
We will run experiments by considering the

widely used public exponente= 216+1 and random
valuesℓ of different bit-size from 0 to 100. The mod-
ulusN will be 2048-bit long, but note that our attacks
are effective also for other sizes.

3 GENERAL STRATEGY

Partial key exposure attacks relies on Coppersmith’s
method for finding roots of modular polynomials and
multivariate polynomials. This method makes signif-
icant use of lattices and lattice reduction algorithms.

We give here a brief introduction to lattices and
to the general strategy used in partial key exposure
attacks and thus also in our attacks.

3.1 Lattices

Given a set of real linearly independent vectors
B = {b1, . . . ,bn} with bi ∈ R

n, a (full-rank) lattice
spanned byB is the set of all integer linear com-
binations of vectors ofB. Namely, the setL(B) =
{∑i xibi : xi ∈ Z}.

B is called thebasisof the lattice and the(n×
n)-matrix consisting of the row vectorsb1, . . . ,bn is
called basis matrix.

Every lattice has an infinite number of lattice
bases. A basis is obtained from another through a uni-
modular transformation (i.e., by multiplying the basis
matrix by a matrix with determinant±1). The deter-
minant of the lattice is defined as det(L) = |det(Bi)|
and is an invariant, namely it is independent of the
choice of the basis. The dimension of the lattice is
dim(L) = n.

The goal of lattice reduction is to find a basis with
short and nearly orthogonal vectors. The LLL algo-
rithm (Lenstra et al., 1982) produces in polynomial
time a set of reduced basis vectors. The following
theorem bounds the norm of these vectors.

Theorem 1 (Lenstra-Lenstra-Lovász). Let L be a lat-
tice of dimension n. The LLL-algorithm outputs in
polynomial time reduced basis vectors vi , 1 ≤ i ≤ n,
satisfying

‖v1‖ ≤ ‖v2‖ ≤ . . .≤ ‖vi‖ ≤ 2
n(n−1)

4(n+1−i) detL
1

n+1−i

3.2 General Strategy

In (Coppersmith, 1996b), Don Coppersmith presents
a rigorous method to find small roots of univariate
modular polynomials. The method is based on LLL
and can be extended to polynomials in more variables,
but only heuristically.

In this work we use the following reformulation
of Coppersmith’s theorem due to Howgrave-Graham
(Howgrave-Graham, 1997).

Theorem 2 (Howgrave-Graham). Let f(x1, . . . ,xk) be
a polynomial in k variables with n monomials. Let m
be a positive integer. Suppose that

1. f(r1, . . . , rk) = 0 modbm where|r i |< Xi ∀i

2. ‖ f (x1X1, . . . ,xkXk)‖<
bm
√

n

Then f(r1, . . . , rk) = 0 holds over the integers.

The general strategy is the following. Starting
from an RSA equation we construct a multivariate
polynomial fb(x1, . . . ,xk) modulo an integerb, such
that its root(r1, . . . , rk) contains secret values. Our
goal is to find this root, even if no classic root find-
ing method is known for modular polynomials. So,
we constructk polynomials f1, . . . , fk satisfying the
two conditions of Theorem 2 so that such polynomi-
als will have the same root(r1, . . . , rk) overZ. Finally,
we compute the common roots of these polynomials
and recover the secret values.

To generate such polynomials we apply the fol-
lowing strategy. Starting fromfb we construct auxil-
iary polynomialsgi(x1, . . . ,xk) that all satisfy condi-
tion 1 of Howgrave-Graham’s Theorem. Since every
integer linear combination of these polynomials also
satisfies condition 1, we look for linear combinations
that also satisfy condition 2. Such combinations are
the polynomialsf1, . . . , fk.

In order to constructf1, . . . , fk, we build a lattice
L(B) where the basisB is composed by the coefficient
vectors of the polynomialsgi(x1X1, . . . ,xkXk) (with
X1, . . . ,Xk bounds on the root as in Theorem 2).
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By using the LLL-lattice reduction algorithm, we
obtain a reduced basis for the latticeL as in Theorem
1. The firstk vectors of the reduced basis have norm
smaller thanbm√

n, if:

2
n(n−1)

4(n+1−k) detL
1

n+1−k <
bm
√

n

We may let terms that do not depend onN contribute
to an error termε and consider the simplified condi-
tion

detL ≤ bm(n+1−k). (1)

If this condition holds, then we can use the firstk
reduced-basis vectors to construct the polynomials
f1, . . . , fk satisfying the second condition of Theorem
2. Then, in order to compute(r1, . . . , rk), we do the
following.

If k = 1, then we consider the polynomialF =
f1(x1) and apply a classic roots finding algorithm for
univariate polynomials over the integers.

If k> 1, we use the resultant computation to con-
structk univariate polynomialsFi(xi) from f1, . . . , fk
and apply a classic roots finding algorithm for each of
them. The effectiveness of this last method relies on
the following heuristic assumption.

Assumption 1. The resultant computation for the
polynomials fi described above yields a non-zero
polynomial.

This assumption is fundamental and widely used
for many attacks in literature (Joye and Lepoint, 2012;
Lu et al., 2014; Blömer and May, 2003; Boneh et al.,
1998; Ernst et al., 2005). None of our experiments has
ever failed to yield a non-zero polynomial and hence
to mount the attack.

In this work we will make use of a seminal result
due to Coppersmith, based on the strategy described
above. We present here a more general variant of it,
due to May (May, 2003), together with a sketch of its
proof to illustrate how we will construct lattices for
our experiments.

Theorem 3. Let N= pq with p> q. Let k be an
unknown integer that is not a multiple of q. Suppose
we know an approximatioñkp of kp with|kp− k̃p| ≤
2N

1
4 . Then we can factor N in time polynomial in

logN.

Sketch of proof.Define the univariate polynomial

fp(x) = x+ k̃p

with rootx0 = kp− k̃pmodulop.
Divide the interval[−2N

1
4 ,2N

1
4 ] into 8 subintervals

of size 1
2N

1
4 centered at somexi .

For each subinterval consider the polynomialfp(x−

xi) and find its rootsr such that|r| ≤ 1
4N

1
4 . Among all

these roots of all these polynomials there is alsox0.
So, for each fp(x− xi) set X = 1

4N
1
4 . Fix m =

⌈logN/4⌉ and sett = m.
Define the auxiliary polynomials

gi, j(x) = x jNi f m−i for i = 0, . . . ,m−1; j = 0
hi(x) = xi f m(x) for i = 0, . . . , t −1

and construct the lattice spanned by the vectors
gi, j(xX) andhi(xX).
By applying the LLL-algorithm toL, a reduced ba-
sis is obtained. From the shortest vector construct the
polynomial fi(x). Among its roots over the integers,
there are also the roots offp(x− xi). Compute the
roots of fi(x) by using a classic roots-finding algo-
rithm.
Construct the setR of all integer roots of the polyno-
mials fi(x). The setR will contain also the rootx0.
Thus, f (x0) = kp can be computed and, sincek is not
a multiple ofq, the computation of gcd(N,kp) gives
p.

Recall that the LLL-algorithm is polynomial in the
dimension of the matrix basis and in the bit-size of its
entries. Since the dimension of the lattice ism+ t =
⌈logN/2⌉ and the bit-size of its entries is bounded by
a polynomial in(mlogN), every step of the proof can
be done in polynomial time.

4 ATTACKS ON RSA

In this section we present two attacks on RSA imple-
mentations, one given the most significant bits of the
private exponent and the other one given its last sig-
nificant bits. We assume that the private exponentd is
full-size and that it is masked by a random multipleℓ
of φ(N). Thus, exponentiation is performed by using
the exponentd∗ = d+ ℓφ(N) for someℓ ≥ 0. When
ℓ = 0 clearlyd∗ = d, that means that no countermea-
sure is applied.

Joye and Lepoint presented partial key exposure
attacks on RSA with exponent blinding (Joye and Le-
point, 2012). Here we present two alternative ap-
proaches that allow us to get better bounds on the
number of leaked bits necessary to the attacker to
break the system.

4.1 Partial Information on LSB of d∗

In this section, we assume that the attacker is able to
recover the least significant bits of the secretd∗. We
write d∗ = d1 ·M +d0, whered0 represents the frac-
tion of d∗ known to the attacker whiled1 represents
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the unknown part. For instance, if the attacker knows
them LSB of d∗, thenM = 2m.

We prove that if the attacker knows a sufficiently
large number of least significant bits, then she can fac-
tor N.

To prove our result, we generalize the method
used in (Blömer and May, 2003), by introducing the
new factorℓ.

Theorem 4. Let(N,e) be an RSA public key with e=

Nα ≤ 2N
1
4 and d∗ = d+ ℓφ(N), for someℓ = Nσ ≤

2N
1
8 . Suppose we are given d0 and M satisfying d0 =

d∗ modM with

M ≥ N
1
3

√
1+6(α+σ)+ 1

6 (1+6σ)+ε,

for someε > 0. Then, under Assumption 1, we can
find the factorization of N in time polynomial inlogN.

Proof. We start from the RSA equation

ed−1= kφ(N).

Sinced∗ = d+ ℓφ(N), we obtain the equation

ed∗−1= (k+eℓ)φ(N).

Let k∗ = k+eℓ, so thated∗−1= k∗φ(N).
By writing d∗ = d1M + d0 and considering that
φ(N) = N− (p+q−1), we get

k∗N− k∗(p+q−1)−ed0+1= eMd1.

It follows that the bivariate polynomial

feM(x,y) = xN− xy−ed0+1

has root(x0,y0) = (k∗, p+q−1) moduloeM.
In order to boundx0, notice that

k∗ =
ed∗−1
φ(N)

< e

(
d+ ℓφ(N)

φ(N)

)
< e(1+ ℓ)≤ 2Nα+σ.

In addition, recall thatp+q≤ 3N
1
2 .

We can set the boundsX = 2Nα+σ andY = 3N
1
2 so

thatx0 ≤ X andy0 ≤Y.
To construct the lattice, we consider the following
auxiliary polynomials

gi, j(x,y) = xi(eM)i f m−i
eM for i = 0, . . . ,m; j = 0, . . . , i

hi, j(x,y) = y j(eM)i f m−i
eM for i = 0, . . . ,m; j = 1, . . . , t

for some integersmandt, wheret = τm has to be op-
timized.
All integer linear combinations of these polynomials
have the root(x0,y0) modulo (eM)m, since they all
have a term(eM)i f m−i

eM . So the first condition of The-
orem 2 is satisfied. In order to satisfy the second con-
dition, we have to find a short vector in the lattice

spanned bygi, j(xX,yY) andhi, j(xX,yY). In particu-

lar, this vector shall have a norm smaller than(eM)m√
dimL

.
The second condition of Theorem 2 is satisfied when
inequality (1) holds, i.e. if

detL ≤ (eM)m(n−1). (2)

An easy computation shows thatn =
(
τ+ 1

2

)
m2 and

that

detL(M) =
(
(eMY)3τ+2Z3τ2+3τ+1

) 1
6m3(1+o(1))

.

Considering the boundsX = 2Nα+σ andY = 3N
1
2 , we

obtain the condition
(
(eM2Nα+σ)3τ+2(3N

1
2 )3τ2+3τ+1

) 1
6 m3(1+o(1))

≤ (eM)m(n−1)

that reduces to

N
m3
6 ((α+σ)(3τ+2)+ 1

2(3τ2+3τ+1))(1+o(1))

≤ (eM)m(n−1)−m3
6 (3τ+2)(1+o(1)).

We know thateM≥ Nα 1
3

√
1+6(α+σ)+ 1

6 (1+6σ)+ε, so the
above condition is satisfied if

9τ2+6(α+σ+τ)−2
√

1+6(α+σ)(1+3τ)+2≤ 0.

The left-hand side is minimized, for

τ =
1
3

(√
1+6(α+σ)−1

)
.

Thus, for this choice ofτ condition 2 is satisfied so
we can successfully apply the LLL-algorithm.

From the LLL-reduced basis, we construct two
polynomials f1(x,y), f2(x,y) with the common root
(x0,y0) over the integers. By the heuristic assump-
tion, the resultantresx( f1, f2) is not zero and we can
find y0 = p+q−1 using standard root finding algo-
rithms. This gives us the factorization of N.

To conclude the proof, we need to show that every
step of the method can be done in time polynomial in
log(N). The LLL-algorithm runs in polynomial time,
since the basis matrixB has constant dimension (fixed
by m) and its entries are bounded by a polynomial
in N. Additionally, resx( f1, f2) has constant degree
and coefficients bounded by a polynomial inN. Thus,
every step can be done in polynomial time.

We would like to make two considerations. The
first is that whenσ = 0, we get the same result of
(Blömer and May, 2003). Indeed, our method is a
generalization of it. The second is that we obtain the
same bound of (Joye and Lepoint, 2012), but our ap-
proach is more effective in practice. As we will show
in Section 6.1, we are able to get closer to the theoret-
ical bound by using smaller lattices.
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4.2 Partial Information on MSB of d∗

In this section, we prove that if the attacker knows a
sufficiently large number of most significant bits of
the protected exponent, then she can factor N.

To prove this result, we show how the partial
knowledge ond∗ can be used to construct an approx-
imation of p that allows to apply Theorem 3.

The advantage of this approach compared to (Joye
and Lepoint, 2012) is that it does not rely on the
heuristic assumption 1 and yields to a better bound.

Theorem 5. Let (N,e) be an RSA public key with
e= Nα and d∗ = d+ ℓφ(N) for someℓ = Nσ with

σ > 0 and Nα+σ < 2N
3
8 . Suppose that|p−q| ≥ cN

1
2 ,

for some c≤ 1
2, and suppose we are given an approx-

imationd̃∗ of d∗ such that

|d∗− d̃∗| ≤ cN
1
4+σ.

Then we can find the factorization of N in time poly-
nomial in logN.

Notice that, like in Theorem 4, we haveed∗−1=
k∗φ(N) with k∗ = k+eℓ.

In order to prove Theorem 5 we need first to prove
the following lemma.

Lemma 1. With Nα+σ < 2N
3
8 , given d̃∗ such that

|d∗ − d̃∗| ≤ 1
4N1−α then the approximatioñk∗ :=⌈

ẽd∗−1
N+1

⌉
of k∗ is exact.

Proof. This proof follows the same strategy used in
the proof of Theorem 6 of (Blömer and May, 2003).
Note that

|k∗− k̃∗|<
∣∣∣∣∣
ed∗−1
φ(N)

− ed̃∗−1
N+1

∣∣∣∣∣

<

∣∣∣∣∣
(ed∗−1)(N+1)− (ed̃∗−1)(N+1− (p+q))

φ(N)(N+1)

∣∣∣∣∣ .

Then, given thatφ(N)>N/2, p+q≤ 3N
1
2 , N2+N>

N2 andd∗ < 2N1+σ, we obtain

|k∗− k̃∗|<
∣∣∣∣∣
e(d∗− d̃∗)

φ(N)

∣∣∣∣∣+
∣∣∣∣∣
(p+q)(ed̃∗−1)

φ(N)(N+1)

∣∣∣∣∣

<

∣∣∣∣∣
1
4NαN1−α

N
2

∣∣∣∣∣+
∣∣∣∣∣
6N

1
2+α+1+σ

N
2 (N+1)

∣∣∣∣∣

<
1
2
+12N− 1

2+
3
8 <

1
2
+

12

N
1
8

With RSA parameters, we have 12≪N1/8, so we can
safely assume|k∗ − k̃∗| < 1. But the difference be-
tween two integers is an integer, thus we can conclude
that it is zero, thereforẽk∗ = k∗.

It is worth to observe two facts: first, the bound
|d∗ − d̃∗| ≤ 1

4N1−α requires the attacker to get the
(log2(N

σ+α)+2) most significant bits ofd∗, a result
which holds even forσ = 0 (i.e. d∗ = d); second, the
assumptionNα+σ < 2N

3
8 of Lemma 1 always holds

for our choice of RSA parameters.
We can now prove Theorem 5.

Proof of theorem 5.We begin by applying Lemma 1
to obtain the value ofk∗. The condition|d∗ − d̃∗| ≤
1
4N1−α of the lemma is always satisfied by our choices

of RSA parameters because1
2N

1
4+σ ≪ 1

4N1−α, since

Nσ < 2N
1
8 andNα < 2N

1
4 .

We can define an approximation ˜sof s= p+q as

s̃ := 1+N− ed̃∗−1
k∗

Reminding thatk∗, with the assumption ofσ > 0, is
lower bounded byNα+σ, we obtain

|s− s̃|=
∣∣∣ e
k∗

(
d∗− d̃∗

)∣∣∣≤ Nα

Nα+σ cN
1
4+σ ≤ cN

1
4 .

We use ˜s to define

p̃ :=
1
2

(
s̃+

√
s̃2−4N

)

as an approximation ofp.
Without loss of generality, following Appendix B of
(Boneh et al., 1998), we now assume that ˜s≥ s, so
that p̃≥ p.
Observe that

p̃− p=
1
2
(s̃− s)+

1
2

(√
s̃2−4N−

√
s2−4N

)

=
1
2
(s̃− s)+

(s̃+ s)(s̃− s)

2
(√

s̃2−4N+
√

s2−4N
)

Sinces̃≥ s, we have ˜s2 − 4N ≥ s2 − 4N = (p− q)2

and|p−q| ≥ cN
1
2 with c≤ 1

2.

Noting thats̃≤ s+ cN
1
4 , we have

s̃+s≤ 2s+cN
1
4 ≤ 2(p+q)+N

1
4 ≤ 6N

1
2 +N

1
4 ≤ 7N

1
2 .

It follows that

p̃− p≤ 1
2
(s̃− s)+

(s̃+ s)(s̃− s)
4(p−q)

≤ 1
2

cN
1
4 +

(7N
1
2 )(cN

1
4 )

4cN
1
2

≤ 1
4

N
1
4 +

7
4

N
1
4

≤ 2N
1
4

Since the approximation ˜p satisfies the hypothesis
of Theorem 3 withk= 1, we can find the factorization
of N in time polynomial in logN.
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From Theorem 5 we can recover the minimum
number of known MSB bits required. In accordance
to previous sections we define this quantity as log2 M
whereM is defined as

M =
d∗

|d∗− d̃∗|
=

2N1+σ

1
2N

1
4+σ

= 4N
3
4 . (3)

It is important to underline that this bound is not af-
fected by the size ofα and σ as long as the con-
dition of Lemma 1 holds. In fact, while it might
seem counter-intuitive, the presence of the counter-
measure (i.e.σ > 0) improves the theoretical bound
|d − d̃| ≤ cN

1
4−α of Theorem 3.3 of (Boneh et al.,

1998). However, this difference was not shown in the
experimental results, probably due to low value ofα
whene= 216+1.

Also note that Theorem 5 provides a significant
improvement over the bound of (Joye and Lepoint,
2012). In fact, forα+σ ≤ 1

2 (which is always true in

our setting), their bound is|d∗− d̃∗| ≤ Nα+σ, which
would require knowledge of log2(N

1−α) bits.

Attack using both MSB and LSB of d∗ We want to
briefly analyze also the case where the attacker might
be able to detect bits in different positions ofd∗. In
this scenario, the attacker could obtain enough most
significant bits to satisfy Lemma 1 and obtain1

4 log2N
least significant bits to recover half of the bits ofp and
factorN, as shown in (Boneh et al., 1998). Thus, the
knowledge of only(log2(N

1
4+σ+α)+ 2+ ε) bits and

the resolution of an univariate equation are required.
We don’t describe the attack in details because, once
k∗ is recovered applying Lemma 1, it reduces to the
method of (Boneh et al., 1998). Thus, we remind the
reader to it. In Section 6, we will provide experimen-
tal results.

5 ATTACKS ON CRT-RSA

In this section we present two attacks on CRT-RSA
implementations, where we target exponentiation by
d∗

p. One is based on the knowledge of the most sig-
nificant bits of the CRT private exponent and one is
based on the knowledge of its least significant bits.
We assume that the private exponentdp is full-size
(with respect top) and that it is masked by a random
multiple ℓ of (p− 1), for someℓ ≥ 0. Whenℓ = 0
clearlyd∗

p = dp, that means that no countermeasure is
applied.

5.1 Partial Information on LSB of d∗
p

In this section, we assume that the attacker is able to
recover the least significant bits of the secretd∗

p. We
can writed∗

p = d1 ·M+d0 whered0 is known to the at-
tacker whiled1 is unknown. The integerM is a power
of two and represents the bound on the known part.

We prove that if the attacker knows a sufficiently
large number of least significant bits, then she can fac-
tor N.

To prove our result we use a method presented by
Herrmann and May to find the solutions of a bivariate
linear equation modulop (Herrmann and May, 2008).

Theorem 6. Let(N,e) be an RSA public key with e=
Nα. Let dp = d mod p−1 and let d∗p = d+ ℓ(p−1)
for someℓ = Nσ with σ ≥ 0. Suppose that Nα+σ ≤
N

1√
2
− 1

2 and that we are given d0 and M satisfying
d0 = d∗

p modM with

M ≥ N
1− 1√

2
+α+2σ+ε

,

for someε > 0. Then, under Assumption 1, we can
find the factorization of N (in time polynomial in
logN).

Proof. We start from the equation

edp−1= kp(p−1).

Sinced∗
p = dp+ ℓ(p−1), we obtain

ed∗p−1= (kp+eℓ)(p−1).

Let k∗p denotekp+eℓ. By writing d∗
p = d1M+d0, we

obtain the following equation

eMd1+ k∗p+ed0−1= k∗pp.

It follows that the bivariate polynomial

fp(x,y) = eMx+ y+ed0−1

has root(x0,y0) = (d1,k∗p) modulop.
In order to boundy0, notice that

k∗p =
ed∗p−1

(p−1)
< e

(
dp+ ℓ(p−1)

(p−1)

)
< e(1+ ℓ) ≤ 2Nα+σ.

Additionally, recall thatd1 =
d∗p
M −d0.

We can set boundsX = N
1√
2
− 1

2−α−σ
andY = 2Nα+σ

so thatx0 ≤ X andy0 ≤Y.
To construct the lattice, we consider the following
auxiliary polynomials:

f̄ = x+Ry+R(ed0−1) whereR= (eM)−1 modN

gk,i = yi f̄ kNmax{t−k,0}, k= 0, . . . ,m; i = 0, . . . ,m− k

for some integersm and t, wheret = τm has to be
optimized.
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All integer linear combinations of these polyno-
mials share the root(x0,y0) modulopt . Thus, the first
condition of Theorem 2 is satisfied. In order to satisfy
the second condition we have to find a short vector in
the latticeL, spanned bygk,i(xX,yY). In particular,

this vector shall have a norm smaller thanp
t

√
dimL

.
The second condition of Theorem 2 is satisfied

when equation (1) holds, i.e. when

detL ≤ N
1
2τm(n−1). (4)

A straightforward computation shows thatn =
1
2(m

2+3m+2) and that

detL(M) = (XY)
1
6 (m

3+3m2+2m)N
1
6mτ(mτ+1)(4+3m−mτ).

Thus, condition (4) becomes

(XY)
1
6 (m

3+3m2+2m) ≤ N
1
4 τm(m2+3m)− 1

6mτ(mτ+1)(4+3m−mτ)

that reduces to

XY≤ N
1
2 (3τ+2τ3−6τ2).

SinceXY= 2N
1√
2
− 1

2 , the above condition is satisfied
if

1√
2
− 1

2
− 1

2
(3τ+2τ3−6τ2)≤ 0.

The left-hand side is minimized forτ = 1− 1√
2
. For

this choice ofτ condition (4) is satisfied, so we can
successfully apply LLL-algorithm and then find the
root (d1,k∗p). From this values, we can obtainp−1
and then the factorization ofN.

To conclude the proof, we need to show that ev-
ery step of the method can be done in time polyno-
mial in log(N). The LLL-algorithm is polynomial in
the dimension of the matrix, that isO(m2), and in the
bit-size of its entries, that areO(mlogN). Addition-
ally, resy( f1, f2) has constant degree and coefficients
bounded by a polynomial inN. Thus, every step can
be done in polynomial time.

5.2 Partial Information on MSB of d∗
p

In this section, we prove that if the attacker knows a
sufficiently large number of most significant bits of
the protected exponentd∗

p, then she can factorN.
To prove this result, we show how the partial

knowledge ond∗
p can be used to construct an approx-

imation of a multiple ofp that allows to apply Theo-
rem 3.

Theorem 7. Let(N,e) be an RSA public key with e=
Nα. Let dp = d mod p−1 and let d∗p = dp+ ℓ(p−1),
for someℓ = Nσ with σ ≥ 0. Suppose that Nα+σ ≤
1
2N

1
4 and that we are given an approximatioñd∗

p of d∗p
such that

|d∗
p− d̃∗

p| ≤ N
1
4−α.

Then, we can find the factorization of N in time poly-
nomial in logN.

Proof. We start from equation

ed∗p−1= k∗p(p−1)

with k∗p = kp+ ℓe.

Note thatk∗p ≤ 2Nα+σ < 1
2N

1
2 implies thatq can’t di-

videk∗p.
We compute an approximation

k̃∗pp := ed̃∗
p−1

of k∗pp, up to an additive error of at most

|k∗pp− k̃∗pp|= |ed∗p−1+ k∗p−ed̃∗
p+1|

= |e(d∗
p− d̃∗

p)+ k| ≤ N
1
4 +2Nα+σ ≤ 2N

1
4 .

Since the approximatioñk∗pp satisfies the hypothesis
of Theorem 3, we can find the factorization ofN in
time polynomial in logN.

The bound of Theorem 7 implies that an attacker
has to know at least log2M bits, where

M =
d∗

p

|d∗
p− d̃∗

p|
=

2N1+σ

N
1
4−α

= 2N
3
4+α+σ (5)

This bound holds when the conditionNα+σ ≤ 1
2N

1
4

holds, which is not always the case in our settings. For
example an RSA modulus of 1024 bit with log2e=

256 andlog2ℓ = 128 will haveNα+σ ≤ 2N
3
8 . For

these cases we are unaware of successful applications
of Coppersmith’s method.

In (Lu et al., 2014) Section 4 it is presented a novel
technique for the CRT case with better bound but with
the requirement to havedp not full size. This require-
ment also implies that no countermeasure is applied.

6 EXPERIMENTAL RESULTS

Here we present experimental results for the attacks
described in previous sections.

We consider RSA applications with 2048-bit mod-
ulusN and public exponente= 216+1, since this is
the most common choice made for real implementa-
tions.

In addition we assume that a random multipleℓ
of φ(N) (or of (p−1) for CRT-RSA applications) is
added to the private exponentd (respectivelydp).

For each dimension ofℓ, we first report the theo-
retical bound on the minimum number of bits of the
secret key that the attacker needs to know to recover
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it entirely. This values are derived from theorems we
have proved in previous sections.

Then, we report the average minimum number of
bits that we really needed in our tests. In fact, theo-
retical bounds are reached when the lattice dimension
goes to infinity. In general, the smaller is the number
of known bits, the bigger the lattice shall be. To con-
cretely mount an attack, one needs to construct a lat-
tice whose dimension is such that the LLL-algorithm
runs in practical time. Recall that the running time of
LLL-algorithm depends on the lattice dimension and
on the dimension of the entries of its matrix-basis.
Since the dimension of the entries depends on the
boundsXi and on the modular polynomial used, the
LLL-algorithm may have different running times for
the same lattice dimension.

We decided to fix an upper bound on the dimen-
sion of the lattices we constructed. We chose the
threshold 80 as a tradeoff between efficiency and ef-
fectiveness of our attacks. Indeed, this choice allows
us to get closer to the theoretical bounds as opposed
to smaller dimensions. On the other hand, 80 is small
enough to make the LLL-algorithm running in practi-
cal time.

We fixed the same threshold for all attacks in order
to compare their effectiveness when using the same
lattice dimension.

We implemented our methods with the SAGE
computer-algebra system (Stein et al., 2014) and run
it on a 3GHz Intel Core i5.

With the exception of the CRT-MSB case, where
we used only 10 experiments, for all other attacks
we ran 100 experiments generating different key pairs
and different values ofℓ. We report the average values
obtained from these experiments.

6.1 Results with known LSB of d∗

In Section 4.1 we proved that if the attacker knows
a sufficiently large number of least significant bits of
d∗, then she can factorN.

For generating the lattices, we usedm= 11 and
t = τm, whereτ is defined in the proof of Theorem 4.
Notice thatτ is always very small resulting int = 0 for
each experiment. Thus, the dimension of the lattice is
fixed and equal to 78.

In Table 1 we present our results. For different di-
mensions ofℓ we report theoretical and experimental
bounds on the minimum number of leaked bits neces-
sary to mount the attack. Then we report the lattice
dimension that allowed us to get the corresponding
experimental bound and finally the running time of
LLL-algorithm for these lattices.

The difference between theoretical and experi-

Table 1: Experimental results for partial key exposure attack
given least significant bits of the secret exponentd∗ = d+
ℓφ(N). The modulusN is 2048-bit long ande= 216+1.

log2ℓ
theo.
bound

exp.
bound

dim(L) LLL

0 1040 1043 78 18 s
10 1060 1063 78 19 s
32 1103 1106 78 22 s
64 1164 1171 78 50 s
100 1232 1243 78 70 s

mental bounds is of very few bits and the LLL-
algorithm’s running time is really small.

It is worth to say that forℓ= 0 and smalle, the at-
tack in (Boneh et al., 1998) is more effective than our
attack. Indeed then/4 least significant bits ofd are
sufficient to factorN. However their attack requires
a brute-force search onk, that is allowed only when
e+eℓ is small. Thus, fore= 216+1 andℓ = 0 their
method is more effective than ours. But, with the in-
troduction of exponent blinding, or for larger dimen-
sion ofe, their method can’t be applied, because the
brute force-search becomes impractical.

Now, we compare our approach and the approach
of (Joye and Lepoint, 2012) for the same scenario.

We use a bivariate polynomial instead of a trivari-
ate polynomial, thus we perform a single resultant
computation, instead of three.

In order to compare the two approaches, we re-
port experimental results obtained using the same pa-
rameter choices made by the authors in (Joye and
Lepoint, 2012). Specifically, we consider 1000-bit
modulusN, public exponente = 216 + 1 and ℓ ∈
{10,100,200,300}.

As shown in Table 2, the theoretical bound is the
same, but our approach allows us to get closer to it.
Moreover, we do it by using smaller lattices.

6.2 Results with known MSB of d∗

In this section we report experimental results on fac-
toring with knowledge of the most significant bits of
the protected private exponent.

Since this method uses an univariate polynomial,
it is possible, in theory, to match the theoretical
limit, although the lattice dimension would make LLL
highly impractical. By imposing the threshold for
the maximum dimension of the lattice equal to 80,
the LLL-algorithm’s running time is about 2 hours.
For constructing such a lattice, we usedm= 40 and
t = 40.

In Table 3 we present our results. We report the-
oretical and experimental bounds on the number of
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Table 2: Comparison between the approach of (Joye and Lepoint, 2012) and our approach for partial key exposure attack
given least significant bits of the secret exponentd∗ = d+ ℓφ(N). The modulusN is 1000-bit long ande= 216+1.

log2 ℓ
Approach of (Joye and Lepoint, 2012) Our approach

theo.
bound

exp.
bound

dim(L) LLL
theo.
bound

exp.
bound

dim(L) LLL

10 535 580 16 1 sec 535 540 10 1 sec
100 700 760 16 1 sec 700 720 10 1 sec
200 871 960 16 1 sec 871 920 10 1 sec
300 1033 1160 16 1 sec 1033 1120 10 1 sec

Table 3: Experimental results for partial key exposure attack
given most significant bits of the secret exponentd∗ = d+
ℓφ(N). The modulusN is 2048-bit long ande= 216+1.

log2ℓ
theo.
bound

exp.
bound

dim(L) LLL

0 1555 1555 80 112 m
10 1538 1555 80 112 m
32 1538 1555 80 112 m
64 1538 1555 80 112 m
100 1538 1555 80 112 m

leaked bits, the dimension of the lattice and the run-
ning time of the LLL-algorithm.

The experiments confirmed the independence of
the bound with respect to the dimension of the random
integerℓ.

Unfortunately, in this case we cannot compare our
approach with the approach of (Joye and Lepoint,
2012), because they didn’t provide any experimen-
tal result respecting our assumptions. In fact, they
use very large values ofℓ, namely 500, 600 or 700-
bit long for a modulusN of size 1000 bits. These
unrealistic settings do not satisfy our requirement of

Lemma 1 forNα+σ ≤ 2N
3
8 . In any case, our approach

improves their bound, as said in section 4.2.

Results using both MSB and LSB. As said in sec-
tion 4.2, it is possible to mount an attack knowing
both MSB and LSB ofd∗. An univariate polynomial
is constructed and its root is found by constructing a
lattice as in the proof of Theorem 3. In Table 4 we
provide some experimental results for this method.

6.3 Results with known LSB of d∗
p

In this section we report experimental results for CRT-
RSA applications when the attacker knows the least
significant bits of the blinded private exponentd∗

p =
dp+ ℓ(p−1).

To get close to the theoretical bound, the lattice
dimension has to be significantly increased. But this

Table 4: Experimental results for partial key exposure attack
given most and least significant bits of the secretd∗ = d+
ℓφ(N). The modulusN is 2048-bit long ande= 216+1.

log2ℓ
theo.
bound

exp.
bound

dim(L) LLL

0 17+514 17+526 80 2h 27m
10 27+514 27+526 80 2h 27m
32 49+514 49+526 80 2h 27m
64 81+514 81+526 80 2h 27m
100 117+514 117+526 80 2h 27m

makes the LLL-algorithm’s running time highly im-
practical. By setting the threshold 80 for the lattice
dimension, the LLL-algorithm’s running time is about
13 minutes.

In Table 5 we present our results. We report the-
oretical and experimental bounds on the number of
leaked bits, the dimension of the lattice and the run-
ning time of the LLL-algorithm.

Table 5: Experimental results for partial key exposure attack
against CRT-RSA, given least significant bits of the secret
exponentd∗p = dp + ℓ(p− 1). The modulusN is 2048-bit

long ande= 216+1.

log2ℓ
theo.
bound

exp.
bound

dim(L) LLL

0 617 691 78 8 m
10 637 712 78 10 m
32 681 758 78 13 m
64 745 822 78 17 m
100 817 894 78 18 m

In this case, the difference between theoretical and
experimental bounds is about 80 bits. Given a smaller
number of leaked bits one can still mount the attack by
constructing bigger lattices, but the computation will
need more time to end. For example, by settingt = 5
andm= 18 it is sufficient to obtain 50 bits more than
the theoretical bound to solve. But the correspond-
ing lattice dimension is 190, which makes the LLL-
algorithm end in about one day. By settingt = 7 and

New�Results�for�Partial�Key�Exposure�on�RSA�with�Exponent�Blinding

145



m= 24 it is sufficient to obtain 40 bits more than the
theoretical bound to solve. But the lattice dimension
is around 500 and we think that the LLL-algorithm
would be highly impractical in this case.

Notice that forℓ= 0 and smalle, Blömer and May
show that a quarter ofdp is sufficient to the attacker
to factorN (Blömer and May, 2003). To prove their
result, they use a brute-force search onkp, that is al-
lowed only whene+eℓ is small. Thus, fore= 216+1
andℓ= 0 their method is better than our method, since
a smaller number of leaked bits are sufficient to fac-
tor N. But, for larger dimension ofe and whenℓ > 0
their method is no more effective because the brute
force-search becomes unfeasible.

6.4 Results with known MSB of d∗
p

Here we report experimental results for CRT-RSA ap-
plications when the attacker knows the most signifi-
cant bits of the protected private exponent.

Also in this case we imposed the threshold 80 for
the lattice dimension, which allowed us to run the
LLL-algorithm in practical time. We constructed lat-
tices by usingm= 40 andt = 40.

In Table 6 we report the theoretical and experi-
mental number of leaked bits, the lattice dimension
and the running time of LLL-algorithm.

Table 6: Experimental results for partial key exposure attack
given most significant bits of the CRT secret exponentd∗p =
d+ ℓ(p−1).

log2ℓ
theo.
bound

exp.
bound

dim(L) LLL

0 528 540 80 3h 03m
10 537 550 80 3h 59m
32 560 573 80 4h 23m
64 591 604 80 4h 52m
100 628 640 80 6h 13m

As opposite to the case based on LSB, this method
is the most effective also forℓ = 0. Indeed, our
method is a generalization of (Blömer and May,
2003), thus forℓ = 0 we obtain their original result
which is the most effective method in literature for
this scenario.

7 CONCLUSIONS

We presented some methods to mount partial key ex-
posure attacks on RSA with exponent blinding. We
investigated both RSA and CRT-RSA, focusing on
practical settings for the exponents and the blinding

factorℓ. In particular, we focused on public exponent
e such that 3≤ e< 2256, combining the upper bound
provided by NIST with the frequent value of 3. Addi-
tionally, we focused on full size private exponents and
ℓ < 2128, as commonly used in real implementations.

We derived sufficient conditions to successfully
mount partial key exposure attacks in different sce-
narios and validated them providing numerical exper-
iments, usingN of size 2048 ande= 216+1, which
is the most commonly used setting in real implemen-
tations.

As for RSA, we improved the results of (Joye and
Lepoint, 2012) with the aim of reducing the number
of bits to be recovered by the adversary through side-
channel. In particular, when least significant bits are
exposed, our approach allows to get closer to the the-
oretical bound by using smaller lattices, as shown in
Table 2. Whereas, when most significant bits are ex-
posed, we presented a method that does not rely on the
heuristic assumption and that provides better bounds,
as shown in Section 4.2.

Additionally, we provided novel results for the
particular case where the adversary is able to recover
non-consecutive portions of the private information.

As for CRT-RSA with exponent blinding, we pro-
vided novel results for both scenarios when either
least or most significant bits are exposed.

In Table 7, we recap the numerical results we ob-
tained from our experiments. For each dimension of
ℓ we provide the minimum number of bits of the pro-
tected exponent that is sufficient to the attacker to suc-
cessfully break the system.

With the only exception of the RSA attack based
on most significant bits, the number of known bits de-
pends on the bit-size of the blinding factorℓ.
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