
Towards Conformance Testing of REST-based Web Services

Luigi Lo Iacono and Hoai Viet Nguyen
Cologne University of Applied Sciences, Cologne, Germany

Keywords: REST, HTTP, URI, Conformance Testing, Web Services, SOA, Cloud.

Abstract: Despite the lack of standardisation for building REST-ful HTTP applications, the deployment of REST-based
Web Services has attracted an increased interest. This gap causes, however, an ambiguous interpretation of
REST and induces the design and implementation of REST-based systems following proprietary approaches
instead of clear and agreed upon definitions. Issues arising from these shortcomings have an influence on
service properties such as the loose coupling of REST-based services via a unitary service contract and the
automatic generation of code. To overcome such limitations, at least two prerequisites are required: the avail-
ability of specifications for implementing REST-based services and auxiliaries for auditing the compliance of
those services with such specifications.
This paper introduces an approach for conformance testing of REST-based Web Services. This appears con-
flicting at the first glance, since there are no specifications available for implementing REST by, e.g., the
prevalent technology set HTTP/URI to test against. Still, by providing a conformance test tool and leaning
it on the current practice, the exploration of service properties is enabled. Moreover, the real demand for
standardisation gets explorable by such an approach. First investigations conducted with the developed con-
formance test system targeting major Cloud-based storage services expose inconsistencies in many respects
which emphasizes the necessity for further research and standardisation.

1 INTRODUCTION

Building distributed systems based on the abstraction
of software services has been and still is an impor-
tant paradigm. First dominated by SOAP (Simple
Object Access Protocol) (Gudgin et al., 2007) and
its accompanying technology stack, the architectural
style REST (REpresentational State Transfer) (Field-
ing, 2000) has gained traction as an alternative ap-
proach for designing service systems. REST targets
the scalability of application interaction, the unifor-
mity of interfaces and the independent evolvement of
components and intermediates with the intention to
reduce latency, enable security and provide long-lived
services.

Besides the availability of a set of constraints de-
fined in the dissertation of Fielding, there still does
neither exist a definition nor a clear understanding of
how to apply this architectural style to technical in-
stantiations. As a consequence, REST is often enough
mistaken as being a standard composed of its under-
lying foundations: URI (Berners-Lee et al., 2005) and
HTTP (Fielding et al., 1999). The source for this dif-
fuse view on the REST concept lies in the fact that the
two aforementioned standards are currently the only

notable technology choice for implementing REST-
based service systems.

Issues arising from these shortcomings in stan-
dardisation have, e.g., an influence on the fu-
sion of REST and SOA (Service-Oriented Architec-
ture) (Gorski et al., 2014b). Founding a SOA-based
system on a REST architecture is challenging due to
missing service properties including the loose cou-
pling of REST-based services. This is because of the
lack of service contracts, which makes, moreover, the
automatic generation of client-side code infeasible. In
Cloud and Utility Computing this lack of standardisa-
tion causes cross-service incompatibilities promoting
vendor lock-in and hindering the simultaneous adop-
tion of multiple distinct Clouds in a user-intended
manner.

Approaching these issues requires at least two de-
termining factors: (1) the availability of specifications
for applying the REST principles to technical founda-
tions (in a SOA fashion) and (2) conformance test-
ing instruments for auditing the compliance of REST-
based services to these technical environments. This
paper approaches these gaps by introducing a mean
for the conformance testing of REST-based Web Ser-
vices focussing on the dominating implementation

217Lo Iacono L. and Nguyen H..
Towards Conformance Testing of REST-based Web Services.
DOI: 10.5220/0005412202170227
In Proceedings of the 11th International Conference on Web Information Systems and Technologies (WEBIST-2015), pages 217-227
ISBN: 978-989-758-106-9
Copyright c
 2015 SCITEPRESS (Science and Technology Publications, Lda.)

base: HTTP/URI. This appears conflicting at the first
sight, since there are no specifications available yet
to test against. Still, by providing a conformance test
tool and leaning it on the state of the art, the explo-
ration of service properties such as the uniformness of
requests and responses is enabled. In practice, how-
ever, a real demand for standardisation might actu-
ally not be present. With the proposed conformance
test methodology and tooling this matter can be ex-
plored empirically. To prove the viability of this ap-
proach REST services offered by major Cloud stor-
age providers are analysed. Other available research
in this domain provides equivalent insights while fo-
cussing on REST frameworks instead of deployed real
world services (Gorski et al., 2014b). Note, that the
present topic has not been an active research area yet
and that due to the specific nature of REST there is not
much proper related work available so far. Accord-
ing studies in other Web Services technology stacks
such as SOAP, e.g., do not share fundamental ser-
vice properties including the Uniform Interface of
REST-based services. Moreover, the available work
in the SOAP-based Web Services arena is focussing
on SOAP specifics such as the interoperable code gen-
eration from an WSDL service contract (Elia et al.,
2014). Henceforth, an adoption and consideration in
the REST domain is not feasible.

The rest of the paper is organised as follows. In
Section 2 a specification for mapping the REST ar-
chitectural principles and constraints to HTTP/URI is
deduced from the current practice and related work.
Following up in Section 3, a test methodology is intro-
duced, which provides a framework for conformance
testing of REST-based services. Available test tools
are then analysed according to their capabilities of
performing the required tests given in Section 4. The
analysis of the state of the art reveals a lack of an
adequate REST test tooling. This results in the de-
velopment of an own approach which is described
in Section 5. First findings obtained from investiga-
tions performed with the introduced methodology and
the developed tooling against four major Cloud-based
storage services, expose inconsistencies and hetero-
geneities in many respects. This is a violation of
the Uniform Interface constraint. More details about
these issues are discussed in Section 6. The paper
concludes in Section 7 with a summary of the main
contributions and findings as well as an outlook on
future work.

2 SPECIFICATION OF
REST-BASED WEB SERVICES

To test a REST-based service according to its confor-
mance to a particular standard, such a standard needs
to be present in the first place. Regrettably, this is
not the case for the mapping of the REST architec-
tural components and principles to any particular set
of technologies. Thus, such a mapping specification
needs to be derived in order to lay the ground for the
goals of this paper. Based on the least common de-
nominator obtained from the current practice and re-
cent empirical investigations (Gorski et al., 2014b),
the specification for this paper is defined as an instan-
tiation of the REST principles based on the URI spec-
ification and HTTP while taking additional clarifica-
tions of HTTP semantics and contents (Fielding and
Reschke, 2014) into account (see Table 1). URIs are
denoted in the URI Template (Gregorio et al., 2012)
notation. For the sake of readability but without the
loss of generality the following specifications will fo-
cus on the core request and response components only
and will leave aspects such as caching, versioning, se-
curity, streaming and response header fields for error
treatment out of consideration.

A POST request creates a resource on the ser-
vice side. The URI in the request denotes the set in
which a resource is to be added. In order to do so, a
complete representation of such a resource needs to
be sent in the request payload. This requires accord-
ing meta data in the request header to signal the type
and length of the contained resource representation.
In case the processing of a POST request has been
completed successfully, the response contains the sta-
tus code 201 (Created), meaning that the resource has
been created. Such a response must contain a Loca-
tion header in addition, which provides the identifier
of the created resource in form of an URI. The re-
sponse payload is empty. To notify the client on spe-
cial conditions regarding the request processing, sev-
eral other status codes are defined. The status code
202 (Accepted) must be used, when the request itself
can be processed successfully but the creation of the
resource is so time-consuming that the response needs
to be returned by the service before finalizing the re-
source instantiation. The other status codes have all
to do with issues in the request. If the addressed re-
source set does not exist, 404 (Not Found) is returned.
In case the specified content type is not supported,
415 (Unsupported Media Type) is passed back. The
status code 411 (Length Required) is used, if the con-
tent length is missing. When the POST method is not
defined for the resource set but is invoked anyhow,
then the 405 (Method Not Allowed) status code is re-

WEBIST�2015�-�11th�International�Conference�on�Web�Information�Systems�and�Technologies

218

Table 1: Specification of REST to HTTP/URI mapping.
HTTP
Method

Resource
Identifier

Request
Headers

Request Payload Response Codes Response
Headers

Response Payload

POST /fresourcesg Content-Type
Content-Length

Resource representation
(complete)

201 Created
202 Accepted
400 Bad Request
404 Not Found
405 Method Not Allowed
411 Length Required
413 Payload Too Large
415 Unsupported Media Type
501 Not Implemented
505 HTTP Version Not Supported

Location Empty

GET /fresourcesg
/fresourcesg/fidg

Accept Empty 200 OK
400 Bad Request
404 Not Found
405 Method Not Allowed
406 Not Acceptable
501 Not Implemented
505 HTTP Version Not Supported

Content-Type
Content-Length
Link

Resource representation
(complete)

PUT /fresourcesg/fidg Content-Type
Content-Length

Resource representation
(complete)

201 Created
202 Accepted
204 No Content
400 Bad Request
404 Not Found
405 Method Not Allowed
411 Length Required
413 Payload Too Large
415 Unsupported Media Type
501 Not Implemented
505 HTTP Version Not Supported

None Empty

PATCH /fresourcesg/fidg Content-Type
Content-Length

Resource representation
(partial)

202 Accepted
204 No Content
400 Bad Request
404 Not Found
405 Method Not Allowed
411 Length Required
413 Payload Too Large
415 Unsupported Media Type
501 Not Implemented
505 HTTP Version Not Supported

None Empty

DELETE /fresourcesg/fidg None Empty 202 Accepted
204 No Content
400 Bad Request
404 Not Found
405 Method Not Allowed
409 Conflict
501 Not Implemented
505 HTTP Version Not Supported

None Empty

OPTIONS /*
/fresourcesg
/fresourcesg/fidg

None Empty 204 No Content
400 Bad Request
404 Not Found
405 Method Not Allowed
501 Not Implemented
505 HTTP Version Not Supported

Allow Empty

HEAD /fresourcesg
/fresourcesg/fidg

Accept Empty 200 OK
400 Bad Request
404 Not Found
405 Method Not Allowed
406 Not Acceptable
501 Not Implemented
505 HTTP Version Not Supported

Content-Type
Content-Length
Link

Empty

turned. With the status code 413 (Payload Too Large)
the service signals that an oversized request payload
has been received. This is, e.g., the case when the re-
quest message is larger than the capabilities available
to the service. Any other syntactical or semantical er-
ror in the request is repulsed by the status code 400
(Bad Request).

A GET request accesses a particular resource in
a certain representation. The URIs for accessing re-
sources differ in regards to whether a single instance
or all instances of a resource are to be accessed. To
declare the desired resource representations, the re-
quest must carry an Accept header. The payload of
the request is empty, since no data is transferred to the
service. If the resource is available in the requested

representation, the service delivers it to the client in
the response payload and sets the status code 200
(OK) for the according response. The content type
and length are also stated in the response, but these
entries are contained in the response header. Further-
more, a GET response can contain a Link header ref-
erencing another resource providing additional meta
data of the requested resource (Nottingham, 2010).
To signal error conditions the response contains the
status code 404 (Not Found) in case the requested re-
source does not exist, 406 (Not Acceptable) if the re-
quested resource representation is not provided, 405
(Method Not Allowed) when the GET method is not
defined for the resource and 400 (Bad Request) in
cases in which any other syntactical or semantical er-

Towards�Conformance�Testing�of�REST-based�Web�Services

219

ror is contained in the request.
A PUT request updates a particular resource. In

case the addressed resource does not exist and the ser-
vice allows for resource creation via PUT, it will be
created. Hence, in some circumstances a PUT request
can act like a creation request. A PUT always trans-
fers a complete resource representation with the re-
quest to the service. The resource identifier addresses
a concrete resource. In case the resource exists it is
updated by the provided payload and the according
response code is set to 204 (No Content). In case
a PUT operation addresses a non-existing resource
identifier, the resource enclosed in the request will
be created and the server must return the response
code 201 (Created). If the service only grants the
PUT method for update operations and does not of-
fer the functionality of resource creation, it must re-
sponse with the code 405 (Method Not Allowed). In
all other cases and especially the possible error con-
ditions the behaviour corresponds to the one of the
POST method.

A PATCH (Dusseault and Snell, 2010) request up-
dates a given resource virtually as a PUT request. In
contrast to PUT a PATCH request, however, specifies
only those data fields that need to be changed and
does henceforth not provide the complete resource
representation with the request payload. Thus, with a
PATCH request a resource cannot be created but effi-
ciently updated, since only the required changes need
to be send to the service. PATCH responses follow the
same status code policies as defined for PUT, leaving
the codes related to resource creation apart.

A DELETE request erases a particular resource
from the service side. No further meta data is re-
quired in the request and the response headers. The
status code 204 (No Content) expresses the successful
deletion of the targeted resource specified in the corre-
sponding request. If the addressed resource does not
exist, this is signalled back to the client by the status
code 404 (Not Found). In case the DELETE request is
issued although it is not implemented, the status code
405 (Method Not Allowed) is returned. In some cir-
cumstances the erasing of a resource is not allowed,
due to reasons lying in the business logic and the cur-
rent resource state. In such a case, the service must
return the status code 409 (Conflict). As for any other
request, syntactical and semantical errors are denoted
by the status code 400 (Bad Request).

An OPTIONS request is the basis for gathering
information on the provided methods regarding a par-
ticular resource or set of resources. The request is
addressed towards a resource identifier with no partic-
ular header and an empty payload. The correspond-
ing response discloses the offered actions in the Allow

header. The occurring error conditions are treated and
reported by the response codes as discussed for the
other request types.

A HEAD request is used to retrieve status infor-
mation and meta data for a certain resource. It be-
haves exactly as the GET method with the only dif-
ference that the response payload is empty and does
henceforth not contain a resource representation.

If a client performs a request with an unfamiliar
feature such as an unknown method, the service must
reply with the status code 501 (Not Implemented) in-
forming the counterpart that this functionality is not
implemented. Last but not least, requests contain-
ing an unsupported HTTP version number must be
rejected by the status code 505 (HTTP Version Not
Supported).

3 TEST METHODOLOGY

With this mapping specification and by utilising the
REST constrains, an ideal conformance testing of
REST-based services is an automatic task which re-
quires very little preparation and input. The core of
the proposed methodology is based on a catalogue of
standard tests allowing for a structured audit of REST-
based services (see Figure 1).

REST Service

REST Conformance
Test Tool

Resource
Identifiers

Autogenerated Tests

Reports

Service Contract

Standard
Tests

Specific
Tests

Figure 1: REST conformance test methodology.

As initial input, the conformance test tool requires
the base resource identifier of the service to be tested
only. By issuing a status request to this resource iden-
tifier, the service returns a response including the re-
source identifier referring to the service contract. In
a REST architecture, a service contract is an informa-
tion entity describing the Uniform Interface provided
by the according resource. Basically, the Uniform In-
terface is set of instructions each composed of three
main elements: the action (method), the resource
identifier syntax and the supported resource represen-
tations (media types) (Erl et al., 2013). Others dis-
closures could also be delineations of non-functional
meta data including authentication and authorization
policies. By a subsequent read request the test tool
retrieves the denoted service contract. The represen-

WEBIST�2015�-�11th�International�Conference�on�Web�Information�Systems�and�Technologies

220

tation of the service contract can be of any format
suitable to describe the data structure of the targeted
resource, such as realised by RAML (RESTful API
Modeling Language) (Sarid et al., 2014).

The retrieved service contract is then the en-
try point for generating a series of service invoca-
tions. Due to the interface uniformity, a standard-
ised catalogue of test cases can be defined for REST-
based services, containing a comprehensive combina-
tion of constructive and destructive tests, with which
any REST-based service can be tested exhaustively.
Such a standardised test catalogue for REST-based
Web Services has been defined for the purpose of
this paper, which is based on the specification laid
in Section 2 and the test cases utilised in (Gorski
et al., 2014b) for the empirical investigations of the
SOA-readiness of REST frameworks for developing
Web-based systems. The test cases of the standard-
ised catalogue will not be described in detailed here,
since they correspond with the 87 test cases presented
in (Gorski et al., 2014b). The reader is henceforth re-
ferred to the original source for further reference. The
ID scheme used for naming each test case in a unique
manner—the first two letters of the HTTP verb fol-
lowed by a dot and a sequence number—has been
maintained in this paper in order to support cross-
reading. If required, this standard set of tests can
be accomplished by specific tests addressing unique
aspects of a particular service environment and im-
plementation. By this approach, the proposed con-
formance testing can be adopted to any REST-based
Web Service equally straightforward. The marginal
adoptions required for the empirical evaluation of ma-
jor Cloud-based storage services are described in Sec-
tion 6.

Each performed test run is logged and the results
are stored in a report. The report entries contain the
raw communication as well as a judgement on the
conformity of the targeted service in respect to the
defined specification. The conformance is verified
by executing all tests and examining the obtained re-
sponses. For each of the 87 standard test requests a
corresponding expected response has been defined. If
a test request to a service returns a response which
differs from the expected one, a candidate for a con-
formance breach has been found.

4 STATE OF THE ART

From the introduced REST conformance test ap-
proach the requirements for according tools got ap-
parent and can henceforth be recorded as follows:

R1: A REST test tool must be able to manage

a set of test cases for the uniform interface
mapped to a certain service protocol—at the
moment mainly HTTP.

R2: In order to be able to express a comprehen-
sive set of constructive and destructive tests,
many of the header entries including the re-
quest line, the Content-Type, the Content-
Length and the Accept header need to be ad-
justable in a flexible manner.

R3: This is equally true for the resource repre-
sentations. Here, various types of represen-
tations must be supported and modifiable ac-
cording to the test cases’ needs.

R4: A REST test client requires to perform the
service inspection steps described in Sec-
tion 3 to retrieve the service contract. The
only required input for the test runs is a set of
resource identifiers from which the test client
constructs everything on its own.

Available REST test client software for
HTTP/URI based instantiations such as Advanced
REST Client (Psztyc, 2014), Postman (Postdot
Technologies, 2014) and the REST testing features
of SoapUI (SmartBear Software, 2014) do not fulfil
all the demanded requirements. Such tools enable the
creation and maintenance of multiple test requests,
but lack in functionalities regarding the flexible
adjustment of header fields, the request line, or
resource representations and do not include any pro-
cedure to obtain the service contract automatically.
Consequently, test cases implemented based on these
tools need to be configured manually, which comes
at a high cost due to the many distinct parameters to
provide and set. Thus, for the purpose of this paper,
an own development has been undertaken that fulfils
the described set of requirements.

5 IMPLEMENTATION

The developed conformance test system is shown in
Figure 2. The underlying idea is to contribute a soft-
ware for managing conformance test projects target-
ing REST-based Web Services. To investigate the
compliance of a service, a project needs to be cre-
ated, first. Then a service auditor can launch test runs
which execute all test cases of a defined catalogue.
The tool itself is designed according to the architec-
tural style REST. Via a REST-based API clients are
able to create, read, update and delete test, project,
run and case resources. A browser-based client imple-
ments this API and provides a user interface to create
projects, set up and run tests and access the generated
reports.

Towards�Conformance�Testing�of�REST-based�Web�Services

221

REST
Interface

REST Conformance Test Tool

Standard
Test Catalog Request

Request

...

REST
Interface

REST Service

Response

Response

...

Evaluation Report
(HTML, JSON, XML, Text)

Client

Request
(Test Creation)

Target Service URI

Schema

Representations

Actions

Authentication

Evaluation

projects

cases

runs

tests

Specific
Test Catalog

Request
Generator

Figure 2: Architecture of the developed REST conformance test tool.

As introduced by the test methodology in Sec-
tion 3, the test tool integrates a catalogue of standard
tests at its core. Test projects can benefit from the
standardised catalogue of tests, which can be adapted
and performed on any interface specified by an ac-
cording resource identifier. As mentioned in Sec-
tion 3, the tests contained in the standard tests cat-
alogue are based on the 87 tests defined in (Gorski
et al., 2014b). Additional domain- and application-
specific tests can be added as required. When execut-
ing a test suite, the test run is generated out of the stan-
dardised as well as the project specific tests. When a
test run is completed, the client can retrieve an eval-
uation report in various resource representations such
as in HTML, XML, plain text or JSON advising the
service examiner about which test case has passed the
conformance audit and which not.

The developed system fulfils all requirements ex-
cept the one regarding the discovery and retrieval of
the service contract (R4). An implementation of this
feature is currently not feasible due to it being still
a research and development topic (Verborgh et al.,
2011; Bennara et al., 2014; Amundsen, 2014). The
support in operational systems is henceforth lacking.
Thus, the developed conformance test tool integrates
mechanisms to manually enter information on the ser-
vice contract as an interim work around. This in-
cludes the schema of the tested resources in distinct
representation formats as well as the HTTP methods
to test. The latter controls the amount of test cases
contained in the various catalogues to be issued in a
test run. As an additional set of parameters, the imple-
mented test system enables to specify access creden-
tials for the requests requiring authentication. This is
especially true for the analysed Cloud storage services
which deploy a custom HTTP authentication mecha-
nism each. Besides the implementation of the require-
ments R1 and R3 the tool fulfils also the requirement

R2, as it allows customizing any single header en-
try including the Content-Length header and the Host
header as well as the request line. R2 is crucial re-
quirement to enable destructive testing.

6 CONFORMANCE TESTING OF
CLOUD-BASED STORAGE
SERVICES

The intention of the present paper is to contribute a
methodology for the conformance testing of REST-
based services, although a required technical mapping
of the REST principles to a concrete technology stack
is lacking. Still, going the other way round enables
to explore the effective need for such a standardisa-
tion. The introduced methodology together with the
implemented test tool have been used to analyse var-
ious REST-based Web Services on their conformity
with the specification given in Section 2, but also on
their consistent understanding of REST and the uni-
form realisation of REST services. The investiga-
tions have been focused on Cloud-based file storage
services including Amazon S31, Google Cloud Stor-
age2, Microsoft Azure Storage3 and HP Helion Public
Cloud Object Storage4, also because they are under-
stood to be particularly mature. The results obtained
by exploring their REST-based service interfaces are
discussed subsequently.

1https://aws.amazon.com/s3/
2https://cloud.google.com/products/cloud-storage/
3https://docs.hpcloud.com/object-storage/
4https://azure.microsoft.com/en-us/services/storage/

WEBIST�2015�-�11th�International�Conference�on�Web�Information�Systems�and�Technologies

222

6.1 Service Tests

As one core foundation of the conformance test me-
thodology, the standardised catalogue of test cases
forms the common ground for evaluating the compli-
ance of a particular REST-based Web Service in re-
spect to the introduced specification. A series of con-
structive and destructive requests containing a com-
bination of all sorts of valid and invalid request set-
tings are used to observe the behaviour of a REST-
based Web Service. The test cases are grouped
by the HTTP methods GET, HEAD, POST, PUT,
PATCH, DELETE and OPTIONS including one non-
existing method named “EVIL”. Required adaptations
to the tests contained in the standard catalogue have
been minimal. The test case “Non-erasable resource”
(DE.2) in the DELETE request group has been dis-
abled. This test tries to erase a resource which must
not be deleted according to the business logic and the
particular resource’s state. As the explored Cloud-
based file storage services do not provide an option to
write-protect a file stored in the Cloud. The providers
promote only an Access Control List (ACL) which
allows defining write permission for a distinct set of
users, but do not offer a feature to protect a resource
against a general deletion. Thus, trying to remove a
resource by a unauthorized user will result in a per-
mission error and not a delete rejection due to busi-
ness logic constraints. Thus, the intention of test case
DE.2 is not being covered by the Cloud storage ser-
vices, leading to it being left out.

The test case “Flawed content length” (PU.5) has
been extended with one new test run, which checks
the behaviour of the service in the presents of a dis-
crepancy in the content length value being in this test
run actually smaller than the de facto payload size.
The goal is to observe how many bytes are stored by
the service if any. A last test specific to storage ser-
vices has been added, which tests the behaviour when
exceeding the maximum allowed file size. This test
has been denoted as “Content-Length exceeding the
allowed payload size” (PU.10). It performs a file up-
load with a file size going beyond the limit set by the
storage provider. No further tests have been identified
as missing or specific to the underlying services.

6.2 Test Results

The obtained results from testing the four REST-
based Cloud storage services with the introduced tool
reveal that none of the services is in conformance
with the specification introduced in Section 2. The
broad range of inconsistencies amongst the services
and between each service and the specification can

be observed in many respects (see Table 2 in the Ap-
pendix).

Although all services provide an equivalent be-
haviour in case of the HEAD, GET, PUT and
DELETE methods, where the status codes of the
GET and HEAD results are even uniform, still, the
picture for the remaining methods looks more di-
verse. All tested services provide, e.g., a distinct
interpretation of the POST method. Amazon of-
fers the POST method as an upload function for
clients which do not support the PUT method—such
as Web browsers. This induces the requirement for
the client to encode the payload as “multipart/form-
data” (Amazon, 2014). Due to this missing precondi-
tion almost all status codes obtained from the POST
tests are 412 (Precondition Failed), since the POST
requests contain a resource representation in “appli-
cation/json” or “application/xml” instead of the ex-
pected “multipart/form-data”. Google provides the
POST method for different functionalities. Clients
can create access control rules, add new storage area,
compose files, copy files and create new files or meta-
data. If the service consumer intends to create new
files via POST, it has to use a different URL (Google,
2014) than defined by the specification in Section 2.
HP serves POST as an operation to add meta data
to accounts, storage areas and files. This is realised
via custom HTTP headers while the payload of the
POST request remains empty. Also, the HP ser-
vices do not permit uploading files with the POST
method (Hewlett-Packard, 2014). For a file upload
into a storage area a PUT request needs to be issued
instead. Likewise, Microsoft does not advertise any
utilization of the POST method. Any upload or up-
date operation is triggered by the PUT method, even
when a client wants to append meta data to storage
areas (Microsoft, 2014).

Other inconsistencies can be observed by focusing
on the status codes contained in the response mes-
sages. One example of this divergence is the non-
uniform treatment of regular PUT requests by all eval-
uated services (see PU.1 and PU.2). Amazon and
Google reply with a status code of 200 (OK) whether
a stored resource is updated or a new resource is cre-
ated. HP and Microsoft, on the contrary, reply with
201 (Created) for both cases: the creation of a new file
or the update of an existing file. Other discrepancies
can, e.g., be found in the answers to a PUT request
providing a wrong resource identifier (PU.6). Ama-
zon and Google behave in the same way and react by
sending back a status code of 400 (Bad Request). HP
interprets the resource identifier as intention to create
a new storage area and hence returns 202 (Accepted).
Microsoft responds with 404 (Not Found) in order to

Towards�Conformance�Testing�of�REST-based�Web�Services

223

signal that this resource is not available.
The biggest discrepancy can be illustrated by

OP.7, where all providers reply with diverse response
codes. In this destructive test, a wrong HTTP version
is provided in the request line. Amazon responds with
the expected code 505 (HTTP Version Not Supported)
according to the defined specification (see Listing 1
and Table 2).
��� OPTIONS �� OP.7: Unknown Protocol Version ���
Request:
OPTIONS /rssblobs/blob HTTP/1.2
Accept: application/json
Connection: Close
User�Agent: REAL SOA Security, REST�CTT
Host: s3�eu�west�1.amazonaws.com
[...]

Response:
HTTP/1.1 505 HTTP Version Not Supported
Server: AmazonS3
Connection: close
[...]

Listing 1: OPTIONS request with an unknown protocol
version (Amazon).

HP returns a 501 (Not Implemented) and indicates
in the response payload that the method may not be
implemented although the OPTIONS method is sup-
ported (see Listing 2 and Table 2).
��� OPTIONS �� OP.7: Unknown Protocol Version ���
Request:
OPTIONS /v1/11876826348381/blobs/blob HTTP/1.2
Accept: application/json
Connection: Close
User�Agent: REAL SOA Security, REST�CTT
Host: region�a.geo�1.objects.hpcloudsvc.com
[...]

Response:
HTTP/1.0 501 Not Implemented
Content�Length: 28
Content�Type: text/html
[...]

This method may not be used.

Listing 2: OPTIONS request with an unknown protocol
version (HP).

In case of Microsoft and Google, both services do
not conform to the HTTP specification in relation to
this destructive test case. These services ignore the
unfamiliar protocol and still process the request or re-
ply with another error code. Listings 3 and 4 demon-
strate this with the request/response messages logged
during the test execution of the Google and Microsoft
storage services. The latter one even replies with a
self-defined reason phrase instead of the standardised
reason for the status code 400 which is Bad Request
(see Listing 4).
��� OPTIONS �� OP.7: Unknown Protocol Version ���
Request:
OPTIONS /rssblobs/blob HTTP/1.2
Accept: application/json
Connection: Close
User�Agent: REAL SOA Security, REST�CTT
Host: storage.googleapis.com
[...]

Response:
HTTP/1.1 200 OK
Connection: close
Content�Length: 0
Content�Type: text/html; charset=UTF�8
[...]

Listing 3: OPTIONS request with an unknown protocol
version (Google).

��� OPTIONS OP.7 Unknown Protocol Version ���
Request:
OPTIONS /blobs/blob HTTP/1.2
Accept: application/json
Connection: Close
User�Agent: REAL SOA Security, REST�CTT
Host: realsoasecurity.blob.core.windows.net
[...]

Response:
HTTP/1.1 400 A required CORS header is not present.
Content�Length: 293
Content�Type: application/xml
[...]

Listing 4: OPTIONS request with an unknown protocol
version (Microsoft).

None of the analysed services supports the
PATCH (Dusseault and Snell, 2010) method. A rea-
son might be that a partial update of files is not re-
garded as necessary, although, partial updates to over-
write certain blocks within a file or append data to
an existing file might be sensible operations which
are actually in parts available via the PUT method in-
stead.

Besides this incoherent behaviour of the services,
the evaluation reveals a critical behaviour of all ser-
vices in cases in which a request contains a content
length value that is larger than the actual payload size.
Such a destructive request confuses the service, keep-
ing it waiting for the anticipated missing bytes that
will never arrive and causing the TCP connection to
remain open (see Table 2). This weakness could po-
tentially lead to DoS (denial of service) vulnerabili-
ties.

Other interesting evaluation results expose that the
services do not issue an error message if a request
contains a mismatch in the specified content type and
the actual payload format. All audited storage ser-
vices store a JSON payload, e.g., as XML, when
the Content-Type header contains the value “applica-
tion/xml”. As a consequence, if the file will be down-
loaded it embodies this mismatch too.

Another observation is that the services do not
care about the media type value within the Accept
header and do not check if the media type in the Ac-
cept header matches with the inquired resource. In
other words, if clients want to access an object as
JSON and denote this by setting the value “applica-
tion/json” in the Accept header, but the addressed re-
source is an XML document, the server ignores the

WEBIST�2015�-�11th�International�Conference�on�Web�Information�Systems�and�Technologies

224

Accept header and sends back the XML file without
further notice.

One of the two added tests, which sets the
Content-Length header to a smaller value than the ac-
tual body size (PU.5, test case 59), exposes a different
behaviour between the evaluated services. Microsoft,
HP and Google store the amount of bytes denoted by
the Content-Length header value and do not consider
any further bytes possibly contained in the payload.
Thus, a request carrying the text string “HelloWorld”
as its payload and specifying a Content-Length of five
will result in storing the first five bytes of the supplied
string, i.e. “Hello”. Due to the signature protection
scheme enforced by Amazon for their services, such
a mismatch leads here to an error. The signature vali-
dation procedure is not documented, but with the test
tool it could be deduced, that the content length value
is used to control the amount of data that is hashed
during signature verification. Any mismatch will lead
to a negative verification, which is signalled by 400
(Bad Request).

The second added test uploads an oversized file
to the storage service which goes beyond the maxi-
mum allowed file size (PU.10, test case 60). This test
revealed a homogeneous behaviour between Amazon
and Microsoft according the request payload process-
ing. According to the obtained results, the two ser-
vices inspect the Content-Length header in order to
find out whether a request contains an outsized pay-
load or not. However, both providers differ by the
returned status codes. Microsoft returns a specifica-
tion compliant status code 413 (Request Entity Too
Large) while Amazon responds with a non-compliant
status code 400 (Bad Request). HP does not consider
the value of Content-Length header. Instead, it counts
the bytes on the TCP stream until the threshold of the
allowed maximum file size is reached. Google does
not state any official information about the maximum
file size rendering this test not feasible.

Amongst the discussed findings are many short-
comings at the service access and service communi-
cation layer, but also issues in each of the services’
business logic. This emphasizes the benefits of the
proposed conformance testing. It further highlights
the current state in REST-based service practice and
the impact of missing standardisations. The hetero-
geneity of all services relating to status codes and
meta data headers are not in line with the idea of a
Uniform Interface which is a crucial constrain of the
Fielding’s architectural style. This violation cumbers
automatic code generation, loose coupling of services
and interoperability. Still, in comparison to (Gorski
et al., 2014b) the analysed Cloud storage services are
much more coherent with the REST-ful HTTP specifi-

cation defined for the purpose of this paper than what
is produced by REST frameworks. Thus, an experi-
enced developer but unversed in respect to REST will
not be able to produce services which are aligned with
the REST principles.

7 CONCLUSIONS AND
OUTLOOK

Having more reliable standards in terms of technical
specifications which define clear mappings between
the general REST principles and concrete technolog-
ical instantiations is vital in order to address the ex-
plored issues. Standardisation ambitions such as the
proposed REST-ful HTTP specification introduced in
Section 2 would foster approaching advanced require-
ments with REST and would leverage the interoper-
ability of REST-based services. Service properties
known from SOA such as the discoverability, and
the loose coupling of services are otherwise not im-
plementable across platforms and systems. The lat-
ter property requires to a certain extent the automatic
generation of code, which is a lacking feature in the
REST domain so far, requiring, e.g., the development
of REST client code from scratch without any mean-
ingful tool support. Furthermore, this inhomogene-
ity even affects Cloud Computing concepts such as
Elastic Computing (Dustdar et al., 2011), where soft-
ware systems are adjustable automatically, depending
on required resources, quality of service parameters
and operational costs.

From these arguments, the demand for a more
elaborated standardisations gets evident. In practice,
however, a real need for adequate standards might
still not be given for some reasons. By means of
the contributed conformance testing methodology and
tooling a field study has been conducted to deter-
mine the impact of this lack of standardisation on real
world services. The analysis of distinct REST-based
Web Services from four major Cloud-based storage
providers made it apparent that the tested services dif-
fer in many aspects amongst each other and do so also
in respect to the defined specification. This inhomo-
geneous picture emphasises the consequences result-
ing from the diffuse understanding of REST and its
technical instantiations.

The introduced method for performing the con-
formance testing of REST-based services would have
a broad influence on the overall development of
REST. Not only it would provide a mechanism to in-
crease the comprehension of REST and its mapping to
HTTP/URI, it would also increase the interoperability
of REST components implemented and operated on

Towards�Conformance�Testing�of�REST-based�Web�Services

225

heterogeneous platforms. The latter ultimately paves
the way for features such as automatic code genera-
tion and the loose coupling of REST-based services.

Many other aspects will benefit from a stringent
standardisation and an accompanying enhancement in
REST service testing. Security is one such facet. A
stable and reliable foundation for building REST ser-
vices is the basis for a deep integration of security
means into REST services, which is a required prereq-
uisite in order to provide an answer to the challenging
security demands in cross-organizational distributed
services systems (Gorski et al., 2014a).

This specification does not constitute the ulti-
mate standard for building REST-based Web Ser-
vices. Some definitions might be arguable or need to
be discussed in more detail by future standardisation
activities. Some aspects have even been left out of
scope such as security, caching, versioning, stream-
ing and error treatment. Nevertheless, such kind of
technical documentation is a crucial basic assistance
for software developers and architects to design inter-
operable REST-based service applications.

REFERENCES

Amazon (2014). Authenticating Requests in Browser-
Based Uploads Using POST (AWS Signature Version
4). http://docs.aws.amazon.com/AmazonS3/latest/
API/sigv4-UsingHTTPPOST.html.

Amundsen, M. (2014). Hold Your Nose vs. Follow Your
Nose, Observations on the state of service description
on the Web. In 5th International Workshop on Web
APIs and RESTful Design (WS-REST).

Bennara, M., Mrissa, M., and Amghar, Y. (2014). An Ap-
proach for Composing RESTful Linked Services on
the Web. In 5th International Workshop on Web APIs
and RESTful Design (WS-REST).

Berners-Lee, T., Fielding, R., and Masinter, L. (2005). Uni-
form Resource Identifier (URI): Generic Syntax. RFC
3986, IETF. http://www.ietf.org/rfc/rfc3986.txt.

Dusseault, L. and Snell, J. (2010). PATCH Method for
HTTP. RFC 5789, IETF. https://tools.ietf.org/ htm-
l/rfc5789.

Dustdar, S., Guo, Y., Satzger, B., and Truong, H.-L. (2011).
Principles of elastic processes. IEEE Internet Com-
puting, 15(5).

Elia, I. A., Laranjeiro, N., and Vieira, M. (2014). A Field
Perspective on the Interoperability of Web Services.
In 11th IEEE International Conference on Services
Computing (SCC).

Erl, T., Carlyle, B., Pautasso, C., and Balasubramanian, R.
(2013). SOA with REST - Principles, Patterns and
Constraints for Building Enterprise Solutions with
REST. Pearson Education.

Fielding, R. (2000). Architectural Styles and the De-
sign of Network-based Software Architectures. PhD

thesis, University of California, Irvine. https://
www.ics.uci.edu/�fielding/pubs/dissertation/top.htm.

Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter,
L., Leach, P., and Berners-Lee, T. (1999). Hyper-
text Transfer Protocol – HTTP/1.1. RFC 2616, IETF.
http://www.ietf.org/rfc/rfc2616.txt.

Fielding, R. and Reschke, J. (2014). Hypertext Transfer
Protocol (HTTP/1.1): Semantics and Content. RFC
7231, IETF. http://tools.ietf.org/html/rfc7231.

Google (2014). Google Cloud Storage - API Ref-
erence. https://developers.google.com/storage/docs/
json api/v1/.

Gorski, P. L., Lo Iacono, L., Nguyen, H. V., and Torkian,
D. B. (2014a). Service Security Revisited. In 11th
IEEE International Conference on Services Comput-
ing (SCC).

Gorski, P. L., Lo Iacono, L., Nguyen, H. V., and Torkian,
D. B. (2014b). SOA-Readiness of REST. In 3rd
European Conference on Service-Oriented and Cloud
Computing (ESOCC).

Gregorio, J., Fielding, R., Hadley, M., Nottingham, M., and
Orchard, D. (2012). URI Template. RFC 6570, IETF.
http://tools.ietf.org/html/rfc6570.

Gudgin, M., Hadley, M., Mendelsohn, N., Moreau, J.-
J., Nielsen, H. F., Karmarkar, A., and Lafon, Y.
(2007). SOAP Version 1.2 Part 1: Messaging Frame-
work (Second Edition). Recommendation, W3C.
http://www.w3.org/TR/soap12-part1/.

Hewlett-Packard (2014). HP Helion Public Cloud Object
Storage API Specification. https://docs.hpcloud.com/
api/object-storage#4.RESTAPISpecifications.

Microsoft (2014). Microsoft Developer Network - Blob
Service REST API. http://msdn.microsoft.com/
en-us/library/dd135733.aspx.

Nottingham, M. (2010). Web Linking. RFC 5988, IETF.
https://tools.ietf.org/html/rfc5988.

Postdot Technologies (2014). Postman. http://
www.getpostman.com/.

Psztyc, P. (2014). Advanced REST Client. http://
chromerestclient.appspot.com/.

Sarid, U., Hervery, M., Lazarov, I., Rexer, P., Harnon, J.,
Lane, K., Musser, J., Gullotta, T., and Choudhary, S.
(2014). RAML Version 0.8: RESTful API Modeling
Language. Specification. http://raml.org/spec.html.

SmartBear Software (2014). SoapUI. http://
www.soapui.org/REST-Testing/getting-started.html.

Verborgh, R., Steiner, T., Van Deursen, D., De Roo, J.,
Van de Walle, R., and Gabarró Vallés, J. (2011). De-
scription and Interaction of RESTful Services for Au-
tomatic Discovery and Execution. In Proceedings of
the FTRA 2011 International Workshop on Advanced
Future Multimedia Services (AFMS).

WEBIST�2015�-�11th�International�Conference�on�Web�Information�Systems�and�Technologies

226

APPENDIX

Table 2: Obtained status codes by Cloud-based storage services for test cases.
Test identifier and description Amazon Google HP Microsoft
1 PO.1 Content-Type application/json 412 400 204 400
2 PO.1 Content-Type application/xml 412 400 204 400
3 PO.2 Unsupported Content-Type 412 400 204 400
4 PO.3 Content-Type and payload mismatch 412 400 204 400
5 PO.3 No Content-Type but with payload 412 400 204 400
6 PO.4 Content-Length bigger than payload size 412 No Response No Response 400
7 PO.4 Content-Length as String 400 400 400 400
8 PO.4 No Content-Length 412 411 204 411
9 PO.5 Wrong action on resource 405 400 404 405
10 PO.5 Not existing resource 412 400 204 405
11 PO.6 Malformed application/json 412 400 204 400
12 PO.6 Malformed application/xml 412 400 204 400
13 PO.7 Wellformed application/json, unprocessible content 412 400 204 400
14 PO.7 Wellformed application/xml, unprocessible content 412 400 204 400
15 PO.8 Unknown protocol version 505 400 501 400
16 OP.1 Ping * 400 200 200 400
17 OP.2 Regular 400 200 200 400
18 OP.2 Regular with resource id 400 200 200 400
19 OP.3 Accept application/json 400 200 200 400
20 OP.3 Accept application/xml 400 200 200 400
21 OP.4 Unsupported media type in accept header 400 200 200 400
22 OP.5 Wrong resource identifier 400 200 200 400
23 OP.5 Not existing resource 400 200 200 400
24 OP.6 Containing content 400 200 200 400
25 OP.7 Unknown protocol version 505 200 501 400
26 HE.1 Accept application/json 200 200 200 200
27 HE.1 Accept application/xml 200 200 200 200
28 HE.2 Unsupported media type 200 200 200 200
29 HE.3 Wrong resource identifier 404 404 404 404
30 HE.3 Not existing resource 404 404 404 404
31 HE.4 Containing content 200 400 200 200
32 HE.5 No Accept header 200 200 200 200
33 HE.6 Unknown protocol version 505 200 501 200
34 GE.1 Accept application/json 200 200 200 200
35 GE.1 Accept application/xml 200 200 200 200
36 GE.2 Unsupported media type 200 200 200 200
37 GE.3 Wrong resource identifier 404 404 404 404
38 GE.3 Not existing resource 404 404 404 404
39 GE.4 Containing content 200 400 200 200
40 GE.5 No Accept header 200 200 200 200
41 GE.6 Unknown protocol version 505 200 501 200
42 PU.1 Content-Type application/json 200 200 201 201
43 PU.1 Content-Type application/xml 200 200 201 201
44 PU.2 Unsupported Content-Type 200 200 201 201
45 PU.3 Partial update with Content-Type application/json 200 200 201 201
46 PU.3 Partial update with Content-Type application/xml 200 200 201 201
47 PU.4 Content-Type and payload mismatch 200 200 201 201
48 PU.4 No Content-Type but with payload 200 200 201 201
49 PU.5 Content-Length bigger than payload size No Response No Response No Response No Response
50 PU.5 Content-Length as String 400 400 400 400
51 PU.5 No Content-Length 411 411 411 411
52 PU.6 Wrong resource identifier 400 400 202 404
53 PU.6 Not existing resource 200 200 201 201
54 PU.7 Malformed application/json 200 200 201 201
55 PU.7 Malformed application/xml 200 200 201 201
56 PU.8 Wellformed application/json, unprocessible content 200 200 201 201
57 PU.8 Wellformed application/xml, unprocessible content 200 200 201 201
58 PU.9 Unknown protocol version 505 200 501 201
59 PU.5 Content-Length smaller than payload size 400 200 201 201
60 PU.10 Content-Length exceeding the allowed payload size 400 ? 413 413
61 PA.1 Content-Type application/json 405 405 501 400
62 PA.1 Content-Type application/xml 405 405 501 400
63 PA.2 Unsupported Content-Type 405 405 501 400
64 PA.3 Complete update with Content-Type application/json 405 405 501 400
65 PA.3 Complete update with Content-Type application/xml 405 405 501 400
66 PA.4 Content-Type and payload mismatch 405 405 501 400
67 PA.4 No Content-Type but with payload 405 405 501 400
68 PA.5 Wrong Content-Length 405 No Response 501 400
69 PA.5 Content-Length as String 400 400 501 400
70 PA.5 No Content-Length 405 405 501 400
71 PA.6 Wrong resource identifier 405 405 501 400
72 PA.6 Not existing resource 405 405 501 400
73 PA.7 Malformed application/json 405 405 501 400
74 PA.7 Malformed application/xml 405 405 501 400
75 PA.8 Wellformed application/json, unprocessible content 405 405 501 400
76 PA.8 Wellformed application/xml, unprocessible content 405 405 501 400
77 PA.9 Unknown protocol version 505 405 501 400
78 DE.1 Regular 204 204 204 202
79 DE.3 All resources 409 409 409 400
80 DE.4 Not existing resource 204 404 404 404
81 DE.5 Containing content 204 400 204 202
82 DE.6 Unknown protocol version 505 204 501 202
83 EV.1 Accept application/json 405 502 501 400
84 EV.1 Accept application/xml 405 502 501 400
85 EV.2 Unsupported media type in accept header 405 502 501 400
86 EV.3 Wrong resource identifier 405 502 501 400
87 EV.4 Containg content 405 502 501 400
88 EV.5 Unknown protocol version 505 502 501 400

Specification
201
201
415
400
400
400
400
411
405
404
400
400
400
400
505
200
200
200
200
200
415
404
404
400
505
200
200
406
404
404
400
200
505
200
200
406
404
404
400
200
505
204
204
415
400
400
400
400
400
400
411
404
404
400
400
400
400
505
400
413
204
204
415
204
204
400
400
400
400
411
404
404
400
400
400
400
505
204
405
404
400
505
501
501
501
501
501
501

Towards�Conformance�Testing�of�REST-based�Web�Services

227

