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Abstract: A Grey Qualitative Reinforment Learning algorithm is present in this paper to realize the adaptive signal 
control of bottleneck subzone, which is described as a nonlinear optimization problem. In order to handle 
the uncertainites in the traffic flow system, grey theory model and qualitative method were used to express 
the sensor data. In order to avoid deducing the function relationship of the traffic flow and the timing plan, 
grey reinforcement learning algorithm, which is the biggest innovation in this paper, was proposed to seek 
the solution. In order to enhance the generalization capability of the system and avoid the "curse of 
dimensionality" and improve the convergence speed, BP neural network was used to approximate the Q-
function. We do three simulation experiments (calibrated with real data) using four evaluation indicators for 
contrast and analyze. Simulation results show that the proposed method can significantly improve the traffic 
situation of bottleneck subzone, and the algorithm has good robustness and low noise sensitivity.  

1 INTRODUCTION 

Road bottleneck or congestion, which is a special 
case of imported lanes of road are saturation or near 
saturation, is the performance of road traffic 
deterioration. In order to fully enhance the urban 
road network resource utilization efficiency and 
avoid bottlenecks or even traced queuing 
phenomenon of individual sections, the primary 
objective of regional traffic signal coordination 
control should be to maximize the number of 
vehicles leaving the subzone per unit time. Taking 
into account the conservation of subzone traffic 
flow, the control target is equivalent to minimize the 
average carrying vehicles of all bottlenecks in the 
specified time period.  

Adaptive regional coordination control (TSC) 
has been a goal of intelligence traffic signal control 
researchers. In traffic signal control system, an 
signal controller can be seen as an intersection agent, 
and all signal controllers of controlled subzone can 
be seen as multi-agent cluster. A controller agent can 
be viewed as perceiving its environment (traffic 
flow) through sensors (traffic flow detectors) and 
acting upon that environment through effectors 
(traffic signal lights). Based on multi-agent 

reinforcement learning (RL) technology, combined 
with grey system theory and neural network tool, we 
try to construct an effective traffic signal 
coordination control model for bottleneck subzone 
which has some saturated or nearly saturated 
sections, but also has some relatively smooth 
sections. 

There are many kinds of artificial intelligence 
methods that have been used to implement adaptive 
traffic signal control and ease the traffic pressure. 
The adaptive traffic signal control techniques in 
Chun-gui (2009), Arel et al (2010) and Prashanth et 
al (2011) are based on the reinforcement learning 
and rely on the Q-learning algorithm with function 
approximation (Baird, 1995), State-Action, Reward-
State Action (SARSA) (Loch and Singh, 1998) and 
the Policy Gradient Actor Critic algorithm (Sutton et 
al, 2000). Yujie et al (2011) have proposed a traffic 
signal controller based on three layered neural 
network to control the traffic lights in urban road 
traffic conditions. Shen and Kong (2009) used 
neural network (NN) with back propagation to 
implement fuzzy logic for devising a technique for 
traffic coordination control. Choy et al (2006) have 
also used hybrid system of neural network and fuzzy 
logic for designing a TSC and carried out 
simulations for comparing the working of SPSA-
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NN, GLIDE and hybrid NN. Teo et al (2010) 
introduced genetic algorithm in their paper to 
optimise the traffic flow control. Choy et al (2006) 
also made use of GA to optimise the parameters of 
fuzzy controller used in their distributive multi-agent 
traffic signal controller. Ahmad et al (2014) first 
proposed an earliest deadline (EDF) based 
scheduling to reduce urban traffic congestion.  

In this paper, the adaptive signal control of 
bottleneck subzone is described as a nonlinear 
optimization problem, and solved using a BP Neural 
Network based Grey Qualitative Reinforment 
Learning algorithm (BP-GQRL), which can handle 
the uncertainty in traffic flow control system and 
alleviate traffic congestion spread. Grey qualitative 
theory has been successful in robot navigation 
applications and qualitative simulation applications 
(Shujie et al, 2011; Yuanliang et al, 2008; Chunlin et 
al, 2008; Yuanliang et al, 2004). 

The remainder of the paper is organized as 
follows: Section 2 describes the mathematical model 
of the problem. Section 3 describes the proposed 
BP-GQRL algorithm in detail. The simulations are 
carried out in section 4 to verify the effectiveness 
and robustness of our method, and section 5 
concludes our work. 

2 PROBLEM DESCRIPTION  

Any traffic signal control bottleneck subzone can be 
defined as a collection of sections of roads. A typical 
bottleneck subzone topology diagram is shown in 
Figure 1. Road carrying capacity is determined by 
the length of road and the effective lengths of the 
vehicles. When not considering the interaction 
between the subzones, we can say that the current 
bottleneck subzone is independent. Some sections 
with small traffic pressure, whose carrying 
capacities are considered to be +∞, do not require 
monitoring their carrying capacitites, and are called 
"ordinary sections". Accordingly, other sections are 
called "bottleneck sections". Our optimization goal 
is to minimize the average number of carrying 
vehicles of bottleneck sections and limit the number 
of carrying vehicles of each bottleneck section 
within an acceptable range.  

Assuming the set of bottleneck sections of 
subzone is R ൌ ሼR୧|i ൌ 1,2,⋯ , Nሽ, N is the number 
of bottleneck sections. According to the traveling 
directions of flow, one bottleneck section R୧ can be 
divided into two links: input link R୧୬

୧ ൌ ሼL୧୬,୨
୧ |j ൌ

1,2,⋯ , N୧୬
୧ ሽ  and output link 	R୭୳୲

୧ ൌ ሼL୭୳୲,୩
୧ |k ൌ

1,2,⋯ , N୭୳୲
୧ ሽ (As shown in Figure 1, there are four 

input links and four output links). L୧୬,୨
୧  is the inlet 

lane j of R୧ and N୧୬
୧  is the number of inlet lanes of R୧. 

L୭୳୲,୩
୧  is the outlet lane k of 	R୧  and N୭୳୲

୧  is the 
number of outlet lanes of R୧. The vehicle flows in 
input link and output link are determined by the 
traffic signal control schemes of the upstream and 
downstream signal controllers. The changes of the 
carrying vehicles in the links are the direct reflection 
of the control effect.  

Supposing that fሺt, iሻ is the number of carrying 
vehicles of bottleneck section R୧ at time t, f୧୬ሺt, i, jሻ 
is the instantaneous passing vehicle number of inlet 
lane Lin,k

i , and f୭୳୲ሺt, i, jሻ is the instantaneous passing 
vehicle number of outlet lane L୭୳୲,୩

୧ . f୧୬ሺt, i, jሻ  and 
f୭୳୲ሺt, i, kሻ  can be obtained from the traffic flow 
detectors laying at the inlet and outlet sections, 
respectively. The detectors may be coil detectors, 
video detectors, microwave detectors or any other 
types of detectors. According to road traffic 
conservation, fሺt ൅ᇞ t, iሻ  can be calculated by the 
following equation (1): 
 

fሺt ൅ᇞ t, iሻ ൌ fሺt, iሻ ൅෍ න f୧୬ሺt, i, jሻdt
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୲
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െ ෍ න f୭୳୲ሺt, i, kሻdt
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(1)

 

The objective function of bottleneck control 
optimization is: 

min
୔ሺ୲ሻ

1

N
෍STAሺt, iሻ

୒

୧ୀଵ

STAሺt, iሻ ൌ
fሺt, iሻ

Uሺiሻ

s. t. FMIN୧ ൑ fሺt, iሻ ൑ FMAX୧,			∀t, i;

 (2)

 

where Uሺiሻ is the saturated flow of R୧ (which is the 
maximum carrying capacity of the section, an 
inherent attribute of the road, and whose value can 
be selected by experience), STAሺt, iሻ is the saturation 
of R୧ (which reflects the traffic state of the section), 
and FMIN୧  and FMAX୧  are the wanted lower and 
upper limits of the number of carrying vehicles of R୧, 
respectively. Pሺtሻ is the dynamic traffic timing plan, 
namely the combination of the signal lights state and 
vehicles release time (including the transition time, 
such as the green flash time and the yellow light 
time) of each stage of each intersection in the 
bottleneck subzone.  
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Figure 1: A typical bottleneck subzone topology diagram. 

Suppose that the subzone is composed of M 
intersections. For any one intersection C୫ሺm ൌ
1,2,⋯Mሻ , supposing that the set of traffic signal 
stage (a combination of signal phases) is S୫ ൌ
ሼS୫ሺgሻ|g ൌ 1,2,⋯B୫ሽ, then, at time t, the vehicles 
release time of stage S୫ሺiሻ  is 	SG୫ሺi, tሻ  (unit: 
seconds). The solution of the optimization problem 
is the optimal dynamic traffic timing plan. Based on 
the above assumptions, we can get: 

Pሺtሻ ൌ ሼSG୫ሺg, tሻ|1 ൑ g ൑ B୫, 1 ൑ m ൑ Mሽ (3)

3 METHOD 

In the optimization problem defined by equations (1) 
to (3), the function relationship of fୡሺt, iሻ and Pሺtሻ is 
not explicitly expressed. Although there are a lot of 
"model-driven" methods that can deduce the 
function relationship between fୡሺt, iሻ  and Pሺtሻ 
approximately, here we do not intend to make this 
attempt based on the following reasons: (1) 
Numerous confounding factors, such as pedestrians 
and non-motorized vehicles etc, make many 
uncertainties in the traffic flow system, and we can 
only get the approximate function. (2) Many " data-
driven" methods, such as reinforment learning 
method, can solve above optimization problem 
without knowing the exact function relationship. In 
order to handle the uncertain error of the traffic flow 
detectors, grey theory model and qualitative method 
were used to express the sensor data. In order to 
avoid deducing the function relationship between 
traffic flow and timing plan, grey reinforcement 
learning algorithm was adopt to seek the solution. In 
order to enhance the generalization capability of the 

system and avoid the "curse of dimensionality" and 
improve the convergence speed, BP neural network 
was used to approximate the Q-function.  

3.1 Grey Qualitative Representation of 
Data  

3.1.1 Probability Grey Number 

The grey system theory, which originated in the 
1980s, mainly focuses on modeling a system using 
“small sample” information(Julong, 1985). 
Considering the uncertainty, information is usually 
represented by grey numbers, which are usually 
intervals. For example, given an observation value y 
of a system output, the grey system theory 
researchers prefer to represent it by a grey number 
⨂ ൌ ሾy, yഥ ሿ. It means that the true value of the output 

is in ሾy, yഥ ሿ, but we do not know exactly which one it 

is. To obtain the exact value, a whitening weight 
function is usually defined on the grey number to 
indicate the observer’s preference of the values in 
the interval.  

In this paper, we use Probability Grey Number to 
describe the observation value, which is defined as 
follows: 

Definiton 1. Probability grey number ⨂ሾୟ,ୠሿ , 
whose whitening weight function is the probability 
density function of the normal distribution 

Nሺ
ୟାୠ

ଶ
, σଶሻ, is a special interval grey number defined 

in the real interval [a,b](a<b), where σଶ satisfies the 
following formula:  
 

න
1

√2πσ

ୟ

ିஶ

e
ሺ౮షబ.ఱሺ౗శౘሻሻమ

మಚమ dx ൌ
α

2
 (4)

 

1 െ α  is the measure of probability grey number, 
denoted as follow: 
 

μ൫⨂ሾୟ,ୠሿ൯ ൌ 1 െ α, α ∈ ሾ0,1ሿ  (5)
 

From the above definition, the distribution 

parameters of probability grey number is σ ൌ
ୠିୟ

ଶ୞ಉ/మ
, 

Z஑/ଶ  is the α/2  fractile of standard normal 
distribution N (0,1). If we know any two of the three 
elements (i.e. the interval [a,b], measure 1 െ α and 
distribution parameter σଶ ) in the probability grey 
number, and the third will be finalized.  

Definition 2. The similarity between two 
probability grey numbers, ⨂ሾୟ,ୠሿ  and ⨂ሾୟ,ୠሿ , is 
defined as follows (seeing shadow area in Figure 2 
below): 

Simሺ⨂ሾୟ,ୠሿ,⨂ሾୡ,ୢሿሻ ൌ μሺ⨂ሾ୮,ାஶሻሻ ൅ μሺ⨂ሺିஶ,୮ሿሻ (6) 
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where p is the intersection of whitening weight 
functions of 	⨂ሾୟ,ୠሿ and ⨂ሾୟ,ୠሿ. 

 

Figure 2: Definition of similarity between grey numbers 
⨂ሾୟ,ୠሿand.⨂ሾୡ,ୢሿ 

3.1.2 Grey Qualitative Description of the 
System Observations 

As mentioned earlier, saturation STAሺt, iሻ  is the 
observation value of the traffic system, which 
reflects the road service level and the control target. 
Because of the uncertainty of measurement error, 
supposing that one observation value STAሺt, iሻ 
corresponds to a probability grey number ⨂ሺt, iሻ . 
According to the following six principles based on 
traffic flow theory, the service level SLሺt, iሻ  of 
section R୧ at time t can be qualitatively divided into 
six levels.  

Principle 1:  If STAሺt, iሻ ∈ ሺെ∞, 0.35ሿ , which 
means that the traffic is smooth and volume is less 
than 60% of road capacity, then SLሺt, iሻ ൌ 1 and the 
corresponding grey number of  this level is ⨂෩ଵ ൌ
⨂ሺିஶ,଴.ଷହሿ	, μሺ⨂෩ଵሻ ൌ β

ଵ
ሺtሻ. 

Principle 2:  If STAሺt, iሻ ∈ ሺ0.35,0.64ሿ , which 
means that the traffic is steady with a alight delay, 
and volume is nearly 70% of road capacity, then 
SLሺt, iሻ ൌ 2 and the corresponding grey number of  
this level is ⨂෩ଶ ൌ ⨂ሺ଴.ଷହ,଴.଺ସሿ	, μሺ⨂෩ ଶሻ ൌ β

ଶ
ሺtሻ. 

Principle 3:  If STAሺt, iሻ ∈ ሺ0.64,0.77ሿ , which 
means that the traffic is steady with some delay, and 
volume is nearly 80% of road capacity, then 
SLሺt, iሻ ൌ 3 and the corresponding grey number of  
this level is ⨂෩ଷ ൌ ⨂ሺ଴.଺ସ,଴.଻଻ሿ	, μሺ⨂෩ ଷሻ ൌ β

ଷ
ሺtሻ. 

Principle 4:  If STAሺt, iሻ ∈ ሺ0.77,0.9ሿ , which 
means that the traffic is not steady with tolerable 
delay, and volume is nearly 90% of road capacity, 
then SLሺt, iሻ ൌ 4 and the corresponding grey number 
of  this level is ⨂෩ସ ൌ ⨂ሺ଴.଻଻,଴.ଽሿ	, μሺ⨂෩ ସሻ ൌ β

ସ
ሺtሻ. 

Principle 5:  If STAሺt, iሻ ∈ ሺ0.9,1.00ሿ , which 
means that the traffic is not steady with intolerable 
delay, and volume is close to the road capacity, then 
SLሺt, iሻ ൌ 5 and the corresponding grey number of  
this level is ⨂෩ହ ൌ ⨂ሺ଴.ଽ,ଵ.଴଴ሿ	, μሺ⨂෩ ହሻ ൌ β

ହ
ሺtሻ. 

Principle 6:  If STAሺt, iሻ ∈ ሺ1.00, ൅∞ሻ , which 

means that the traffic is not steady with tolerable 
delay, and volume is nearly 90% of road capacity, 
then SLሺt, iሻ ൌ 6 and the corresponding grey number 
of  this level is⨂෩଺ ൌ ⨂ሺଵ.଴଴,ା∞ሻ	, μሺ⨂෩଺ሻ ൌ β

଺
ሺtሻ. 

β
୧
ሺtሻ  is the parameter to be optimized, whose 

initialized value is selected according to the artificial 
experience or obtained through parameter learning 
from the historical detector data. With the operation 
of the system, the grey degree will gradually 
decrease, the value of  β

୧
ሺtሻ will be updated with the 

change of the data. 

3.2 System Decision 

The output of the traffic signal optimization system 
described here is the optimized dynamic traffic 
signal timing plan SG୫ሺg, tሻ. The decision of agent 
is: at the start time of each stage g of each 
intersection m, increase or reduce the vehicle release 
time of current stage ᇞ T  seconds, or keep it 
unchanged. In general, T is set to 4, which reflects 
the adjustment step length of the green light time, 
and its value should not be too large. The decisions 
are executed by the traffic signal controllers in 
intersections. 

3.3 BP-GRL Algorithm 

The uncertainties of bottleneck subzone signal 
control system mainly come from the detectors, the 
environmental status and the feedbacks. For the 
subzone with N bottleneck sections and M 
intersections, the state set and action set can be 
expressed as follows:  

GS ൌ ሺGSଵ, GSଶ,⋯ , GS୒ሻ 
GA ൌ ሺGAଵ, GAଶ,⋯ , GA୑ሻ 

GS୧ ∈ ൛⨂෩ଵ,⨂෩ ଶ,⨂෩ ଷ,⨂෩ ସ,⨂෩ ହ,⨂෩ ଺ൟ 
GA୨ ∈ ሼ൅ ᇞ T, 0, െ ᇞ Tሽ 

(7)

where i ൌ 1,2,⋯ , N and j ൌ 1,2,⋯ ,M. 
At the start of time step t of each stage, agent 

sensing the external environment by the detectors 
and get the grey state GSሺtሻ.  Then, by using grey 
RL model, the agent will select an action GA(t) to 
execute. At the start of the time step t+1 of next 
stage, the agent observes subsequent state GSሺt ൅ 1ሻ, 
and gets the the corresponding compensation 
according to the grey enhancement function  
GRሺୋୗሺ୲ሻ,ୋ୅ሺ୲ሻሻ . Combining equation (7), the grey 
enhancement function GRሺୋୗሺ୲ሻ,ୋ୅ሺ୲ሻሻ, which is used 
to reward the action which makes the grade of road 
service level improved and not less than four, is 
defined as follows: 
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GRሺୋୗሺ୲ሻ,ୋ୅ሺ୲ሻሻ ൌ ∑ SIሺt ൅ 1ሻ୒
୧ୀଵ െ	∑ SIሺtሻ୒

୧ୀଵ  

SIሺtሻ ൌ 	
୫ୟ୶ሺ଴.ହ, ୫ୟ୶

ౠసభ,మ,య,ర
ୗ୧୫ሺୋୗ౟ሺ୲ሻ,⨂෩ ౠሻሻ

ୗ୐ሺ୲,୧ሻ
  

(8)

We use GQ values of grey Q learning method to 
describe the reward discounts and expectations. BP 
neural networks can be used to learn GQ values, and 
each bottleneck section corresponds to a neural 
network. The output of a neural network is the GQ 
values of each stage of the intersection, and the input 
of a neural network is the STAሺt, iሻ values.  

The traffic bottleneck area signal control 
algorithm based on grey reinforcement learning and 
neural networks is described below. For each BP 
neural network: 
Step0：Initialize the starting timing plan, the  agent 
state/action set and the neural network. 
Step1：At the start of time step t of each stage of 
each intersection, detect the states ሼSTAሺt, iሻሽ of all 
bottleneck sections and compute the state GSሺtሻ and 
the output GQሺୋୗሺ୲ሻ,ୋ୅ሺ୲ሻ,னሺ୲ሻሻ of network.  
Step2：According to "greedy exploration strategy" 
(i.e., choosing the actions which can maximize the 
GQ value), select the current decision 	GAሺtሻ  and 
execute it.  
Step3：Observe the subsequent state set ሼSTAሺt ൅
1, iሻሽ , calculate the grey number GSሺt ൅ 1ሻ , and 
receive the timely feedback value r୲ ൌ
GRሺୋୗሺ୲ሻ,ୋ୅ሺ୲ሻሻ according to the formula (8).  
Step4：Update GQሺୋୗሺ୲ሻ,ୋ୅ሺ୲ሻሻ based on formula (9) 
as follows: 
 

GQ൫ୋୗሺ୲ሻ,ୋ୅ሺ୲ሻ൯ ൌ ሺ1 െ αሻGQ൫ୋୗሺ୲ሻ,ୋ୅ሺ୲ሻ,னሺ୲ሻ൯ 

൅αሾr୲ ൅ γmax
ୋ୅ᇲ

GQሺୋୗሺ୲ାଵሻ,ୋ୅ሺ୲ሻᇲ,னሺ୲ሻሻሿ 
(9)

 

Step5：Update the weight ωሺtሻ of neural network 
as ωሺt ൅ 1ሻ  using the error signal eሺtሻ  defined in 
formula (10), so that the actual output of the neural 
network can approximate the desired output  
GQሺୋୗሺ୲ሻ,ୋ୅ሺ୲ሻሻ.  
 

eሺtሻ ൌ GQሺୋୗሺ୲ሻ,ୋ୅ሺ୲ሻሻ െ GQሺୋୗሺ୲ሻ,ୋ୅ሺ୲ሻ,னሺ୲ሻሻ (10)
 

Step6：Go to the start time step t+1 of next stage, 
and repeat  Step1~ Step6.  

4 SIMULATION AND ANALYSIS  

4.1 Experimental Method 

In order to verify the effectiveness of the proposed 
method, we use the microscopic traffic simulation 
commercial software VISSIM to simulate the 

control effect of a bottleneck subzone in the city of 
Lianyungang of China. By collecting the traffic flow 
and road topology information of the subzone, we 
calibrate a simulation intersection with real data. 
The region topology diagram is shown in Figure 3. 
There are 9 intersections and 10 bottleneck sections 
in the subzone, and local traffic in the periods of 
morning and evening peaks is congested.  

 

Figure 3: The subzone topology diagram. 

Currently, the traffic signal timing plans in the 
region has been optimized by the professional 
engineers with more than five years of work 
experience. The present signal controllers implement 
the "multi-period timing control" mode, whose plans 
are fixed without any dynamic adjustment for each 
period. Commissioned by the traffic management 
departments, we need to assess the timing plans in 
this subzone, to determine whether it is necessary to 
change the timing plan or perform adaptive control 
scheme. 

In order to verify the robustness of BP-GRL 
model in a situation where the detected data is not 
accurate or with noise, the Gaussian white noise are 
added to the output of each VISSIM detector, whose 
mean is zero and variance is four. 

The three experiments that can be used to 
contrast and analyze include: (a) the experiment with 
the existing fixed timing plans optimized by 
professional engineers, which is recorded as FIX 
method; (2) the experiment with proposed BP-GRL 
method based on Gaussian white noise data, which 
is recorded as G-BP-GRL method; (3) the 
experiment with proposed BP-GRL method without 
Gaussian white noise, which is recorded as BP-GRL 
method. The four evaluation indicators that can be 
used to evaluate the results include: (1) delay, (2) 
parking time, (3) the number of stops and (4) the 
number of passing vehicles. 

 
 

Adaptive�Traffic�Signal�Control�of�Bottleneck�Subzone�based�on�Grey�Qualitative�Reinforcement�Learning�Algorithm

299



4.2 Results and Analysis 

We conducted 40,000 seconds simulation three 
times, correspongding to the FIX experiment, G-BP-
GRL experiment and BP-GRL experiment. One 
simulation second is equal to five simulation steps. 
The sums of the evaluation indicator values are 
shown in Figure 4 and the numerical trends are 
shown in Figure 5 for comparisons. 

 

Figure 4: The statistical results of the sums of the 
evaluation indicator values.  

Through data analysis, we find that, compared with 
FIX, the delays, the parking time, the number of 
stops and the number of passing vehicles of G-BP-
GRL are reduced by 18.05%, 22.1%, 2.07% and -
337 pcu (per car unit) respectively, while BP-GRL 
are reduced 18.57%, 22.41%, 2.03% and -618 pcu 
respectively. Thus, regardless of whether the data 
have a certain detector noise or not, the results of 
BP-GRL algorithm are much better than the FIX 
method, and the improvement is obvious. Because 
we use grey qualitative approach to express the 
observation values, the system has good robustness 
and low sensitivity to data noise. 

By the analysis, we konw that the existing fix 
timing plans have large room for improvement, and 
recommend that traffic managers should set up the 
addition of traffic flow detectors and implement the 
adaptive control strategy to achieve better control 
effect. 

 

Figure 5: The numerical trends of the valuation indicators. 

5 CONCLUSIONS 

Essentially, the bottleneck is the inevitable result of 
the growing traffic demand. Excessive traffic 
demand makes road traffic congestion arising from 
lack of capacity for queue. A Grey Qualitative 
Reinforment Learning algorithm is present in this 
paper to realize the adaptive signal control of 
bottleneck subzone, which is described as a 
nonlinear optimization problem. Firstly, we use grey 
theory model and qualitative method, which can 
handle the uncertainites in the traffic flow system, to 
express the sensor data. Secondly, BP Neural 
Network based Grey Reinforcement Learning (BP-
GRL) algorithm, which is the biggest innovation in 
this paper, was adopt to seek the solution. So we do 
not need to deduce the function relationship of 
traffic flow and timing plan. Finally, we do three 
experiments using four evaluation indicators for 
contrast and analyze. Simulation results show that 
the proposed method can significantly improve the 
traffic situation of bottleneck subzone, and the 
method has good robustness and low noise 
sensitivity. Combining with pedestrian and non-
motorized traffic data, the model will be further 
extended in the future. 
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