
Optimizing Elliptic Curve Scalar Multiplication  
with Near-Factorization 

Pratik Poddar, Achin  Bansal and Bernard  Menezes 
Department of Computer Science, Indian Institute of Technology - Bombay , Mumbai 400076,  India  

Keywords:  Elliptic Curve Cryptography,   Scalar Multiplication,   near-Factorization,  NAF,  Window NAF,  Koblitz 
Curves. 

Abstract:  Elliptic curve scalar multiplication ( ሾ݇ሿP  where ݇ is an integer and  P  is a point on the elliptic curve) is 
widely used in encryption and signature generation. In this paper, we explore a factorization-based approach 
called Near-Factorization that can be used in conjunction with existing optimization techniques such as 
Window NAF (Non Adjacent Form). We present a performance model of Near-Factorization and validate 
model results with those from a simulation. We compare Near-Factorization with wNAF for a range of 
scalar sizes, window sizes, divisor lengths and Hamming weights of divisor. The use of Near-Factorization 
with wNAF results in a considerable reduction in the effective Hamming weight of the scalar and a 
reduction in overall computation cost for Koblitz curves. 

1 INTRODUCTION 

Elliptic Curve Cryptography (ECC) has received 
much attention in recent years. For the same level of 
security, its performance surpasses that of RSA and 
other public key cryptographic schemes. All public 
key cryptographic algorithms, however, are orders 
of magnitude more compute-intensive compared to 
their secret key counterparts and are the bottleneck 
in widely used protocols such as SSL/TLS. Hence, 
there is a dire need to optimize their performance. 

The elliptic curve operation of scalar 
multiplication is widely used in encryption, 
decryption and signature generation/verification. 
Denoted [݇]P, where ݇ is an integer and P is a point 
on the elliptic curve, it involves computing  P  + P +  
. . .  +  P  (݇	times).  Scalar multiplication is 
implemented using point doublings and point 
additions. Some of the best known methods of 
reducing the number of additions are the use of the 
NAF (Non Adjacent Form) (Morain, 1990)  or 
multi-base representation (Dimitrov, 2005) of the 
scalar, ݇.  On the other hand, to reduce the 
computation time of the point doublings, point 
halving has been suggested as an alternative 
(Knudsen, 1999), (Schroeppel, 2000).  For the 
special case of Koblitz curves (Koblitz, 1992), 
(Solinas, 2000), the ߬- adic operation replaces point 
doubling and results in greatly reduced cost of scalar 

multiplication. One of our goals is to investigate 
whether the cost of cryptographic operations can be 
reduced even further especially in the context of 
Koblitz curves. 

In this paper, we explore an optimization called 
Near Factorization based on expressing the scalar ݇ 
as  ݀ ൈ 	ݍ   are respectively the ݎ and ݍ where  ݎ	
quotient and remainder obtained by dividing ݇ by a 
divisor, ݀.  This form of the scalar, ݇, was earlier 
studied in (Ciet, 2003) in a completely different 
context  െ  that of resistance to side channel attacks 
while our objective is to investigate the performance 
implications of Near Factorization. ݀ is chosen to 
have  low Hamming weight (for example 3). For 
each such  ݀, we compute the combined Hamming 
weight of ݀, 	ݍ and  ݎ. We select the combination 
with minimum Hamming weight to reduce the 
number of point additions. Despite the considerably 
reduced search space, the cost of this search will not 
be insignificant. So, the application of Near 
Factorization will likely be limited to scenarios 
where P is unknown but the scalar ݇ may be chosen 
beforehand as in Diffie-Hellman Key Agreement 
(Diffie, 1976) or in encrypting a message 
(Hankerson, 2004) using a public key just received 
via a digital certificate.  

We use Near Factorization in conjunction with 
wNAF  (window NAF). We develop an analytical 
model to estimate the performance of NF+wNAF 
and compare the model output with simulation 
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results. We experiment with a range of window 
sizes, scalar lengths, divisor lengths and divisor 
Hamming weights and identify the best combination 
of these. Our main result is that  NF+wNAF reduces 
the number of point additions vis-à-vis wNAF by up 
to 10% in the case of Koblitz curves. 

Section 2 summarizes work related to this paper 
while Section 3 contains a brief review of wNAF. In 
Section 4, we introduce Near Factorization and 
develop a model that captures the resulting reduction 
in Hamming weight. Section 5 highlights practical 
considerations and our main results. Section 6 
contains a summary and our conclusions. 

2 RELATED WORK 

There are a myriad of proposed strategies for 
minimizing the cost of scalar multiplication 
(Gordon, 1998). If the entity computing ሾkሿP  has 
the prerogative of crafting k,  he may choose k with 
low Hamming weight. This reduces security since it 
results in a decrease in search space of k.  For 
example, (Coron, 2005), (Muir, 2006) present an 
algorithm to efficiently solve the discrete logarithm 
problem when the Hamming weight of k is known. 
A tradeoff between security and performance is to 
choose k as a product of low Hamming weight terms  
kଵ , kଶ ,  . . .   k୬  as in (Hoffstein, 2003). Here, the 
cost of scalar multiplication is proportional to the 
sum of the Hamming weights of the factors of k but 
the total number of possible values for k  is the 
product of the number of possible values of each 
factor. 

The other option is to accept  k  from a “good” 
random number generator and find alternate number 
representations of k which minimize the Hamming 
weight and the computation cost. NAF  and wNAF  
(Morain, 1990) are two such examples. The number 
of point additions and doublings in scalar 
multiplication was formalized through the notion of 
an addition chain (Knuth, 1998).  An addition chain 
for k is a list of positive integers,  kଵ = 1, 			kଶ=2,    . 
. .  , 	k୬ = k such that for each  i	  	1,  there is some 
j and m, 	1  j  m ൏ i, such that 	k୧ = 	k୨		k୫	.  
(m	 ൌ 	j corresponds to point doubling while m	  	j 
corresponds to point addition in the context of scalar 
multiplication). The optimal cost is obtained by 
finding the shortest possible chain length, n. 
Minimal chain lengths for small values of k are 
readily available. However, for large values of k, 
only upper and lower bounds have been derived 
(Erdos , 1960).  Also, point additions and doublings 

are lumped together – this is clearly not appropriate 
since, in the case of Koblitz curves, the cost of a τ-
adic operation (in lieu of doubling) is considerably 
less than that of a point addition. 

There have been a number of variations and 
extensions to wNAF. Fractional wNAF, introduced 
in (Moller, 2003), was motivated by considerations 
of optimal memory utilization in resource-
constrained/embedded devices. It provides many 
more options in the number of points that need to be 
precomputed (rather than just		2୵ିଶ െ 1 )  –  thus 
the window size may be tailored to the available 
storage. In addition, a left-to-right recoding scheme, 
resulting in the MOF (Mutually Opposite Form) 
representation of a scalar, was proposed in (Joye, 
2000) for w = 2 and generalized for w > 2 in 
(Okeya, 2004) to save memory. The non-zero 
densities in fractional wNAF and fractional wMOF 
were investigated in (Fan, 2005), (Schmidt, 2006). It 
was shown that the Hamming weight in fractional 
wNAF and wMOF was no better than in wNAF for 
the same window size. 

(Dimitrov, 2005) proposed a representation of 
the scalar, k using mixed powers of 2 and 3.  This 
Double-Base representation is sparse and 
consequently reduces the number of point additions 
though it requires efficient algorithms for point 
tripling. (Adikari, 2011) introduced an easily 
computable hybrid binary-ternary number 
representation for k (a special case of double base 
chains). They studied its performance through a 
Markov chain analysis as well as through software 
implementation. (Dimitrov, 2007) added radix 5 thus 
generalizing the two base representation to those 
with three and more (multi-base representations). 
Motivated by considerations of memory usage, 
(Doche, 2006), (Barua, 2007) proposed a window-
based implementation. The work in this paper aims 
to reduce the number of additions while leveraging 
the extremely low cost of τ-adic operations in 
Koblitz curves to reduce overall computation time. 

The Near Factorization approach is closest in 
spirit and indeed has been inspired by the “factor 
method” suggested in (Knuth, 1998) wherein 
working with the factors of k may yield a reduction 
in cost.  The scalar product,  55P , for example, may 
be computed in two steps: 

 
Q  =  5P  =  2 ( 2P  ) + P    and    55P  =  11Q  =  
 2 ( 2 ( 2Q  ) )  +  2Q  +  Q  
 
The factor approach involves a total of 8 adds 

and doubling operations while the “binary method” 
involves 9 operations. Near Factorization is a 
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generalization of the factor method which allows for 
a non-zero remainder. As mentioned earlier,  the 
scalar, k, was represented as dq  r  in (Ciet, 2003), 
where d is randomly selected. However, the main 
goal of that work was to extend resistance to side-
channel attacks in ECC computations. There was no 
attempt to reduce the combined Hamming weight of 
d, q and r or to quantify the savings in computation 
time resulting from a decrease in Hamming weight. 

3 REVIEW OF WINDOW NAF 

wNAF-based scalar multiplication involves two 
steps – the wNAF representation of the scalar is first 
computed followed by point doubling and point 
addition on the wNAF representation.  

The wNAF representation of a scalar, k  is  k	 =  
∑ k୧2୧
୪ିଵ	
୧ୀ  where   k୧ ∈	{ 0 , േ1 , …. ,  േ (2୵ିଵ - 3) ,  

േ (2୵ିଵ - 1) }.  	l ,  the number of digits in the NAF 
representation, is either |k| or  |k| + 1 where |x| is the 
number of bits in the binary representation of x . The 
wNAF representation may be obtained by scanning 
w-bit  overlapping  windows of the binary 
representation of k from right to left. An important 
feature of the wNAF representation of a scalar is 
that there are at least  wെ 1  zeros separating two 
non-zeros. 

Example 1: The binary, 2NAF and 4NAF 
representations of the scalar  k =  796404706727234   
are respectively 

101101010001010011011010111010010001010101
01000010, 
 
101ത01ത010100010101001ത001ത01ത001ത0100100010101
0101000010  and 
 
10005ത00050000050000700005ത0001ത0007ത000100050
005000010 

 
Here,  xത  denotes a weight of -	x.  The Hamming 

weight of the 4NAF representation is 12 compared 
with 20 in the 2NAF representation and 23  in the 
simple binary representation. 

Scalar multiplication with an ݈-bit scalar in 
simple binary involves  ݈ െ 1 point doublings  and  
݈ ⁄ 2 െ 1	 point additions on average.  The expected 
number of non-zeros in the wNAF representation of 
an 	݈-digit scalar is roughly  ݈ ⁄ ሺݓ  1ሻ .  With 
wNAF,  w > 2, the points 3P , 5P,  . . .  (2୵ିଵ – 1)P  
and their negatives are first computed. So, this pre-
computation cost (ignoring unary negation) is that of 
only 1 point doubling and 2୵ିଶ െ1 point additions 
yielding total mean computation cost  =  ݈D   +  
ሺ2୵ିଶ െ 2	 	  ୵ାଵൗ 	ሻ A  where 	D and A  are 
respectively the times to compute a point doubling 
and a point addition.   

 

Table 1:  Acronyms and Notation. 

wNAF(ݔ) 
 NAF representation of an 
integer, ݔ with window size = 
  ݔ

 
ܲ ቀ

݊  ,ݓ
ݐ  1

ቁ 

 

Probability that a wNAF string of 
length  ݊    has Hamming weight  ݓ
ݐ  1

NF+wNAF 
Near Factorization on a wNAF 
represented scalar 

݉ቀ
݊  ,ݓ
ݐ  1

ቁ 

 

# of wNAF strings of length  ݊  ݓ  
with Hamming weight  ݐ  1 

 P,  Q  Points on an Elliptic Curve ܯሺ݊   ሻݓ
Total  # of wNAF strings of  length  
݊  ݓ

݇, ݈  ݈  is the length of scalar,  ݇ ܲ′ሺ݊, ሻݎ|ݍሺܪ ) ሻ  Probݐ   across  all   ݐ	
iterations) 

,ݍ ,ݎ ݀  
Quotient and remainder 
obtained by dividing 	݇  by 
divisor, 	݀ 

௦ܲሺ݊,   ሻݐ
Prob ( ܪሺݎ|ݍሻ ൌ   ݏ  given that   ݐ	
digits of  ݎ|ݍ   are random ) 

,′ݍ ,Shifted quotients ܳሺ݊  ′′ݍ ሻݐ Probability that  ܪሺݎ|ݍሻ ൌ    ݐ	

,ሺ݊′ܳ ݔ  ,Length of string |ݔ| ሻݎ|ݍሺܪ )ሻ  Probݐ   across  all   ݐ	
iterations)  

 ݕ	|	ݔ
Concatenation of strings  ݔ and  
 ݕ

ܿ Total # of possible values of ݀ 

 ሻݔሺܪ
Hamming weight of string ݔ (# 
of non-zeros in ݔ ) 

ܿ௦  
Total # of values of 	݀  with ݏ random 
digits 
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4 NEAR-FACTORIZATION  

4.1 Description of NF+Wnaf 

With Near Factorization, the scalar,		݇, is 
represented as		݀ ൈ ݍ   are the ݍ and	ݎ	ሺ 			ݎ	
remainder and quotient obtained from dividing ݇ by 
the divisor, ݀).  [݇]P  is computed as follows 

Step 1:  Compute  Q  = [ݍ]P   
Step 2:  Compute   
         [݇]P   =  [݀]Q  + [ݎ]P   

 
Instead of computing [݀]Q and  [ݎ]P  separately, 

their computations are interleaved using Shamir’s 
Ladder as below. 

 
Input:  Scalars  ݀ ,  ݎ  and 
elliptic curve points  Q ,  P  
Output:  R  =  [݀]Q +  [ݎ]P 
Let  ݀|ௗ	|ିଵ 	…	݀ଵ	݀  and  ݎ|ௗ	|ିଵ   ݎଵݎ	…	
denote the wNAF representations of 
݀  and  ݎ. 
R   =  O 
for  ݅	 ൌ 	0   to   |݀| െ 1   { 

R   ←  [2]R    
R   ←   R   + ሾ݀|ௗ	|ିଵିሿ Q   +     
        	ሾݎ|ௗ	|ିଵିሿ P 

} 
 

The cost of Step 1 is |ݍ| െ 	1  point doublings 
and ܪሺݍሻ െ 	1 point additions while that of Step 2 is 
|݀| െ 1   point doublings and ܪሺ݀ሻ  ሻݎሺܪ	 െ 	1 
point additions.  The combined cost is 
 
ሺ	|݀| 	 |ݍ| െ 	2	ሻ ൈ D  ሺܪሺ݀ሻ  ሻݎሺܪ	  ሻݍሺܪ	 െ 	2ሻ ൈ  (1)  ܣ

 
For 160-bit ݇ and an 80-bit divisor, an 

exhaustive search of divisor space to minimize 
Equation 1 is infeasible. Instead, we find a local 
minimum of the computation cost (Equation 1) by 
iterating over all possible values of ݀ with a positive 
digit in the most significant position and low 
Hamming weight (3 or less, for example).  We refer 
to this step as Step 0.  

Example 2:  Near Factorization on the scalar ݇ = 
796404706727234 (in Example 1) with 2NAF 
representations yields  

 
݀  = 1010000000000000000001ത000 
  10010001001ത0001ത01ത00000001ത0 =  ݍ
  1000000000001010101ത0010  =   ݎ
 

The Hamming weights of ݀, ݍ and ݎ are 
respectively 3, 7 and 6 resulting in 14 point 
additions. The corresponding number of additions 
using NAF sans Near Factorization is 19. Thus, 
NF+2NAF involves 26% fewer point additions. The 
number of point doublings are 50 and 49 with 2NAF 
and NF+2NAF respectively. 

 
With NF+4NAF 	݀, ݍ and ݎ are  
݀  = 70000000500000000007ത00000  
 300007000300000000003ത0 =  ݍ
   3000005000000000010 =  ݎ

The number of point additions with NF+4NAF is 
8 versus 11 with 4NAF. 

We next model the combined Hamming weight 
of quotient and remainder obtained through Near 
Factorization. 

4.2 Modeling Cost of NF 

The first step in our model is to compute ܲሺ݊  ,ݓ
ݐ  1ሻ – the probability that an arbitrarily selected 
and valid ݓNAF string of ݊   digits has ݓ
Hamming weight ݐ  1. A valid ݓNAF string 
satisfies the following: 

(i) The digits in the string are 
drawn from the set 

  S  =   { - (2௪ିଵ - 1) ,  - (2௪ିଵ 
- 3) , …. ,  -1 ,  0 , 1 , …. ,  
(2௪ିଵ - 3) ,  (2௪ିଵ - 1) } 

(ii) Any two non-zeros in the string 
are separated by at least 	ݓ െ 1  
zeros. 

(iii) The string begins with a 
positive integer from the above 
set S 

Let ܯሺ݊   NAFݓ ሻ denote the number ofݓ
strings of length ݊   starting with a 1. Since it is ݓ
equally likely that a ݓNAF string begins with a 1 or 
3	or  . . . ,  ሺ2௪ିଵ 	െ 	1ሻ,   the total population of 
݊  NAF strings of lengthݓ  is  2௪ିଶ  ݓ 	ൈ ሺ݊ܯ	 
ሻ.  Also, let  ݉ሺ݊ݓ  ,ݓ ݐ  1ሻ denote the number 
of ݓNAF strings of length 	݊   and Hamming	ݓ
weight 		ݐ  1.  

So, 

 
ܲሺ݊  ,ݓ ݐ  1ሻ  ൌ	  

ሺା௪,			௧ାଵሻ

ଶሺೢషమሻ		ൈ		ெሺା௪ሻ
                      (2) 

 
To compute  ݉ሺ݊  ,ݓ ݐ  1ሻ , we note that the 

leftmost non-zero in each  ݓNAF string accounted 
for in the numerator can take 2௪ିଶ  possible values  
while each of the remaining ݐ non-zeros may take 
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one of 2௪ିଵ possible values. Further, each non-
zero digit, except for the rightmost, must be 
followed by at least 	ݓ െ 1 zeros. The number of 
ways the remaining 		݊  ݓ െ ሺݐ  1ሻ	– ሺݓ െ 1ሻݐ  
zeros may be placed in ݐ  1 possible bins 
(corresponding to the ݐ  1 bins of zeros to the 
right of each non-zero digit) is   

ቀ	݊ െ ሺݓ െ 1ሻݐ  w െ 1
ݐ

ቁ   

(This problem is analogous to counting the 
number of non-negative integral solutions to the 
equation ܽଵ 	ܽଶ	. . . 	ܽ ൌ ܰ	which is 

ቀܰ  ݎ െ 1
ݎ െ 1

ቁ  ).  Here, ܰ ൌ 	݊  ݓ െ ሺݐ  1ሻ െ

ሺݓ െ 1ሻݐ  and  ݎ	 ൌ ݐ	  1.  
 
So, 

 
݉ሺ݊ݓ, ݐ  1ሻ 	ൌ 		2ሺ௪ିଶሻ 	ൈ 	2ሺ௪ିଵሻ௧ 			

ൈ 	ቀ ݊ െ ሺݓ െ 1ሻݐ  w െ 1
ݐ

ቁ (3) 

 
Substituting  into  Eq. 2   
 

ܲሺ݊  ,ݓ ݐ  1ሻ 		ൌ 		
2ሺ௪ିଵሻ௧ ቀ݊ െ ሺݓ െ 1ሻݐ  w െ 1

ݐ
ቁ

ሺ݊ܯ  ሻݓ
 (4) 

 
To obtain a closed-form  expression for ܯሺ݊ 

 ሻ, we note that the first non-zero after the leftmostݓ
digit of a wNAF string may take one of  2௪ିଵ 
possible values and be separated from the leftmost 
digit by at least  ݓ െ 1  zeros. So, 	ܯሺ݊   ሻ can beݓ
expressed recursively as  

 

ሺ݊ܯ  ሻݓ ൌ 		 2௪ିଵܯሺ݊ሻ 	2௪ିଵܯሺ݊ െ 1ሻ
	2௪ିଵܯሺ݊
െ 2ሻ 		. . . . . .				2௪ିଵܯሺ1ሻ 

(5) 

 

Expressing as a ݓth order recurrence,  
 
ሺ݊ܯ  ሻݓ 	ൌ ሺ݊ܯ		  ݓ െ 1ሻ		2௪ିଵܯሺ݊ሻ (6) 

 
The characteristic equation of this recurrence is 
 
௪ିଵݎ	–	௪ݎ										   െ	2௪ିଵ ൌ 	0	 
 
Let r1 ,  r2 ,  …. , rw  be the roots of the above 

equation (these are unique at least up to 6=ݓ).  So,   
 

ሺ݊ሻܯ ൌ 	 ܿଵݎଵ
 		ܿଶݎଶ

 		… .		ܿ௪ݎ௪   (7) 
 

From the initial conditions, ܯሺ1ሻ = 1, ܯሺ2ሻ = 1, 
 , and hence	ሻ = 1, the coefficients, ܿݓሺܯ ,..…

ሺ݊ܯ   ሻ may be computed and used in Equationݓ
4. 

Let ܿ	be the number of different divisors over 
which the Near Factorization Algorithm iterates. 
While the values of the quotients and remainders are 
not unique across iterations, the concatenated 
quotient and remainder, ݎ|ݍ, is. As explained below, 
the values of  ݎ|ݍ  are not necessarily independent 
across iterations.  

Figure 1 illustrates the relationship between the 
dividend, quotient and remainder (the dividend is the 
original scalar, ݇). Three shifted quotients are shown 
– the extent of their shifts is dictated by the positions 
of the three non-zeros in the divisor, ݀,  as depicted 
in the figure. The sum of the shifted quotients 
(denoted ݍ ,ݍ’ and ݍ’’) and remainder equals the 
dividend. The Near Factorization Algorithm iterates 
over all possible positions of the non-zeros in the 
divisor. During each iteration, ݍ’ and ݍ’’ are 
positioned differently. This, in turn, affects different 
bits of the quotient and remainder and in seemingly 
random ways. 

 

 

Figure 1: Illustrating random and fixed digits in ݎ|ݍ. 

Imagine projecting the positions of ݍ’ and ݍ’’ on 
to the quotient and remainder as shown in Figure 1. 
To a first order approximation, the remaining bits in 
the quotient and remainder “inherit” directly from 
the given scalar or dividend. Because the latter is a 
given, these bits do not contribute to a possible 
decrease in Hamming weight of quotient and 
remainder. On the other hand, the bits of the 
remainder and quotient which lie “directly under” ݍ’ 
and ݍ’’ are random and so potentially contribute to a 
decrease in the Hamming weights of the quotient 
and/or remainder across iterations. 

Let  ݊ denote the maximum length of ݎ|ݍ across 
iterations. Of these,  let ݏ denote the total number of 
bits that appear directly under ݍ’ or ݍ’’. These ݏ bits 
are random and the remaining ݊ െ  .’are ‘fixed ݏ
From the property of the wNAF representation, the 
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Hamming weight of the fixed bits is ሺ݊ െ ݓሻ/ሺݏ 
1ሻ on average. Let 	 ௦ܲሺ݊,  ሻ denote the conditionalݐ
probability that the ݊-bit quotient + remainder in an 
iteration of Near Factorization has Hamming weight 
 bits of the quotient + remainder are	ݏ given that ݐ
random. 

So, 
 

௦ܲሺ݊, ሻݐ ൌ 			ܲ ቀ	ݏ, ݐ െ
ି௦

௪ାଵ
ቁ ݐ		݂݅									, 

ି௦

௪ାଵ
  

ൌ 		0																		  ݁ݏ݅ݓݎ݄݁ݐ	

(8) 

 

Let ܳሺ݊,  ሻ be the probability that an ݊-bitݐ
quotient + remainder has Hamming Weight ݐ.  Of 
the ܿ different values of divisor, ݀, let 	ܿ௦ be the 
number of values for which the quotient + remainder 
has ݏ	random bits.  So, 
 

ܳሺ݊, ሻݐ ൌ 	
ܿ௦
ܿ
	 ௦ܲሺ݊, ሻݐ

௦

 (9) 

 

There are three possibilities for ݏ. If the 
Hamming weight of the divisor is 2, then ݏ	 ൌ 	  .|ݍ|
If the Hamming weight of the divisor is 3, there are 
two possibilities – either the positions of ݍ’ and ݍ’’ 
overlap or they don’t. In the former case, ݏ	 ൌ
|ݍ|2	 െ ݅  where ݅	is the number of positions in 
which ݍ’ and ݍ’’ overlap. In the latter (non-
overlapping) case, ݏ	 ൌ  Enumerating the .|ݍ|2	
number of ways each case may occur, we get  
 

ܿ|| 				ൌ 		2ଶ௪ିଷ ൈ ሺ|݀| െ  ሻ (10)ݓ
 

													ܿଶ||ି 			ൌ 	 	2ଷ௪ିସ

ൈ ൫|݀| െ ݓ െ ሺ|ݍ| െ ݅ሻ൯  
1	  ݅	  |ݍ| െ  							ݓ

(11) 

 

	ܿଶ|| 	ൌ 	2ଷ௪ିସ  	ሺ|݀| െ ݓ െ ݅

|ௗ|ି௪

ୀ||

ሻ		 

 
																													if			|ݍ| ൏ |݀| െ  ݓ

 
											ൌ 	0																												otherwise		   (12) 

 
Let  ܳ′ሺ݊,  ሻ  denote the probability that the sumݐ

of the Hamming weights of the quotient and 
remainder across all iterations is greater than ݐ. So, 

 
ܳ′ሺ݊, ሻݐ 	ൌ 	ሺܳሺ݊, ݐ  1ሻ 	 ܳሺ݊, ݐ  2ሻ ⋯ ܳሺ݊, ݊ሻ ሻ (13) 

The probability that this sum is precisely  ݐ is  
ܳ′ሺ݊, 	ݐ െ 	1ሻ	–	ܳ′ሺ݊,  ሻ.  Hence, the expectation ofݐ
the minimum Hamming weight is  

ݐቀܳ′ሺ݊, ݐ െ 1ሻ െ ܳ′ሺ݊, ሻቁݐ



௧ୀ

 (14) 

To test the accuracy of the above model, we 
performed Near Factorization on 5000 randomly 
generated 200-bit scalars.  For each integer, we 
experimented with divisor size, |݀| ranging from 20 
to 180 bits in steps of 20 bits and also for 4 ,3 ,2 = ݓ 
and 5. Figure 2 shows the Hamming weight of  ݎ|ݍ 
using Near Factorization averaged over the 5000 
scalars. The figure juxtaposes the experimental and 
model results. There is a close match between model 
and experimental results for values of |݀| up to 
around 140. An important observation is that the 
graphs obtained decrease monotonically up to 
around 60 bits followed by a trough between |݀|= 60 
and 120 followed by a sharp increase beyond 
|݀|=140.  

 

Figure 2: Hamming Weight of  q|r  versus |d| - Model and 
Exp. Results  (|k| = 200). 

5 RESULTS 

5.1 NF+wNAF  versus wNAF െ 
Hamming Weight Comparison 

To illustrate the advantage of Near Factorization, we 
generated 200 random 200-bit scalars and computed 
the Hamming weight of (a)  q|r  for each scalar 
using  its NF+wNAF representation with |d| = 100 
(b) its simple binary representation.  

Figure 3 shows these values for 2 = ݓ. For ease 
of viewing, we arranged the scalars in increasing 
order of the Hamming weights in their binary 
representations and, within this ordering, in 
increasing order of the Hamming weights in their 
NAF representations. The average Hamming 
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weights for NF+wNAF and wNAF are respectively  
53.3 and 67.  

 

  
Figure 3: Hamming Weight – Binary versus NAF versus 
NF+2NAF  (|k| = 200, w = 2). 
 

  
Figure 4: Hamming weight of Quotient + Remainder vs |k| 
for NAF  and NF+wNAF. 

Figure 4 shows how the average Hamming 
weight scales up with scalar size, |k|,  in wNAF and 
NF+wNAF  for different window sizes.  In each 
case, the average Hamming weight and the decrease 
in Hamming weight of NF+wNAF over wNAF 
appears to be linear in the size of the scalar. It is well 
established in the literature that the slope with 
wNAF is 1/(1+ݓ).   With NF+wNAF, the slopes are 
.29 for w=2 (versus .33 for NAF),  .22 for w=3 
(versus .25 for NAF),  .18 for w=4 (versus .2 for 
NAF) and .15 for w=5 (versus .17 for NAF).   

5.2 NF+wNAF versus NAF - 
Comparison of Total Cost 

In addition to the Hamming weight, the other major 
contributors to cost are the point doublings and 

precomputation (for ݓ  2). Table 2 highlights 
these for  |݇| = 200, |݀| = 100. For both wNAF and 
NF+wNAF, the number of point doublings is 
|݇| െ 1,  independent of window size. For  ݓ  2, 
the precomputation cost (in Step 1)  is an extra 
doubling plus 2௪ିଶ – 1 point additions (shown to the 
right of the plus sign under the “Avg # Additions” 
columns of Table 2).  These precomputations can be 
reused in computing  [ݎ]P  in Step 2. The need for 
precomputations to obtain [݀]Q  is obviated by a 
deliberate choice of 2 = ݓ in the representation of ݀.  

Table 2: Total Computation Cost  ( |k| = 200 ) A = Cost of 
Point Addition, D = Cost of Point Doubling. 

 
WS 

NAF NF+wNAF 

Avg.  # 
Additions 

Total 
Cost

Avg. # 
Additions 

Total 
Cost

2 65.6 + 0 65.6A  
+  

199D 

54.4  +  0 54.4A+  
199D 

3 49  +  1 50A  +  
200D 

42.1  +  1 43.1A 
+  

200D 
4 39  +  3 42A  +  

200D 
34.5  +  3 37.5A  

+  
200D 

5 32.3  +  7 39.3A  
+  

200D 

29.4  +  7 36.4A  
+  

200D 
6 27.6 + 15 42.6A 

+ 
200D 

25.6 + 15 40.6A 
+ 200D 

 
From Table 2, it is clear that NF+wNAF 

outperforms wNAF across all window sizes. In both 
cases, the total number of point additions decreases 
monotonically from 2=ݓ until 5=ݓ and then 
increases because precomputation cost grows 
exponentially with  ݓ. 

The work in this paper is particularly relevant to 
Koblitz curves. These are elliptic curves defined 
over F2  but the co-ordinates of points on the curve 
are elements of the binary field, Fሺ2ሻ		. Koblitz 
curves are attractive in cryptography since the point 
doubling operations can be substituted by the 
inexpensive τ-adic operations. The τ-adic operation 
on a point, ܲ ≡ ሺݔ,  ሻ  returns the point withݕ
coordinates ሺݔଶ,  ,.ଶሻ, i.eݕ	
	߬ሺݔ, ሻݕ ൌ ሺݔଶ, ߬ሺ∞ሻ		and		ଶሻݕ	 ൌ 	∞.   

It is possible to represent each element in F(2)  
as a linear combination of elements  in a normal 
basis [28],  ߚ    .  .  .  , 2ߚ  ,ߚଶ

షభ
.  Each field 

element is represented as an ݉-bit vector and 
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squaring is simply a left shift. Thus the τ-adic 
operation has insignificant computation cost vis-à-
vis point addition. The ratio of elliptic curve point 
addition to field squaring  is likely to vary between 
one and two orders of magnitude depending on 
optimizations employed in the operations, 
underlying platform (processor and operating 
system) and compiler used.  Above all, it will 
depend on whether scalar multiplication is 
implemented in hardware or in software. Analogous 
to the wNAF representation, we use a 	߬–adic NAF 
or TNAF representation for Koblitz curves.  The 
properties of TNAF are similar to the NAF 
representation with average Hamming Weight = ݈/3. 
The algorithm to derive the TNAF representation 
and perform scalar multiplication using TNAF are 
described in (Solinas, 2000), (Hankerson, 2004). 

Our final experiment was to vary all three 
parameters – window size, divisor length and 
Hamming weight of divisor. For |݇|=200, we 
experimented with |݀| ranging from  10%  to 50%  of 
|݇|in steps of 10%. As before, we fixed	2=ݓ for the 
divisor but varied ݓ between 2 and 5 for the 
quotient + remainder. We also experimented with 
different Hamming weights for the divisor between 
3 and 5. Table 3 lists the total number of additions 
including pre-computations for the most attractive 
combination of the above parameters. 

From Table 3, the fewest number of point 
additions with a 200-bit scalar occurs for 5 = ݓ, |݀| 
= 100 and maximum Hamming weight of divisor = 
4.  This represents an improvement of about 10% for 
NF+wNAF over wNAF – 35.6 versus 39.3 additions 
(see Table 2, 	5 = ݓ). The price to be paid for this 
improvement is the large search space of divisors to 
be processed in Step 0 – the numbers in parentheses 
within each cell of Table 3 specify the number of 
divisions to be performed  which, in this case,  
exceeds 1 million. On the other hand, decreasing the 
length of divisor greatly reduces the cost of Step 0 at 
the expense of a modest increase in the average cost 
of the additions vis-a-vis |݀| = 0.5|݇| (the optimal 
choice from Figure 2). For example, with Hamming 
weight = 3 and ݓ	5 =, the improvements of 
NF+wNAF over wNAF are 6.6%  and 5.3% 
respectively for |݀| = 0.4|݇| and |݀| = 0.2|݇|. The 
corresponding number of divisions in Step 0 shows a 
drastic fall to 2740 and 580 respectively. 

Even restricting the Hamming weight of divisor 
to 3, the overhead of Step 0 is substantial – ܱሺ݈ଶሻ  , 
where ݈ is the length of the scalar. Clearly, this 
approach is only appropriate where the point P is 
unknown but where the scalar, ݇ is known or may be 
chosen beforehand as in Diffie-Hellman Key 

Exchange (Diffie, 1976) where both parties derive 
their common secret by performing a scalar 
multiplication. 

Table 3: Total Cost of Additions,  |k|=200 DL = Divisor 
Length. 

DL 
HW= 3 HW= 4 

w = 4 w = 5 w = 4 w = 5 

20 
38.6 
(580) 

37.2 
(580)

38.2 
(5060) 

37.1 
(5060) 

40 
37.9 

(2740) 
36.7 

(2740) 
37.2 

(59860) 
36.3 

(59860) 

70 
37.6 

(8980) 
36.4 

(8980) 
36.6 

(375060) 
35.8 

(375060) 

100 
37.5 

(18820) 
36.4 

(18820) 
36.3 

(1161860) 
35.6 

(1161860) 
 
In response to receiving a partial key, PA  from 

A, B computes [ݏሿPA . Here, the scalar ݏ, is a 
random number chosen by B. But there is no reason 
why ݏ could not have been generated by B well 
before session establishment. So long as ݏ is 
random, is not re-used and is stored safely in “near-
factorized form”,  there is no drawback from the 
perspective of security. Besides D-H key exchange, 
the “unknown point, known scalar” situation occurs 
in various encryption schemes. 

Recently, (Taverne, 2011) have implemented 
scalar multiplication in software while leveraging 
the carry-less multiplier on newer Intel processors 
for binary field multiplications. This results in a 
dramatic improvement in performance to the extent 
that the best implementation of scalar multiplication 
on binary fields is about 17% faster than the best 
implementation over prime fields. Moreover, scalar 
multiplication with NIST Koblitz curves K-233 and 
K-409 is about twice as fast as that over the 
corresponding NIST random curves B-233 and B-
409. Near Factorization further improves on the best 
albeit by a modest amount. 

6 SUMMARY AND 
CONCLUSIONS 

This paper has explored an approach called Near 
Factorization (a variation of the factor-based method 
(Knuth, 1998)) to optimize scalar multiplication in 
elliptic curves.  The scalar ݇, is divided by all 
possible divisors of very low Hamming weight. The 
divisor ݀’,  quotient, ݍ’ and remainder, ݎ’ which 
results in the lowest combined Hamming weight is 
selected to obtain the “near factorized” form of ݇, 
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viz. ݇ ൌ ݀’ ൈ 	’ݍ   This form is employed in .’ݎ	
two simple steps of NF-based scalar multiplication. 
NF is used in conjunction with wNAF to further 
improve performance. We constructed a model to 
estimate the Hamming weight of ݎ|ݍ. Results of this 
model closely match actual experimental results 
across different scalar sizes, divisor lengths and 
window sizes.  

NF+wNAF reduces the number of point 
additions over wNAF with no increase in point 
doublings. In Koblitz curves, point doublings are 
replaced by the inexpensive τ-adic operation. Hence, 
the decrease in Hamming weight amplifies the 
percentage improvement in overall computation time 
of NF+wNAF over wNAF.  For scalar length=200, 
for example, NF+wNAF does 5-10% better than 
wNAF – the actual improvement being a function of 
the acceptable amount of Step 0 computation. 

Other avenues for further exploration include the 
use of Near Factorization twice to further reduce 
cost. Another is a more efficient and effective search 
of the space of divisors through intelligent pruning 
to speed up Step 0.  
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