
ULCL
An Ultra-lightweight Cryptographic Library for Embedded Systems

George Hatzivasilis1, Apostolos Theodoridis2, Elias Gasparis2 and Charalampos Manifavas3
1 Dept. of Electronic & Computer Engineering, Technical University of Crete,

Akrotiri Campus, 73100 Chania, Crete, Greece
2 Dept. of Computer Science, University of Crete, Voutes Campus, 70013 Heraklion, Crete, Greece

3 Dept. of Informatics Engineering, Technological Educational Institute of Crete,
Estavromenos, 71500 Heraklion, Crete, Greece

Keywords: Cryptographic Library, Lightweight Cryptography, API, Embedded Systems, Security.

Abstract: The evolution of embedded systems and their applications in every daily activity, derive the development of
lightweight cryptography. Widely used crypto-libraries are too large to fit on constrained devices, like
sensor nodes. Also, such libraries provide redundant functionality as each lightweight and ultra-lightweight
application utilizes a limited and specific set of crypto-primitives and protocols. In this paper we present the
ULCL crypto-library for embedded systems. It is a compact software cryptographic library, optimized for
space and performance. The library is a collection of open source ciphers (27 overall primitives). We
implement a common lightweight API for utilizing all primitives and a user-friendly API for users that
aren’t familiar with cryptographic applications. One of the main novelties is the configurable compilation
process. A user can compile the exact set of crypto-primitives that are required to implement a lightweight
application. The library is implemented in C and measurements were made on PC, BeagleBone and MemSic
IRIS devices. ULCL occupies 4 – 516.7KB of code. We compare our library with other similar proposals
and their suitability in different types of embedded devices.

1 INTRODUCTION

OpenSSL and other well-known crypto libraries
(The OpenSSL Project, 2013), target mainstream
applications. Such libraries support high levels of
security and don’t take into consideration the special
needs of constrained and ultra-constrained devices.
Other libraries that are designed for embedded
system applications support crypto-primitives that
are optimized for space, speed or power
consumption. On the other hand, such libraries either
contain redundant functionality as they support a
wide range of cryptographic primitives, like CyaSSL
(WolfSSL Inc., 2013), or contain a small number of
primitives, like Edon (Gligoroski, 2003).

OpenSSL (The OpenSSL Project, 2013) is
designed for mainstream applications with high level
of security and high speed. It provides a complete
set of cryptographic functionality. On the other
hand, OpenSSL hasn’t embodied newer
cryptographic standards, like TLS 1.2 and DTLS,
and progressive primitives, like the eSTREAM

(ECRYPT, 2008) finalists and the SHA-3 (NIST,
2012). The code organization is burden with legacy
code and makes difficult its use by developers. For
mainstream devices, OpenSSL achieves high
en/decryption rates. It utilizes assembly code to
speed up computationally heavy operations for
several processors as well as the Intel AES-NI. For
embedded devices, the executable code’s size can be
unacceptable. The library is open source.

CyaSSL (WolfSSL Inc., 2013) targets embedded
and real-time operating system (RTOS)
environments. It is a lightweight SSL library and
supports new cryptographic standards and
progressive ciphers. CyaSSL was written with
developers in mind and provides a simple and
documented API with easy-to-use abstraction layers
for OS and custom I/O. It also supports an OpenSSL
compatible API for broader use and acceptance.
CyaSSL is the leading SSL library for embedded,
real-time, mobile and enterprise systems. It achieves
high performance while keeping small code size and
low memory usage per connection. The library is
licensed under the GPLv2 and a commercial license.

247
Hatzivasilis G., Theodoridis A., Gasparis E. and Manifavas C..
ULCL - An Ultra-lightweight Cryptographic Library for Embedded Systems.
DOI: 10.5220/0004900602470254
In Proceedings of the 4th International Conference on Pervasive and Embedded Computing and Communication Systems (MeSeCCS-2014), pages
247-254
ISBN: 978-989-758-000-0
Copyright c
 2014 SCITEPRESS (Science and Technology Publications, Lda.)

ULCL is appropriate for lightweight and ultra-
lightweight applications where specific
cryptographic primitives are required. It provides
basic cryptographic functionality and supports
progressive ciphers. The APIs achieve low overhead
and comparable overall performance while remain
easy-to-use even by developers that aren’t familiar
with cryptography. The size of the executable code
is the smallest possible as the compilation is
adjusted to the application scenario. The library is
open source.

We apply OpenSSL, CyaSSL and ULCL on
BeagleBone (BeagleBoard.org Foundation, 2011)
devices with the default compilation options. All
libraries are implemented in C and fair
measurements were made. BeagleBone is a low-cost
credit-card-sized embedded device that runs Ubuntu
and connects with the Internet. It embodies an
AM3359 ARM Cortex-A8 single core CPU running
at 500-720 MHz.

2 RELATED WORK

Edon (Gligoroski, 2003) is an ultra-lightweight
library for embedded systems. It is implemented in
C and occupies about 5KB of memory. Edon uses
quasigroups to build cryptographic primitives and
develop a block cipher, a stream cipher, a hash
function and a pseudorandom number generator.

The CACE Networking and Cryptography
library (NaCl) (Bernstein, 2009) is an easy-to-use
high-speed high-security public-domain library for
network communication and cryptographic
applications. The library provides a high level API –
called crypto-box – for implementing public-key
authenticated encryption. The user realizes the
whole process as a single step and doesn’t consider
the internal parameters and communication steps
between the participants. NaCl performs speed tests
at compilation time and selects the best crypto-
primitives for each device. A user can also use low-
level APIs to apply specific primitives. Versions of
the library are supported in C, C++ and Python. In
C, the code occupies 17.36 – 27.96KB of memory
(Hutter and Schwabe, 2013)

In section 3, we describe the Ultra-Lightweight
Crypto-Library (ULCL) for embedded systems, the
main concepts and the measurements on real
devices. In section 4, we compare our proposal with
other libraries. In section 5, we conclude.

3 ULCL

We implement the ULCL for the cryptographic
technologies of the node layer. The library provides
‘built in’ cryptographic functionalities for embedded
systems that make use of a specific set of
cryptographic primitives and protocols. It utilizes
open source ciphers’ implementations, two
lightweight APIs and a configurable compilation
process.

Only block/stream ciphers and hash functions are
included. The library provides basic cryptographic
functionality for constrained and ultra-constrained
devices. It targets on application environments
where asymmetric cryptography can’t be applied. As
asymmetric cryptography is much more resource
demanding than symmetric one, these applications
depend on dependable authentic key distribution
mechanisms (Chen and Chao, 2011). Such
mechanisms are lightweight key management
solutions that utilize only symmetric cryptography.

We consider two types of embedded devices.
The BeagleBone (BeagleBoard.org Foundation,
2011) is a constrained device with 500 MHz
processing power, 256 MB memory and Ubuntu
Linux operating system. We perform the basic
measurements of ULCL, Edonm NaCl, CyaSSL and
OpenSSL on such devices. The Memsic IRIS
(Memsic Inc., 2010) is an ultra-constrained
embedded device with 8MHz processing power,
8KB memory and Contiki operating system.
CyaSSL and OpenSSL don’t fit on such devices. We
apply our library on IRIS as a proof of concept that
ULCL is appropriate for ultra-constrained devices
and applications. The measurements that are
reported in subsection 3.1 were performed on a PC
with Intel core 2 duo e8400 (3GHz), 2GB of RAM
and Linux operating system.

3.1 Open Source Cipher
Implementations

ULCL utilizes open source implementations of
known ciphers. It is a collection of lightweight or
compact implementations of standard block/stream
ciphers and message authentication code (MAC)
primitives. In (Manifavas et al., 2013), all these
primitives are evaluated and the best of them are
proposed for different types of embedded devices.

For block ciphers, it supports AES (Erdelsky,
2002), DES/3DES (CIFS Library, 2010), PRESENT
(Klose, 2007), LED (Guo et al., 2011),
KATAN/KTANTAN (Canniere et al., 2009), Clefia
(SONY, 2008), Camellia (NTT, 2013), XTEA

PECCS�2014�-�International�Conference�on�Pervasive�and�Embedded�Computing�and�Communication�Systems

248

(Wheeler and Needham, 1997) and XXTEA
(Wheeler and Needham, 1998). AES and Camellia
are designed for mainstream applications with high
level of security and throughput. Their space
requirements are high for ultra-constrained devices
and are included only for more powerful embedded
devices. DES, 3DES and Clefia are designed for
lightweight cryptography on embedded systems and
support high and moderate level of security, lower
throughput and consume less computational
resources. They are appropriate for constrained
devices. PRESENT, XTEA and XXTEA are
designed for ultra-constrained devices with even
lower level of security and throughput and are
efficient in power-energy-memory. LED, KATAN
and KTANTAN are mainly implemented in ultra-
constrained hardware and their performance in
software is low. We include them for higher
compatibility in heterogeneous systems where nodes
may use hardware-accelerated cryptography.

All block ciphers operate in ECB, CBC and CTR
modes of operation (Dworkin, 2001). Furthermore,
the library supports all known padding schemes:
zeroPadding, PKCS5, PKCS7, ISO_10126-2,
ISO_7816-4 and X9.23.

Table 1, summarizes the block ciphers’ features.
The ciphers are executed in ECB node of operation
with zero padding. Figure 1, illustrates the relevant
features of the ciphers with 128-bit key.

Table 1: Block ciphers in ECB mode of operation with
zero padding.

Cipher Key
(bits)

Block
(bits)

Code
(KB)

RAM
(KB)

Throughput
(MBps)

AES 128 128 25 10.25 56.35

AES 192 128 25 10.33 50.25

AES 256 128 25 10.41 69.82

3DES 64 64 12 10.02 20.15

3DES 128 64 12 10.07 20.25

3DES 192 64 12 10.11 20.21

Camellia 128 128 33 10.08 68.31

Camellia 192 128 33 10.13 55.57

Camellia 256 128 33 10.18 55.17

Clefia 128 128 6.9 10.08 4.65

Clefia 192 128 6.9 10.13 3.83

Clefia 256 128 6.9 10.17 3.29

XTEA 128 64 2.7 10.06 26.07

PRESENT 80 64 2.6 14.46 0.44

PRESENT 128 64 2.6 14.50 0.44

Figure 1: ULCL block ciphers with 128-bit key.

For stream ciphers, ULCL supports ARC4
(CyASSL, 2013) and the eSTREAM project
(ECRYPT, 2008) finalists Salsa20 (Bernstein,
2005), Rabbit (Boesgaard et al., 2005), HC128 (Wu,
2005), SOSEMANUK (Berbain et al., 2005), Grain
(Hell, M., Johansson, T. & Meier, W., 2005),
Trivium (Canniere and Preneel, 2005) and MICKEY
v2 (Babbage and Dodd, 2005). RC4 is the most
widely used stream cipher. It achieves high
throughput but it is considered insecure for new
applications. The finalists Salsa20, Rabbit, HC128
and SOSEMANUK are designed for software. They
achieve higher throughput and are considered secure
against all attacks faster than the exhaustive search.
Salsa20 and Rabbit are the most attractive for
constrained devices. HC128 utilizes two large tables
to perform en/decryption. Due to its table-driven
approach it is very fast but requires much memory.
The finalists Grain, Trivium and MICKEY v2 are
designed for hardware but perform reasonable in

Table 2: Stream ciphers.

Cipher Key / IV
(bits)

Code
(KB)

RAM
(KB)

Throughput
(MBps)

HC128 128/ 128 7.9 16.58 517.60

Rabbit 128 / 64 3.1 8.41 264.29

Salsa20 128 / 64 3.1 8.27 155.10

Salsa20 256 / 64 3.1 8.35 154.97

SOSEMA
NUK

128 / 128 15 9.07 300.50

SOSEMA
NUK

256 / 128 15 9.14 299.03

Grain 80 / 64 2.7 16.26 64.24

Grain-128 128 / 96 3 24.4 91.39

MICKEY
v2

80 / 80 3.2 8.22 2.85

Trivium 80 / 80 6.9 8.25 180.43

ARC4 40 / 0 1.22 8.55 165.69

ULCL�-�An�Ultra-lightweight�Cryptographic�Library�for�Embedded�Systems

249

ARC4 2048 / 0 1.22 9.78 164.50

software. They were also cryptanalyzed and found
secure. Table 2 and Figure 2, summarizes the stream
ciphers’ features.

Figure 2: ULCL stream ciphers.

Table 3: MACs.

Hash Digest
(bits)

Code
(KB)

RAM
(KB)

Throughput
(MBps)

Blake 224 17 2.47 94.86
Blake 256 17 2.48 95.66
Blake 384 17 2.53 36.63
Blake 512 17 2.57 36.91

Groestl 224 29 2.46 29.62
Groestl 256 29 2.47 29.82
Groestl 384 29 2.83 20.08
Groestl 512 29 2.87 20.13

JH 224 7.7 2.32 17.26
JH 256 7.7 2.33 17.26
JH 384 7.7 2.38 17.27
JH 512 7.7 2.42 17.25

Keccak 224 68.1 2.54 62.12
Keccak 256 68.1 2.55 62.71
Keccak 384 68.1 2.6 52.57
Keccak 512 68.1 2.65 36.80
Skein 256 52.4 2.39 61.51
Skein 512 52.4 2.48 61.35
Skein 1024 52.4 2.67 46.37
MD5 128 3.3 2.15 308.64

SHA-1 160 6 2.17 167.85
SHA256 256 3.7 2.22 95.44
SHA512 512 17 2.41 42.82

For MACs, ULCL supports MD5 (CyASSL, 2013),
SHA-1 (CyASSL, 2013), SHA-2 (CyASSL, 2013),
SHA-3 (Keccak) (Bertoni et al., 2008) and the other
SHA-3 contest’s (NIST, 2012) finalists Blake
(Aumasson et al., 2008), JH (Wu, 2008), Groestl
(Gauravaram et al., 2008) and Skein (Ferguson et
al., 2008). MD5 and SHA-2 are the most known
MACs for mainstream applications. MD5 isn’t

collision resistant, thus less secure, but is very fast.
SHA-2 is still secure and the SHA-3 contest targeted
to establish an alternative standard. The SHA-3
functions are newer progressive MACs that adopt
different design features than SHA-2. Table 3 and
Figure 3, summarizes the MACs’ features.

Figure 3: ULCL MACs.

3.2 Lightweight APIs

For every crypto-primitive type (block cipher,
stream cipher, MAC), we implement a common API
for utilizing all the different primitives with their
parameters. The API was designed with developers
in mind and is easy-to-use. There are common
functions in each category for initialization and
processing. All size values are measured in bytes.

The common API for the block ciphers is:
ulcl_block_ctx *ulcl_block_init (char
*cipher, byte *key, int key_size):
Initializes the block cipher (cipher) and the
encryption key (key). The function returns a cipher
data structure.

int ulcl_block_destroy (ulcl_block_ctx
*ctx): Frees the allocated memory. The function
returns an error code.

byte *ulcl_block_encrypt (ulcl_
block_ctx *ctx, byte *plaintext, int
pl_size, char *mode, char *padding):
Encrypts a plaintext (plaintext) with the block cipher
(ctx) and the mode of operation (mode) and padding
(padding). The function returns the ciphertext.

byte *ulcl_block_decrypt (ulcl_
block_ctx *ctx, byte *ciphertext, int
cp_size): Similar with ‘ulcl_block_encrypt’. The
function decrypts a ciphertext and returns the
plaintext.

The common API for the stream ciphers is:

PECCS�2014�-�International�Conference�on�Pervasive�and�Embedded�Computing�and�Communication�Systems

250

ulcl_stream_ctx *ulcl_stream_init (char
*cipher, byte *key, int key_size, byte
*iv, int iv_size): Initializes the stream
cipher (cipher) and the encryption key (key) and the
IV (iv). The function returns a cipher data structure.

int ulcl_stream_destroy (ulcl_
stream_ctx *ctx): Frees the allocated memory.
The function returns an error code.

byte *ulcl_stream_encrypt (ulcl
_stream_ctx *ctx, byte *plaintext, int
pl_size): Encrypts a plaintext (plaintext) with
the stream cipher (ctx). The function returns the
ciphertext.

byte *ulcl_stream_decrypt (ulcl
_stream_ctx *ctx, byte *ciphertext, int
cp_size): Similar with ‘ulcl_stream_encrypt’. The
function decrypts a ciphertext and returns the
plaintext.

The common API for the MACs is:
ulcl_hash_state *ulcl_hash_init (char
*hash_func, int hash_size): Initializes the
hash function (hash_func) and returns a hash
function structure.

int ulcl_hash_destroy (ulcl_ hash_state
*state): Frees the allocated memory. The
function returns an error code.

byte *ulcl_get_hash (ulcl_hash_state
*state, byte *msg, int msg_size):
Processes the message (msg) with the hash function
(state). The function returns the digest.

Moreover, we implement a second API for
developers that aren’t familiar with cryptography.
The developers don’t deal with selecting crypto-
primitives and their parameters. When this simple
API is compiled, ULCL performs a test program to
figure out the system’s capabilities in memory and
processing capabilities. According to this test,
ULCL invokes internally the most appropriate
primitives for this device. The API is suitable for
cryptographic applications in homogeneous systems.
Also, it is appropriate for educational purposes in
computer security. All the function arguments are
strings and contain hexadecimal numbers in string
form.

The simple API for the block ciphers is:
char *ulcl_block_encrypt_simple (char
*data, char *key): Encrypts a plaintext (data)
with the key (key) and returns the ciphertext.

char *ulcl_block_decrypt_simple (char
*data, char *key)): Decrypts a ciphertext
(data) with the key (key) and returns the plaintext.

The simple API for the stream ciphers is:

char *ulcl_stream_encrypt_simple (char
*data, char *key, char *iv): Encrypts a
plaintext (data) with the key (key) and the IV (iv)
and returns the ciphertext.

char *ulcl_stream_decrypt_simple (char
*data, char *key, char *iv): Decrypts a
ciphertext (data) with the key (key) and the IV (iv)
and returns the plaintext.

The simple API for the MACs is:
char *ulcl_hash_simple(char *data):
Processes the message (data) and returns the digest.

From the supported primitives, PRESENT,
Clefia, XTEA, Rabbit, Salsa20, Grain, ARC4, MD5
and SHA-2 are the most compact (Figure 4).

Figure 4: The most compact cryptographic primitives.

3DES, MICKEY v2, Trivium, JH and Skein require
the least RAM (Figure 5).

Figure 5: The cryptographic primitives that require the
least RAM.

ULCL�-�An�Ultra-lightweight�Cryptographic�Library�for�Embedded�Systems

251

Figure 6: The fastest cryptographic primitives.

AES, Camellia, HC128, SOSEMANUK, MD5,
SHA-1, SHA-2 and Blake are the fastest (Figure 6).

3.3 Configurable Compilation

Our main novelty is the configurable compilation
process. A user can define an exact set of crypto-
primitives that are compiled without compiling the
whole library. Thus, the executable code that runs on
the embedded device is small. For example a user
can compile only a compact AES implementation
and use it through the common API for block
ciphers. As embedded devices run a specific set of
protocols and crypto-primitives, our configurable
implementation of lightweight primitives is a good
candidate library.

The block ciphers API occupies 5.22 – 23.5KB
of ROM memory. The overhead is high as we
implement the modes of operation and the padding
schemes except from the API for en/decryption. The
stream ciphers API occupies 1.74 – 7.4KB and the
hash functions API occupies 1.75 – 7.4KB. The total
API overhead is about 1.74 – 38.3KB and the library
occupies 4 – 516.7KB.

Figure 7: Segmented compilation.

Figure 7, illustrates the segmented compilation
process. Each box represents a different compilation
option. For example, a user can compile the whole
library, the block ciphers or specific crypto-
primitives.

3.4 Other Features

ULCL is open source and well-documented. The
library contains a series of examples and test files.
The examples demonstrate the compilation process
capabilities and the utilization of the APIs. A user
can execute command line tests for each compiled
primitive. Furthermore, a benchmark suite is
provided for measuring the library’s features in the
application setting. The APIs performs extensive
error checking and reports relative error codes. The
correct functionality of the whole library is
validated. Each crypto-primitive is verified through
the manufacturer’s test vectors and common tests
with well-known libraries, like OpenSSL.

4 DISCUSSION

ULCL’s ordinary compilation occupies the least
code size as it offers only basic cryptographic
functionality. By default OpenSSL installs the full
library while CyaSSL installs only a core set of it.
CyaSSL can occupy about 90% less code size than
OpenSSL. The code footprint is a significant factor
for the applications that we study. ULCL’s size is
suitable for lightweight and ultra-lightweight
applications and CyaSSL’s size is suitable for
lightweight ones. OpenSSL produce high footprint,
which is over 1MB. Figure 8, illustrates the code size
of the examined libraries.

Figure 8: The code size of the examined libraries.

In comparison with Edon, ULCL supports a variety
of known standard or lightweight ciphers, whose
security properties are well-studied, while keeping

PECCS�2014�-�International�Conference�on�Pervasive�and�Embedded�Computing�and�Communication�Systems

252

an easy-to-use API. For the user-friendly API and
the internal selection of the best primitives, ULCL
uses a similar testing procedure at compilation time
as NaCl.

5 CONCLUSIONS

We implement the compact crypto-library ULCL for
constrained and ultra-constrained devices. The
library embodies open source implementations of
known ciphers and provides a variety of basic
crypto-primitives. Totally, 27 cryptographic
primitives are supported as well as 6 padding
schemes and 3 modes of operation for the block
ciphers. The user can configure the compilation
process and compile the exact set of primitives that
are necessary, without redundant functionality.
ULCL requires 4 – 516.7KB of code. For each
cryptographic primitive type (block/stream ciphers
and hash functions), there is a common API for all
the relevant primitives and an API for users that
aren’t familiar with cryptography. ULCL is well-
documented, with several example and test
programs, and its correct operation is validated.

ACKNOWLEDGEMENTS

This work was funded by the General Secretarial
Research and Technology (G.S.R.T.), Hellas under
the Artemis JU research program nSHIELD (new
embedded Systems arcHItecturE for multi-Layer
Dependable solutions) project. Call: ARTEMIS-
2010-1, Grand Agreement No: 269317.

REFERENCES

Aumasson, J.-P. et al., 2008. Blake implementation. SHA-
3 contest. Available at: http://131002.net/blake/ .

Babbage, S. & Dodd, M., 2005. MICHEY v2
implementation. eSTREAM project. Available at:
http://www.ecrypt.eu.org/stream/e2-mickey.html .

BeagleBoard.org Foundation, 2011. BeagleBone manual.
Available at: http://beagleboard.org/bone .

Berbain, C. et al., 2005. SOSEMANUK implementation.
eSTREAM project. Available at: http://
www.ecrypt.eu.org/stream/e2-sosemanuk.html .

Bernstein, D. J., 2009. Cryptography in NaCl. Networking
and Cryptography library, (Mc 152). Available at:
http://cr.yp.to/highspeed/naclcrypto-20090310.pdf .

Bernstein, D. J., 2005. Salsa20 implementation.
eSTREAM project. Available at: http://
www.ecrypt.eu.org/stream/e2-salsa20.html .

Bernstein, D. J., Lange, T. & Schwabe, P., 2012. The
security impact of a new cryptographic library.
Progress in Cryptology– LATINCRYPT 2012,
Springer Berlin Heidelberg, LNCS, 7533, pp.159–176.
Available at: http://link.springer.com/
chapter/10.1007/978-3-642-33481-8_9 .

Bertoni, G. et al., 2008. SHA-3 (Keccak) implementation.
SHA-3 contest. Available at: http://
keccak.noekeon.org/ .

Boesgaard, M. et al., 2005. Rabbit implementation.
eSTREAM project. Available at: http://
www.ecrypt.eu.org/stream/e2-rabbit.html .

Canniere, C. de, Dunkelman, O. & Knezevic, M., 2009.

ULCL�-�An�Ultra-lightweight�Cryptographic�Library�for�Embedded�Systems

253

KATAN/KTANTAN implementation. Available at:
http://www.cs.technion.ac.il/~orrd/KATAN/ .

Canniere, C. De & Preneel, B., 2005. TRIVIUM
implementation. eSTREAM project. Available at:
http://www.ecrypt.eu.org/stream/e2-trivium.html .

Chen, C.-Y. & Chao, H.-C., 2011. A survey of key
distribution in wireless sensor networks. In J. & S.
Wiley, ed. Security and Communication Networks.
Wiley Online Library, p. n/a–n/a. Available at:
http://doi.wiley.com/10.1002/sec.354 .

CIFS Library, 2010. DES & 3DES implementation.
Available at: http://www.ubiqx.org/proj/
libcifs/source/Auth/ .

CyASSL, 2013. MD5, SHA1, SHA256, SHA512, ARC4
implementatons. Available at: http://www.yassl.com/
yaSSL/Products-cyassl.html .

Dworkin, M., 2001. Recommendation for block cipher
modes of operation, NIST special publication,
Available at: http://csrc.nist.gov/publications/
nistpubs/800-38a/sp800-38a.pdf .

ECRYPT, 2008, eSTREAM project. Available at:
http://www.ecrypt.eu.org/stream/.

Erdelsky, P.J., 2002. AES implementation. Available at:
http://www.efgh.com/software/rijndael.htm .

Ferguson, N. et al., 2008. Skein implementation. SHA-3
contest. Available at: http://www.skein-hash.info/ .

Gauravaram, P. et al., 2008. Groestl implementation.
SHA-3 contest. Available at: http://www.groestl.info/ .

Gligoroski, D., 2003. Edon-library of reconfigurable
cryptographic primitives suitable for embedded
systems. In Workshop on cryptographic hardware and
embedded systems. Available at:
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.
1.1.13.7586&rep=rep1&type=pdf .

Guo, J. et al., 2011. LED implementation. Available at:
http://sites.google.com/site/ledblockcipher/home-1 .

Hell, M., Johansson, T. & Meier, W., 2005. Grain
implementation. eSTREAM project. Available at:
http://www.ecrypt.eu.org/stream/e2-grain.html .

Hutter, M. & Schwabe, P., 2013. NaCl on 8-bit AVR
Microcontrollers. IACR Cryptology ePrint Archive2.
Available at: http://eprint.iacr.org/2013/375.pdf.

Klose, D., 2007. PRESENT implementation. Available at:
http://www.lightweightcrypto.org/implementations.ph
p .

Manifavas, C. et al., 2013. Lightweight Cryptography for
Embedded Systems - A Comparative Analysis. 6th
International Workshop on Autonomous and
Spontaneous Security – SETOP2013, Springer, LNCS,
8247, pp.1–18.

Memsic Inc., 2010. Memsic Isis manual. Available at:
http://www.memsic.com/userfiles/files/User-
Manuals/iris-oem-edition-hardware-ref-manual-7430-
0549-02.pdf .

NIST, 2012. SHA-3 contest. Available at:
http://csrc.nist.gov/groups/ST/hash/sha-
3/Round3/submissions_rnd3.html .

NTT - Secure Platform Laboratories - Information
Security Project, 2013. Camellia implementation.
Available at: https://info.isl.ntt.co.jp/crypt/

eng/camellia/ .
SONY, 2008. Clefia implementation. Available at:

http://www.sony.net/Products/cryptography/clefia/ .
The OpenSSL Project, 2013. Openssl, Available at:

http://www.openssl.org .
Wheeler, D. & Needham, R., 1997. XTEA

implementation. Available at: http://en.wikipedia.org/
wiki/XTEA .

Wheeler, D. & Needham, R., 1998. XXTEA
implementation. Available at: http://en.wikipedia.org/
wiki/XXTEA .

WolfSSL Inc., 2013. CyaSSL embedded SSL library.
Available at: http://yassl.com/yaSSL/Products-
cyassl.html .

Wu, H., 2005. HC-128 implementation. eSTREAM
project. Available at: http://www.ecrypt.eu.org/
stream/e2-hc128.html .

Wu, H., 2008. JH implementation. SHA-3 contest.
Available at: http://www3.ntu.edu.sg/home/
wuhj/research/jh/ .

PECCS�2014�-�International�Conference�on�Pervasive�and�Embedded�Computing�and�Communication�Systems

254

