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Abstract: The evolution of embedded systems and their applications in every daily activity, derive the development of 
lightweight cryptography. Widely used crypto-libraries are too large to fit on constrained devices, like 
sensor nodes. Also, such libraries provide redundant functionality as each lightweight and ultra-lightweight 
application utilizes a limited and specific set of crypto-primitives and protocols. In this paper we present the 
ULCL crypto-library for embedded systems. It is a compact software cryptographic library, optimized for 
space and performance. The library is a collection of open source ciphers (27 overall primitives). We 
implement a common lightweight API for utilizing all primitives and a user-friendly API for users that 
aren’t familiar with cryptographic applications. One of the main novelties is the configurable compilation 
process. A user can compile the exact set of crypto-primitives that are required to implement a lightweight 
application. The library is implemented in C and measurements were made on PC, BeagleBone and MemSic 
IRIS devices. ULCL occupies 4 – 516.7KB of code. We compare our library with other similar proposals 
and their suitability in different types of embedded devices. 

1 INTRODUCTION 

OpenSSL and other well-known crypto libraries 
(The OpenSSL Project, 2013), target mainstream 
applications. Such libraries support high levels of 
security and don’t take into consideration the special 
needs of constrained and ultra-constrained devices. 
Other libraries that are designed for embedded 
system applications support crypto-primitives that 
are optimized for space, speed or power 
consumption. On the other hand, such libraries either 
contain redundant functionality as they support a 
wide range of cryptographic primitives, like CyaSSL 
(WolfSSL Inc., 2013), or contain a small number of 
primitives, like Edon (Gligoroski, 2003). 

OpenSSL (The OpenSSL Project, 2013) is 
designed for mainstream applications with high level 
of security and high speed. It provides a complete 
set of cryptographic functionality. On the other 
hand, OpenSSL hasn’t embodied newer 
cryptographic standards, like TLS 1.2 and DTLS, 
and progressive primitives, like the eSTREAM 

(ECRYPT, 2008) finalists and the SHA-3 (NIST, 
2012). The code organization is burden with legacy 
code and makes difficult its use by developers. For 
mainstream devices, OpenSSL achieves high 
en/decryption rates. It utilizes assembly code to 
speed up computationally heavy operations for 
several processors as well as the Intel AES-NI. For 
embedded devices, the executable code’s size can be 
unacceptable. The library is open source. 

CyaSSL (WolfSSL Inc., 2013) targets embedded 
and real-time operating system (RTOS) 
environments. It is a lightweight SSL library and 
supports new cryptographic standards and 
progressive ciphers. CyaSSL was written with 
developers in mind and provides a simple and 
documented API with easy-to-use abstraction layers 
for OS and custom I/O. It also supports an OpenSSL 
compatible API for broader use and acceptance. 
CyaSSL is the leading SSL library for embedded, 
real-time, mobile and enterprise systems. It achieves 
high performance while keeping small code size and 
low memory usage per connection. The library is 
licensed under the GPLv2 and a commercial license. 
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ULCL is appropriate for lightweight and ultra-
lightweight applications where specific 
cryptographic primitives are required. It provides 
basic cryptographic functionality and supports 
progressive ciphers. The APIs achieve low overhead 
and comparable overall performance while remain 
easy-to-use even by developers that aren’t familiar 
with cryptography. The size of the executable code 
is the smallest possible as the compilation is 
adjusted to the application scenario. The library is 
open source. 

We apply OpenSSL, CyaSSL and ULCL on 
BeagleBone (BeagleBoard.org Foundation, 2011) 
devices with the default compilation options. All 
libraries are implemented in C and fair 
measurements were made. BeagleBone is a low-cost 
credit-card-sized embedded device that runs Ubuntu 
and connects with the Internet. It embodies an 
AM3359 ARM Cortex-A8 single core CPU running 
at 500-720 MHz. 

2 RELATED WORK 

Edon (Gligoroski, 2003) is an ultra-lightweight 
library for embedded systems. It is implemented in 
C and occupies about 5KB of memory. Edon uses 
quasigroups to build cryptographic primitives and 
develop a block cipher, a stream cipher, a hash 
function and a pseudorandom number generator. 

The CACE Networking and Cryptography 
library (NaCl) (Bernstein, 2009) is an easy-to-use 
high-speed high-security public-domain library for 
network communication and cryptographic 
applications. The library provides a high level API – 
called crypto-box – for implementing public-key 
authenticated encryption. The user realizes the 
whole process as a single step and doesn’t consider 
the internal parameters and communication steps 
between the participants. NaCl performs speed tests 
at compilation time and selects the best crypto-
primitives for each device. A user can also use low-
level APIs to apply specific primitives. Versions of 
the library are supported in C, C++ and Python. In 
C, the code occupies 17.36 – 27.96KB of memory 
(Hutter and Schwabe, 2013) 

In section 3, we describe the Ultra-Lightweight 
Crypto-Library (ULCL) for embedded systems, the 
main concepts and the measurements on real 
devices. In section 4, we compare our proposal with 
other libraries. In section 5, we conclude. 

 
 

3 ULCL 

We implement the ULCL for the cryptographic 
technologies of the node layer. The library provides 
‘built in’ cryptographic functionalities for embedded 
systems that make use of a specific set of 
cryptographic primitives and protocols. It utilizes 
open source ciphers’ implementations, two 
lightweight APIs and a configurable compilation 
process. 

Only block/stream ciphers and hash functions are 
included. The library provides basic cryptographic 
functionality for constrained and ultra-constrained 
devices. It targets on application environments 
where asymmetric cryptography can’t be applied. As 
asymmetric cryptography is much more resource 
demanding than symmetric one, these applications 
depend on dependable authentic key distribution 
mechanisms (Chen and Chao, 2011). Such 
mechanisms are lightweight key management 
solutions that utilize only symmetric cryptography. 

We consider two types of embedded devices. 
The BeagleBone (BeagleBoard.org Foundation, 
2011) is a constrained device with 500 MHz 
processing power, 256 MB memory and Ubuntu 
Linux operating system. We perform the basic 
measurements of ULCL, Edonm NaCl, CyaSSL and  
OpenSSL on such devices. The Memsic IRIS 
(Memsic Inc., 2010) is an ultra-constrained 
embedded device with 8MHz processing power, 
8KB memory and Contiki operating system. 
CyaSSL and OpenSSL don’t fit on such devices. We 
apply our library on IRIS as a proof of concept that 
ULCL is appropriate for ultra-constrained devices 
and applications. The measurements that are 
reported in subsection 3.1 were performed on a PC 
with Intel core 2 duo e8400 (3GHz), 2GB of RAM 
and Linux operating system. 

3.1 Open Source Cipher 
Implementations 

ULCL utilizes open source implementations of 
known ciphers. It is a collection of lightweight or 
compact implementations of standard block/stream 
ciphers and message authentication code (MAC) 
primitives. In (Manifavas et al., 2013), all these 
primitives are evaluated and the best of them are 
proposed for different types of embedded devices. 

For block ciphers, it supports AES (Erdelsky, 
2002), DES/3DES (CIFS Library, 2010), PRESENT 
(Klose, 2007), LED (Guo et al., 2011), 
KATAN/KTANTAN (Canniere et al., 2009), Clefia 
(SONY, 2008), Camellia (NTT, 2013), XTEA 
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(Wheeler and Needham, 1997) and XXTEA 
(Wheeler and Needham, 1998). AES and Camellia 
are designed for mainstream applications with high 
level of security and throughput. Their space 
requirements are high for ultra-constrained devices 
and are included only for more powerful embedded 
devices. DES, 3DES and Clefia are designed for 
lightweight cryptography on embedded systems and 
support high and moderate level of security, lower 
throughput and consume less computational 
resources. They are appropriate for constrained 
devices. PRESENT, XTEA and XXTEA are 
designed for ultra-constrained devices with even 
lower level of security and throughput and are 
efficient in power-energy-memory. LED, KATAN 
and KTANTAN are mainly implemented in ultra-
constrained hardware and their performance in 
software is low. We include them for higher 
compatibility in heterogeneous systems where nodes 
may use hardware-accelerated cryptography. 

All block ciphers operate in ECB, CBC and CTR 
modes of operation (Dworkin, 2001). Furthermore, 
the library supports all known padding schemes: 
zeroPadding, PKCS5, PKCS7, ISO_10126-2, 
ISO_7816-4 and X9.23. 

Table 1, summarizes the block ciphers’ features. 
The ciphers are executed in ECB node of operation 
with zero padding. Figure 1, illustrates the relevant 
features of the ciphers with 128-bit key. 

Table 1: Block ciphers in ECB mode of operation with 
zero padding. 

Cipher Key 
(bits) 

Block 
(bits) 

Code 
(KB) 

RAM 
(KB) 

Throughput 
(MBps) 

AES 128 128 25 10.25 56.35 

AES 192 128 25 10.33 50.25 

AES 256 128 25 10.41 69.82 

3DES 64 64 12 10.02 20.15 

3DES 128 64 12 10.07 20.25 

3DES 192 64 12 10.11 20.21 

Camellia 128 128 33 10.08 68.31 

Camellia 192 128 33 10.13 55.57 

Camellia 256 128 33 10.18 55.17 

Clefia 128 128 6.9 10.08 4.65 

Clefia 192 128 6.9 10.13 3.83 

Clefia 256 128 6.9 10.17 3.29 

XTEA 128 64 2.7 10.06 26.07 

PRESENT 80 64 2.6 14.46 0.44 

PRESENT 128 64 2.6 14.50 0.44 

 

Figure 1: ULCL block ciphers with 128-bit key. 

For stream ciphers, ULCL supports ARC4 
(CyASSL, 2013) and the eSTREAM project 
(ECRYPT, 2008) finalists Salsa20 (Bernstein, 
2005), Rabbit (Boesgaard et al., 2005), HC128 (Wu, 
2005), SOSEMANUK (Berbain et al., 2005), Grain 
(Hell, M., Johansson, T. & Meier, W., 2005), 
Trivium (Canniere and Preneel, 2005) and MICKEY 
v2 (Babbage and Dodd, 2005). RC4 is the most 
widely used stream cipher. It achieves high 
throughput but it is considered insecure for new 
applications. The finalists Salsa20, Rabbit, HC128 
and SOSEMANUK are designed for software. They 
achieve higher throughput and are considered secure 
against all attacks faster than the exhaustive search. 
Salsa20 and Rabbit are the most attractive for 
constrained devices. HC128 utilizes two large tables 
to perform en/decryption. Due to its table-driven 
approach it is very fast but requires much memory. 
The finalists Grain, Trivium and MICKEY v2 are 
designed for hardware but perform reasonable in 

Table 2: Stream ciphers. 

Cipher Key / IV 
(bits) 

Code 
(KB) 

RAM 
(KB) 

Throughput 
(MBps) 

HC128 128/ 128 7.9 16.58 517.60 

Rabbit 128 / 64 3.1 8.41 264.29 

Salsa20 128 / 64 3.1 8.27 155.10 

Salsa20 256 / 64 3.1 8.35 154.97 

SOSEMA
NUK 

128 / 128 15 9.07 300.50 

SOSEMA
NUK 

256 / 128 15 9.14 299.03 

Grain 80 / 64 2.7 16.26 64.24 

Grain-128 128 / 96 3 24.4 91.39 

MICKEY 
v2 

80 / 80 3.2 8.22 2.85 

Trivium 80 / 80 6.9 8.25 180.43 

ARC4 40 / 0 1.22 8.55 165.69 
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ARC4 2048 / 0 1.22 9.78 164.50 

software. They were also cryptanalyzed and found 
secure. Table 2 and Figure 2, summarizes the stream 
ciphers’ features.  

 

Figure 2: ULCL stream ciphers. 

Table 3: MACs. 

Hash Digest 
(bits) 

Code 
(KB) 

RAM 
(KB) 

Throughput 
(MBps) 

Blake 224 17 2.47 94.86 
Blake 256 17 2.48 95.66 
Blake 384 17 2.53 36.63 
Blake 512 17 2.57 36.91 

Groestl 224 29 2.46 29.62 
Groestl 256 29 2.47 29.82 
Groestl 384 29 2.83 20.08 
Groestl 512 29 2.87 20.13 

JH 224 7.7 2.32 17.26 
JH 256 7.7 2.33 17.26 
JH 384 7.7 2.38 17.27 
JH 512 7.7 2.42 17.25 

Keccak 224 68.1 2.54 62.12 
Keccak 256 68.1 2.55 62.71 
Keccak 384 68.1 2.6 52.57 
Keccak 512 68.1 2.65 36.80 
Skein 256 52.4 2.39 61.51 
Skein 512 52.4 2.48 61.35 
Skein 1024 52.4 2.67 46.37 
MD5 128 3.3 2.15 308.64 

SHA-1 160 6 2.17 167.85 
SHA256 256 3.7 2.22 95.44 
SHA512 512 17 2.41 42.82 

For MACs, ULCL supports MD5 (CyASSL, 2013), 
SHA-1 (CyASSL, 2013), SHA-2 (CyASSL, 2013), 
SHA-3 (Keccak) (Bertoni et al., 2008) and the other 
SHA-3 contest’s (NIST, 2012) finalists Blake 
(Aumasson et al., 2008), JH (Wu, 2008), Groestl 
(Gauravaram et al., 2008) and Skein (Ferguson et 
al., 2008). MD5 and SHA-2 are the most known 
MACs for mainstream applications. MD5 isn’t 

collision resistant, thus less secure, but is very fast. 
SHA-2 is still secure and the SHA-3 contest targeted 
to establish an alternative standard. The SHA-3 
functions are newer progressive MACs that adopt 
different design features than SHA-2. Table 3 and 
Figure 3, summarizes the MACs’ features. 
 

 

Figure 3: ULCL MACs. 

3.2 Lightweight APIs 

For every crypto-primitive type (block cipher, 
stream cipher, MAC), we implement a common API 
for utilizing all the different primitives with their 
parameters. The API was designed with developers 
in mind and is easy-to-use. There are common 
functions in each category for initialization and 
processing. All size values are measured in bytes. 

The common API for the block ciphers is: 
ulcl_block_ctx *ulcl_block_init (char 
*cipher, byte *key, int key_size): 
Initializes the block cipher (cipher) and the 
encryption key (key). The function returns a cipher 
data structure. 
 

int ulcl_block_destroy (ulcl_block_ctx 
*ctx): Frees the allocated memory. The function 
returns an error code. 
 

byte *ulcl_block_encrypt (ulcl_ 
block_ctx *ctx, byte *plaintext, int 
pl_size, char *mode, char *padding): 
Encrypts a plaintext (plaintext) with the block cipher 
(ctx) and the mode of operation (mode) and padding 
(padding). The function returns the ciphertext. 
 

byte *ulcl_block_decrypt (ulcl_ 
block_ctx *ctx, byte *ciphertext, int 
cp_size): Similar with ‘ulcl_block_encrypt’. The 
function decrypts a ciphertext and returns the 
plaintext. 
 

The common API for the stream ciphers is: 
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ulcl_stream_ctx *ulcl_stream_init (char 
*cipher, byte *key, int key_size, byte 
*iv, int iv_size): Initializes the stream 
cipher (cipher) and the encryption key (key) and the 
IV (iv). The function returns a cipher data structure. 

 

int ulcl_stream_destroy (ulcl_ 
stream_ctx *ctx): Frees the allocated memory. 
The function returns an error code. 

 

byte *ulcl_stream_encrypt (ulcl 
_stream_ctx *ctx, byte *plaintext, int 
pl_size): Encrypts a plaintext (plaintext) with 
the stream cipher (ctx). The function returns the 
ciphertext. 
 

byte *ulcl_stream_decrypt (ulcl 
_stream_ctx *ctx, byte *ciphertext, int 
cp_size): Similar with ‘ulcl_stream_encrypt’. The 
function decrypts a ciphertext and returns the 
plaintext. 
 

The common API for the MACs is: 
ulcl_hash_state *ulcl_hash_init (char 
*hash_func, int hash_size): Initializes the 
hash function (hash_func) and returns a hash 
function structure. 
 

int ulcl_hash_destroy (ulcl_ hash_state 
*state): Frees the allocated memory. The 
function returns an error code. 
 

byte *ulcl_get_hash (ulcl_hash_state 
*state, byte *msg, int msg_size): 
Processes the message (msg) with the hash function 
(state). The function returns the digest. 

Moreover, we implement a second API for 
developers that aren’t familiar with cryptography. 
The developers don’t deal with selecting crypto-
primitives and their parameters. When this simple 
API is compiled, ULCL performs a test program to 
figure out the system’s capabilities in memory and 
processing capabilities. According to this test, 
ULCL invokes internally the most appropriate 
primitives for this device. The API is suitable for 
cryptographic applications in homogeneous systems. 
Also, it is appropriate for educational purposes in 
computer security. All the function arguments are 
strings and contain hexadecimal numbers in string 
form. 

The simple API for the block ciphers is: 
char *ulcl_block_encrypt_simple (char 
*data, char *key): Encrypts a plaintext (data) 
with the key (key) and returns the ciphertext. 
 
char *ulcl_block_decrypt_simple (char 
*data, char *key) ): Decrypts a ciphertext 
(data) with the key (key) and returns the plaintext. 
 

The simple API for the stream ciphers is: 

char *ulcl_stream_encrypt_simple (char 
*data, char *key, char *iv): Encrypts a 
plaintext (data) with the key (key) and the IV (iv) 
and returns the ciphertext. 
 

char *ulcl_stream_decrypt_simple (char 
*data, char *key, char *iv): Decrypts a 
ciphertext (data) with the key (key) and the IV (iv) 
and returns the plaintext. 
 

The simple API for the MACs is: 
char *ulcl_hash_simple(char *data): 
Processes the message (data) and returns the digest. 

From the supported primitives, PRESENT, 
Clefia, XTEA, Rabbit, Salsa20, Grain, ARC4, MD5 
and SHA-2 are the most compact (Figure 4). 

 
Figure 4: The most compact cryptographic primitives. 

3DES, MICKEY v2, Trivium, JH and Skein require 
the least RAM (Figure 5). 

 
Figure 5: The cryptographic primitives that require the 
least RAM. 

ULCL�-�An�Ultra-lightweight�Cryptographic�Library�for�Embedded�Systems

251



 
Figure 6: The fastest cryptographic primitives. 

AES, Camellia, HC128, SOSEMANUK, MD5, 
SHA-1, SHA-2 and Blake are the fastest (Figure 6). 

3.3 Configurable Compilation 

Our main novelty is the configurable compilation 
process. A user can define an exact set of crypto-
primitives that are compiled without compiling the 
whole library. Thus, the executable code that runs on 
the embedded device is small. For example a user 
can compile only a compact AES implementation 
and use it through the common API for block 
ciphers. As embedded devices run a specific set of 
protocols and crypto-primitives, our configurable 
implementation of lightweight primitives is a good 
candidate library. 

The block ciphers API occupies 5.22 – 23.5KB 
of ROM memory. The overhead is high as we 
implement the modes of operation and the padding 
schemes except from the API for en/decryption. The 
stream ciphers API occupies 1.74 – 7.4KB and the 
hash functions API occupies 1.75 – 7.4KB. The total 
API overhead is about 1.74 – 38.3KB and the library 
occupies 4 – 516.7KB. 
 

 

Figure 7: Segmented compilation. 

Figure 7, illustrates the segmented compilation 
process. Each box represents a different compilation 
option. For example, a user can compile the whole 
library, the block ciphers or specific crypto-
primitives. 

3.4 Other Features 

ULCL is open source and well-documented. The 
library contains a series of examples and test files. 
The examples demonstrate the compilation process 
capabilities and the utilization of the APIs. A user 
can execute command line tests for each compiled 
primitive. Furthermore, a benchmark suite is 
provided for measuring the library’s features in the 
application setting. The APIs performs extensive 
error checking and reports relative error codes. The 
correct functionality of the whole library is 
validated. Each crypto-primitive is verified through 
the manufacturer’s test vectors and common tests 
with well-known libraries, like OpenSSL. 

4 DISCUSSION 

ULCL’s ordinary compilation occupies the least 
code size as it offers only basic cryptographic 
functionality. By default OpenSSL installs the full 
library while CyaSSL installs only a core set of it. 
CyaSSL can occupy about 90% less code size than 
OpenSSL. The code footprint is a significant factor 
for the applications that we study. ULCL’s size is 
suitable for lightweight and ultra-lightweight 
applications and CyaSSL’s size is suitable for 
lightweight ones. OpenSSL produce high footprint, 
which is over 1MB. Figure 8, illustrates the code size 
of the examined libraries. 

 
Figure 8: The code size of the examined libraries. 

In comparison with Edon, ULCL supports a variety 
of known standard or lightweight ciphers, whose 
security properties are well-studied, while keeping 
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an easy-to-use API. For the user-friendly API and 
the internal selection of the best primitives, ULCL 
uses a similar testing procedure at compilation time 
as NaCl. 

5 CONCLUSIONS 

We implement the compact crypto-library ULCL for 
constrained and ultra-constrained devices. The 
library embodies open source implementations of 
known ciphers and provides a variety of basic 
crypto-primitives. Totally, 27 cryptographic 
primitives are supported as well as 6 padding 
schemes and 3 modes of operation for the block 
ciphers. The user can configure the compilation 
process and compile the exact set of primitives that 
are necessary, without redundant functionality. 
ULCL requires 4 – 516.7KB of code. For each 
cryptographic primitive type (block/stream ciphers 
and hash functions), there is a common API for all 
the relevant primitives and an API for users that 
aren’t familiar with cryptography. ULCL is well-
documented, with several example and test 
programs, and its correct operation is validated. 
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