
An Architectural Model for Customizing the Business Logic
of SaaS Applications

André Correia, Jorge Renato Penha and António Miguel Rosado da Cruz
Escola Superior de Tecnologia e Gestão, Instituto Politécnico de Viana do Castelo,

Av. Do Atlântico s/n, 4900-348, Viana do Castelo, Portugal

Keywords: Multi-tenancy, Software as a Service, Saas, Business Logic Configurability, Customizability, Extensibility.

Abstract: Traditional software applications are typically customized before being delivered to a client. This
customization was a paid service delivered by software development organisations. With the growing
demand of applications delivered with a SaaS model, software development organisations are increasingly
responding with the migration of traditional applications to a multi-tenant SaaS deployment model. This
makes them face themselves with the problem of customizing a shared application, with a shared database,
for each tenant that subscribes their deployed service. After overviewing existing solutions for application
customizability, this paper addresses the customization of the business logic layer of multi-tenant
applications by proposing a solution, which has been used in a multi-tenant WMS application deployed with
a SaaS service model.

1 INTRODUCTION

Traditional software development firms commonly
develop software applications that are customized,
either by themselves or by affiliated companies,
before being deployed in their clients’ locations.
Their business is about developing software as much
as customizing that software to each specific client.
This supports the fact that applications need to be
flexible to a certain point that allows them to
accommodate variability in the response to the
customer’s requirements (Gebauer and Schober,
2006).

These software development firms are
increasingly facing the challenge of having to adapt
their applications for deploying them in the cloud
with a software-as-a-service (SaaS) delivery model.

The SaaS model provides a multi-tenant, ready to
run, on-demand hosted application. Multi-tenancy is,
indeed, the primary characteristic of SaaS
applications, as it allows the service provider to run
a single instance application, which supports
multiple tenants on the same platform. This involves
sharing unique resources, as a database and an
application instance, giving the tenants’ users the
impression that they are the only ones using those
resources. This implies addressing many issues, in
order to assure the functional and non-functional

isolation of the tenants (Krebs et al., 2012).
Other desirable feature of SaaS applications is

that they retain the ability to be customizable. This
ability shall not, by any means, threaten the
imperative of tenants’ isolation.

There are several levels of application
customizability, from simple configuration at
allowed application points, to tenant specific code
extensions at any point of the application, passing by
simple extensions to the data model. Also, this
customization ability may be the application
provider’s responsibility or the tenant’s
responsibility. Either way, a tenant’s customization
may not interfere with other tenants’ application
usage experience, even when the customization is
the provider’s responsibility.

After a survey of existing solutions for
application customizability, this paper proposes an
approach for functionality customization per tenant,
by recurring to specific code extensions that may be
plugged into specific points in the application. The
approach is being used in a warehouse management
system (WMS) application that will be deployed
with an SaaS service model. The structure of the
presentation is as follows: the next section discusses
the customizability of software applications,
explains why traditional approaches are not suitable
for multi-tenant SaaS applications, and presents

162 Correia A., Renato Penha J. and Miguel Rosado da Cruz A..
An Architectural Model for Customizing the Business Logic of SaaS Applications.
DOI: 10.5220/0004490401620168
In Proceedings of the 8th International Joint Conference on Software Technologies (ICSOFT-EA-2013), pages 162-168
ISBN: 978-989-8565-68-6
Copyright c 2013 SCITEPRESS (Science and Technology Publications, Lda.)

related work framing it in three architectural levels,
namely the data, presentation and business logic
layers; section 3 presents the general view of our
approach for per-tenant customization at the
business logic level; section 4 details the approach;
section 5 discusses our approach and compares it
with existing approaches; and, section 6 concludes
the paper and proposes some future research
directions.

2 APPLICATION
CUSTOMIZATION

Traditional applications, meaning single tenant
applications that are deployed on premises,
regardless of being web oriented or not, are typically
customized by the application provider, or deploying
organization, having its data model extended or
adapted to the customer’s reality, and/or its code
modified or extended to meet the customer’s
business rules. These customization procedures can
be made by exploring configurability capabilities of
the application, which is the common approach in
Software Product Lines Engineering (SPLE), where
customized product variants may be derived from a
feature model that includes predictable features’
variability modelling (Clemens and Northrop, 2001).
Or it can be made by changing the application’s
source code, and culminate with the creation of a
new, different, application variant tailored for the
new customer/tenant, which has been a common
approach for software houses representing and
reselling software from major companies but making
customized deployments of those softwares.

Gebauer et al. (2006) identifies two types of
software application flexibility: flexibility-to-use,
regarding the features that are provided at the time
of deployment, and flexibility-to-change regarding
the features that constitute an option for later system
change.

Figure 1: Addressing the two types of flexibility (taken
from Ruehl et al., 2011).

Adherence to each type of application flexibility
differs according to being a single tenant application
or a multi-tenant one (see Figure 1). Single tenant,
traditional, applications’ customization is typically

addressed before deploying the application in the
customer/tenant’s location, and so they require
flexibility-to-change, that is flexibility for changing
the features to adapt a software application to a
specific customer’s requirements, even if the
application must be shut down for a period of time.
This is also the kind of flexibility addressed by
SPLE. These application tailoring procedures are not
applicable to the customization of multi-tenant SaaS
applications, which, on the other hand, do not
require high flexibility-to-change, but do require
high flexibility-to-use, meaning that the deployed
features must be easily changeable, without affecting
the application usage (Ruehl and Andelfinger,
2011).

We consider application customizations at three
architectural levels:
 Data level customization;
 Presentation customization;
 Business logic customization.

2.1 Data Level Customization

At the data level, a customizable application
typically enables the creation of new entity attributes
for the existing entities or, less often, it may even
enable the creation of new entity types.

Common data extension customization
approaches are (Chong et al., 2006):
 Preallocated fields;
 Name-value pairs;
 Custom columns.

Figure 2: Name-value pairs with extension tables (adapted
from Chong et al., 2006).

Preallocated fields are extra fields (columns) that are
created in the extendable entities (database tables),

An�Architectural�Model�for�Customizing�the�Business�Logic�of�SaaS�Applications

163

and that may have a different meaning depending on
each customer/tenant’s will. The number of
customizable extendable fields is predetermined in
each data table.

Name-value pairs allow the definition of an
arbitrary number of extended fields.

Typically, this is enabled by providing the
application with a metadata table, defining the
extended field (its name or label and its data type),
and an extension table, defining the field value and
associating it to a field in a primary data table (see
Figure 2).

Custom columns are a data extension approach
where columns are arbitrarily added to specific
tables by making the software dynamically use data
definition language (DDL) operations in the
database.

Whichever method is chosen to extend the data
model, it must be combined with the necessary code
adaptation, either by directly modifying the source
code, or by providing a mechanism for integrating
the additional fields into the application's
functionality.

In multi-tenant SaaS single instance applications,
the most suitable solution seems to be name-value
pairs, because it does not limit the number of extra
fields by table nor requires DDL operations in the
shared multi-tenant single instance database.

In a multi-tenant name-value pairs approach, the
metadata table must be bound to the tenant Id
(Chong et al., 2006). And the software code that
uses it, must take the tenant into account, without
interfering with the other tenants.

2.2 Presentation Customization

Another common kind of application customization
is at the presentation, or user interface, level. The
customer naturally wants the application to be
aligned with the company’s corporate image, and its
country culture/localisation (language, currency and
other cultural peculiarities).

In multi-tenant applications this must also be
customizable for each tenant, without interfering
with the other tenants’ application usage experience.

2.3 Business Logic Customization

After exploring the variability incorporated into the
application’s features, customization at the business
logic level requires that the business logic code,
which is typically located at an application layer or
in the database layer, is adapted to the customer.

In single tenant applications this is commonly

accomplished by modifying the application’s source
code in order to adapt it to the customer’s specific
requirements, which could not be foreseen when
designing the application flexibility that addresses
the variability points.

However, in multi-tenant applications this is not
a suitable solution. Modifying the source code is out
of question, because it would create a jumbled mix
of different tenants’ business rules into the source
code. Additionally, it would be needed to shut down
the (multi-tenant) system every time a tenant would
want a piece of customized code.

One of the first successful SaaS applications to
appear in the market was Salesforce’s CRM
solution. Salesforce offers two business logic
customization approaches: point-and-click
configuration, and code based customization. The
former enables fast and easy customizations, by
providing a series of simple point-and-click
wizards with limited customization capability. And,
the latter is useful for deeper customizations to meet
more demanding tenants’ needs, and is made
possible through a native programming language
called Apex for tenants to customize complex
business logic (Salesforce, 2013); (Weissman and
Bobrowski, 2009); (Chen et al., 2010).

Other authors have proposed customization
approaches for multi-tenant SaaS applications. For
instance, Yaish et al. (2012) propose a conceptual
architecture design using elastic extension tables and
a number of database, user interface and access
control services, for customizing the data layer, the
user interface layer and the access control, but it
doesn’t address business logic customization.

Figure 3: Architecture of the SaaS customizable multi-
tenant application.

ICSOFT�2013�-�8th�International�Joint�Conference�on�Software�Technologies

164

Xiuwei et al. (2012) propose a business rule
engine-based framework for customizing the
business logic layer of multi-tenant SaaS
applications. Their approach separates the business
rules, defined in decision tables, from the software
source code, enabling its customization by the
tenants within the variability scope pre-determined
in the decision tables.

Chen et al. (2010) propose an approach to
business logic SaaS applications’ customization
based on domain engineering techniques and
business rules templates. Like Xiuwei’s approach, it
enables the customization of business rules within
the variability scope pre-determined in the rules
templates.

3 BUSINESS LOGIC
CUSTOMIZATION OF SAAS
APPLICATIONS – GENERAL
VIEW

Our approach to the customization at the business
logic level aims to enable the SaaS provider
organisation to be able to supply, as a paid service,
the customization of the SaaS application to specific
tenants. Note that all the predictable variability in
requirements shall be incorporated into the
application, leaving to this approach only the
unforeseen deeper customization needs.

Figure 3 depicts the architecture of the proposed
solution, consisting in a customizable multi-tenant
application provided with a SaaS deployment model.
The approach requires that customized web services
are developed for a given tenant, and that the system
is configured, for that tenant, by using a
configuration tool, as further explained below.

The user accesses the application’s presentation
layer, which calls the shared services. These are a set
of multi-tenant enabled services that, in turn, access
the single instance database.

For customizing the SaaS application business
logic, customized services must be put available in a
customized services server, or any other web server,
and the SaaS application must be configured to plug
those services in the desired extension points
available in the application.

Let’s analyse, through an example, the proposed
approach. Consider that a given tenant wants to
modify the default behaviour of an order registering
SaaS application so that, when a user inserts a new
order, the total accumulated debt of the client be
verified and, if that debt is above some threshold, the

system rejects the new order.

Figure 4: Illustration of an example of the SaaS
customizable multi-tenant application.

Suppose, also, that this could have not been foreseen
at design time, and incorporated in the application as
a feature variability point, as recommended by
SPLE. This way, the system needs to be configured
so that, when validating the order form, it invokes a
customized service that verifies the client’s total
debt. Figure 4 illustrates this example: first, the user
inserts the new order data in the appropriate form
(step 1, in the figure); then, the system validates the
form, with the shared business logic (step 2). For
any other tenant, step 3 would follow, with the
system asking for confirmation, but, for the tenant in
question, an additional validation is made, by
invoking a customized service for verifying the
client’s debt (step 2.1). This service accesses the
database (step 2.2), or any external data (e.g.: from
another application), and validates or invalidates the
order (step 2.3).

Let’s consider that, for instance, the same or
another tenant would want that, any new order
registered in the SaaS application would also be
inserted in another external application (e.g.: CRM).
Figure 4 illustrates this as step 5.1 that, attached to
the insertOrder service, would enable the integration
with an external application.

4 PROPOSED APPROACH

4.1 Detailed Approach

Each specific tenant customized service must be

An�Architectural�Model�for�Customizing�the�Business�Logic�of�SaaS�Applications

165

plugged into an application extension point.
Although predefined, these extension points allow to
plug a customized service into almost every desired
point in the application. This is made possible by
providing extension points before, instead and after
every shared service associated to application forms,
including CRUD operations. For supporting this
approach, a set of metadata tables has been
established (see Figure 5).

Figure 5: Metadata tables for supporting business logic
customization by tenant.

Every pluggable component, provided by an external
custom-service, must be registered in table
Custom_Service, and may have one of three
purposes, or types (property type in table
Custom_Service):
 Validate a form field (type: Validation);
 Provide data to an external application (type:

Export);
 Get data from an external application (type:

Import).

Besides the service type, its URL is also required,
just as its result (output parameter) type, and what
tenant owns it. The currently allowed result types
are:
 FormValResult. Form Validation Result, which is

composed of a a Boolean, stating if the form is
valid, and a String, with a message, in case of
invalid form data.
 Boolean;
 Void, or no result expected. Void and Boolean may

be used, for instance, in providing data to an
external application.
 JSON String. A JSON formatted string that may be

used when getting data from an external

application (type: Import), to show information to
the user. Currently, this has the sole effect of
opening a dialog box showing the “imported” data.

Note that, regardless of its type, a custom-service
may access the application database, through the
CRUD shared services. By this way, it can, for
instance, import data to the SaaS application from an
external source.

Table Extendable_Page registers the
extendable pages of the application, that is, pages
with extension points. Each extendable page of the
application’s presentation layer may have an
extension point, where a custom-service may be
plugged in.

A page’s extension points are defined in table
Extension_Point, which also links the extension
point to the, possibly Null, custom-service to be
called.

An extension point is located around the load and
submit operations of an extendable page, and defines
the moment when the custom-service, is triggered.
The page controller, that is its submit operation
handler, handles all the possible operations provided
by that page, which may involve the creation of new
information (create one or more records in the
database) or the modification of existing information
(update one or more records in the database).

Figure 6: Customization (metadata creation) tool example.

Extendable pages’ form fields are identified in table
CustomService_input_params and may be,
then, associated to extension points, gaining the role
of input parameters to the plugged custom-service.

Having developed the desired custom-services,
the SaaS providing organisation, or the tenant if this
feature is given for his/her direct use, may customize
the application by using a customization tool (see
Figure 6), which dynamically adapts to the
extendable page where a custom-service is to be
plugged in. This customization tool allows plugging
the desired service into an extension point, linking
the selected form fields to the web-service’s input

ICSOFT�2013�-�8th�International�Joint�Conference�on�Software�Technologies

166

parameters, setting the trigger to the appropriate
value (before, after or instead_of), and choosing the
service type and the output parameter type.

Every extendable page controller has code for
looking for custom-services plugged into it,
associated to the tenant accessing the page. That is,
each extendable page searches for extension points
with non-null ID_CustomService attached to it,
that belong to the tenant accessing the page, in each
of the possible triggering positions.

4.2 Validation

The proposed approach to the customization at the
business logic level has been tested, and is being
used in the development of a WMS application that
will be deployed with a SaaS deployment model.

In the WMS application, the user accesses the
application’s presentation layer through any browser
with a Silverlight plugin. The presentation layer
calls the WMS domain (shared) services, which are
a set of Windows Communication Foundation Rich
Internet Application services (WCF RIA services,
see for instance http://msdn.microsoft.com/en-
us/library/ee707344(v=vs.91).aspx) exposed as
SOAP/WSDL. These, in turn, access the WMS
database.

For customizing the WMS application business
logic, custom REST web-services must be put
available in another web server, and the WMS
application must be configured to plug those
services in the desired extension points, available in
the application.

After being deployed, we will further assess the
utility and usability of this approach with real
customers/tenants and real users in an industry
setting.

5 DISCUSSION

The proposed approach enables the tenant-based
customization of SaaS applications’ business logic.
It addresses customizations that could not have been
foreseen in a domain engineering analysis, and could
not be implemented as a feature variability point as
defended by SPLE (Clemens and Northrop, 2001).

The proposed approach makes use of common
knowledge technology, in what respects to
developers, since the custom-services may be
developed in any programming language and may be
deployed in any web-server. The only limitation, in
the experiences made, and in the WMS application
being developed, is that the custom services

communicate through REST and that the objects are
passed to and from the services with JSON format,
because this is what the SaaS application is
expecting.

Table 1: Surveyed approaches to SaaS applications’
business logic customization.

 Pre-determined
variability scope

Full business
logic

customization
Comments

SPLE

Sales-force

Yaish et
al. (2012)

Addresses only
data and

presentation
layers’

customizability
Xiuwei et
al. (2012)

Chen et al.
(2010)

Our
Approach

Addressed through
customization of

variable features as
recommended by

SPLE.
(Not in the scope

of this paper)

Table 1 aims to compare our approach and the state
of the art approaches, referenced in section 2.3, by
classifying them according to two main aspects:
approaches that only address pre-determined
variability scope; and, approaches that enable a full
business logic customization. In the first category,
we can find the feature variability modelling and
product variants of SPLE (Clemens et al., 2001), the
point-and-click customization feature of Salesforce
(Salesforce, 2013), and the approaches by Xiuwei et
al. (2012) and Chen et al., 2010).

The approach by Yaish et al. (2012) only
addresses data layer and presentation layer
customizability. It doesn’t address business logic
customization at any degree.

As said before, our approach addresses
customizations that could not have been foreseen in
a domain engineering analysis, and so are outside
the limitations of a metadata framework. This way,
it assumes that pre-determined feature variability is
handled through SPLE or other appropriate
approach, but the focus of our approach is, however,
deep unforeseen customizations. This way it is only
comparable to the Salesforce code customization
feature, and the solution is the same, that is making
use of open-ended development environments for
the most common programming languages to create
the needed functionality. In addition, Salesforce also
allows creating new functionality using its own
proprietary language, Apex.

An�Architectural�Model�for�Customizing�the�Business�Logic�of�SaaS�Applications

167

6 CONCLUSIONS AND FUTURE
WORK

Multi-tenant SaaS applications’ customization is
hard to address because of the requirement for high
flexibility-to-use, meaning that the application’s
deployed features must be easily changeable by one
tenant, without affecting the application usage of
other tenants.

This paper presented an approach for the tenant-
based customization of SaaS applications, at the
business logic architectural layer of the application.

The proposed approach reserves the business
logic customization to the SaaS provider
organisation. The business logic customization may,
then, be supplied as a paid service to the tenants that
need it. The proposed architecture allows, however,
that the business logic customization responsibility
is given to the tenant administrator, provided he/she
can develop the needed custom-services.

The approach has been tested and is being
applied in a multi-tenant SaaS application.

An issue that needs mitigation has to do with the
amount of overhead code needed, in each extendable
page, to verify if there is any custom-service to be
called.

Other future directions involve also the
customization responsibility passage to the tenant.

REFERENCES

Chen, W., Shen, B. and Qi, Z. (2010). Template-based
Business Logic Customization for SaaS Applications.
2010 IEEE International Conference on Progress in
Informatics and Computing (PIC), vol.1, Pages 584-
588, 10-12 Dec. 2010, doi: 10.1109/
PIC.2010.5687477.

Chong, F., Carraro, G. and Wolter, R. (2006). Multi-
Tenant Data Architecture. MSDN, Microsoft
Corporation. Available at http://msdn.microsoft.com/
en-us/library/aa479086.aspx#mlttntda_topic2 (visited
in 13th Nov. 2012).

Clemens, P. and Northrop, L. (2001). Software Product
Lines: Practices and Patterns. SEI Series in Software
Engineering series, Addison-Wesley Professional.

Gebauer, J. and Schober, F. (2006). Information System
Flexibility and the Cost Efficiency of Business
Processes. Journal of the Association for Information
Systems, volume 7, issue 3, pages 122–147, 2006.

Krebs, R., Momm, C., and Kounev, S. 2012. Architectural
concerns in multi-tenant SaaS applications. In
CLOSER 2012, 2nd International Conference on
Cloud Computing and Services Science. Pages 426-
431, Porto, Portugal, SciTePress 2012.

Ruehl, S. T. and Andelfinger, U., 2011. Applying

Software Product Lines to create Customizable
Software-as-a-Service Applications. In SPLC’11,
Software Product Line Conference, August 21-26,
Munich, Germany.

Salesforce (2013). http://www.salesforce.com/platform/
customization/ (visited in 15th Feb. 2013).

Weissman, C.D. and Bobrowski, S. (2009). The Design of
the Force.com Multitenant Internet Application
Development Platform, SIGMOD'09, June 29th-July
2nd, 2009.

Xiuwei, Z., Keqing, H., Jian, W., Chong, W. and Zheng,
Li (2012). Business Rule Engine-based Framework for
SaaS Application Development. In CLOSER 2012,
2nd International Conference on Cloud Computing
and Services Science. Pages 345-354, Porto, Portugal,
SciTePress 2012.

Yaish, H., Goyal, M. and Feuerlicht, G. (2012). A Novel
Multi-tenant Architecture Design for Software as a
Service Applications. In CLOSER 2012, 2nd
International Conference on Cloud Computing and
Services Science. Pages 82-88, Porto, Portugal,
SciTePress 2012.

ICSOFT�2013�-�8th�International�Joint�Conference�on�Software�Technologies

168

