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Abstract: A compression-based similarity measure assesses the similarity between two objects using the number of bits

needed to describe one of them when a description of the other is available. For being effective, these measures

have to rely on “normal” compression algorithms, roughly meaning that they have to be able to build an internal

model of the data being compressed. Often, we find that good “normal” compression methods are slow and
those that are fast do not provide acceptable results. In this paper, we propose a method for measuring the
similarity of DNA sequences that balances these two goals. The method relies on a mixture of finite-context
models and is compared with other methods, including XM, the state-of-the-art DNA compression technique.
Moreover, we present a comprehensive study of the inter-chromosomal similarity of the human genome.

1 INTRODUCTION C(AB) —min{C(A),C(B)}

NCD(A,B) = ,
The work of Solomonoff, Kolmogorov, Chaitin max{C(A),C(B)}
and others (Solomonoff, 1964; Kolmogorov, 1965; whereC(A) andC(B) denote, respectively, the num-
Chaitin, 1966) on how to measure complexity has ber of bits needed by the (lossless) compression pro-
been of paramount importance for several areas ofgram to represerd and B, andC(AB) denotes the
knowledge. However, because it is not computable, number of bits required to compress the concatena-
the Kolmogorov complexity oA, K(A), is usually  tion of AandB.
approximated by some computable measure, such According to (Li et al., 2004), a compression
as Lempel-Ziv based complexity measures (Lempel method needs to bieormalin order to be used in a
and Ziv, 1976), linguistic complexity measures (Gor- normalized compression distance. One of the condi-
don, 2003) or compression-based complexity mea- tions for a compression method to be normal is that

1)

sures (Dix et al., 2007). the compression ¢fA (the concatenation @& with A)
The Kolmogorov theory also leads to an approach should generate essentially the same number of bits
to the problem of measuring similarity. ket al. pro- as the compression @f alone (Cilibrasi and Vitanyi,

posed a similarity metric (Li et al., 2004) based on an 2005).
information distance (Bennett et al., 1998), defined =~ We propose a method for calculating the nor-
as the length of the shortest binary program that is malized compression distance based on a mixture
needed to transform and B into each other. This of finite-context models. This DNA compression
distance depends not only on the Kolmogorov com- method is in fact composed by a set of models, each of
plexity of A andB, K(A) andK(B), but also on con-  different order, from which probabilities are averaged
ditional complexities, for exampl& (A|B), that indi- using weights calculated through a recursive proce-
cates how compleA is whenB is known. Because dure (described in Section 2).
this distance is based on the Kolmogorov complex-  This paper is organized as follows. In Section 2,
ity (not computable), they proposed a practical ana- we describe our algorithm. In Section 3, we pro-
log based on standard compressors, which they callvide experimental results, including a comparation
the normalized compression distance (Li et al., 2004), of methods and a human genome inter-chromosomal
represented by study. Finally, in Section 4, we draw some conclu-
sions.
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2 MATERIALSAND METHODS compute weights such thak , = P(k|x1 n), i.e., ac-
cording to the probability that modklhas generated

2.1 DNA Sequences the sequence until that point. In that case, we would
get

In this study, we used sequences from eleven Wicn = P(k|x1.n) O P(X1.n[K)P(K), (6)

genomes obtained from the National Cen- \hereP(x; n|k) denotes the likelihood of sequence
ter for Biotechnology Information (NCBI), y; . peing generated by modebndP(k) denotes the
ftp://ftp.ncbi.nim.nih.gov/genomes/.  The genomes pyior probability of modek.

are the following: Streptococcus pneumoniae Since the DNA sequences are not stationary, a
R6__U|d57859;Lac_tococcus I_actl,sII14O&U|d57671; good performance of a model in a certain region of
Shigella flexneri 2a301uid62907; Salmonella  he sequence might not be attained in other regions

enterica  STyphiuid57793;  Escherichia  colj (Pratas and Pinho, 2011; Pinho et al., 2011a; Pinho
K-12.uid58979; Arabidopsis thaliana AT; Saccha- et 5),, 2011b). Hence, we used a mechanism for pro-

romyces cerevisigeuid128; Schizosaccharomyces gressive forgetting of past measures, given by
pombe uid127; Mus musculus MGSCv37; Pan

troglodytes B2.1.4;Homo sapiensApril_14.2003. Pkn = p‘(yn_lP(xn|k, X1 n—1), Wicn = pk,n/z Pk.n-
2.2 Finite-context Models
A finite-context model (FCM) of an informaton 3 EXPERIMENTAL RESULTS

source assigns probability estimates to the symbols

of the ‘alphabet, according to a conditioning con- |n order to test our method we used a setup composed
text computed over a finite and fixed numbler; O, of eight FCMs with orderk = 2,4,6,8,10,12,14, 16.

of past outcomes ki1.n = Xnki1---Xn (Orderk The probabilities associated to the FCMs were esti-
FCM). In practice, the probability that the next out- mated usingx = 1 for ordersk = 2, 4, 6, 8, 10, 12
comexn1iss€ 24 ={A,C,G, T}, is obtained using  and witha = 0.05 for model order& = 14,16. The

the estimator performance forgetting parameter was set+00.99.
C(S%n_k11.n) + 0 For comparasion, we used the competitive method
P(SXn—k+1.n) = » (2 GzIP using the "-best” option. This method is based
C(Xn—kt1.n) +4a

_ on LZ77 encoding (dictionary compression) and is
whereC(s|xn—k+1.n) represents the number of times one of the most known methods in the compression

that, in the past, symbslwas found havingn—k+1.n ~ field. We used also, the current state-of-the-art in
as the conditioning context, and where DNA coding eXpert-Model, XM (Cao et al., 2007).
Cltnketn) = Z ClalXn_ke1.n) 3) XM relies on a mixture of experts for providing sym-

bol by symbol probability estimates, which are then
_ used for driving an arithmetic encoder. The algo-
is the tot_al _numper of events that has occurred so far yjipnm comprises three types of experts: (1) order-2
in association with contex,_k.1.n. The per symbol \arkov models; (2) order-1 context Markov mod-
information content average provided by the FCM of g5 je. Markov models that use statistical informa-
order¥, after having processetsymbols, is givenby g only of a recent past (typically, the 512 previ-
-1 ous symbols); (3) the copy expert, that considers the
Hin=—= Z)Iog2 P(Xi+1%-k+1.i) bph  (4) next symbol as part of a copied region from a partic-
= ular offset. The probability estimates provided by the
where “bpb” stands for bits per base. When using sev- Set of experts are then combined using Bayesian av-
eral models simultaneously, th, can be viewed  €raging and sent to the arithmetic encoder. We have
as measures of the performance of those models untilused this method with two different numbers of copy-
that position. Therefore, the probability estimate can €xperts (50 and 200), to which we refer to as XM-50
be given by a weighted average of the probabilities and XM-200, respectively.

acq

provided by each model, according to USing the methods mentioned above (FCM, GZIP,
XM-50 and XM-200), we have compressed the com-
P(Xnt1) = ZP(Xn+1|Xn—k+1..n) Win, (5) bined sequences referred in the previous section. The
results are displayed in Table 1.
wherew,n denotes the weight assigned to model In this table we can verify that GZIP seems not

and yywqn = 1. For stationary sources, we could to be a good method to calculate the normalized
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Table 1: The normalized compression distance (NCD) andrfee(in minutes) required to compute it using different noeth
on the concatenated sequences A and B. The bold valueseapties best NCD values.

Sequence A Sequence B Size GzZIP XM-50 XM-200 FCM
(Mb) NCD | Time NCD Time NCD Time NCD Time
S. pneumoniae L. lactis 4.4 0.9987 0.2 0.9810 1.0 0.9797 1.0 1.0023 1.1
E. coli S. flexneri 9.3 0.9991 0.4 || 0.2298 2.7 || 0.2295 2.7 || 0.4176 2.2
E. coli S. enterica 9.5 0.9992 0.4 || 0.7776 2.8 || 0.7743 2.8 || 0.9748 2.3
A. thaliana C1 A. thaliana C2 50.0 || 0.9999 2.3 || 0.9809 19.6 || 0.9765 19.6 || 0.9877 10.9
A. thaliana C3 A. thaliana C4 42.0 || 0.9998 1.9 || 0.9763 14.0 || 0.9720 14.0 || 0.9837 10.7
S. cerevisiae C1 | S. cerevisiae C2 1.0 0.9953 0.1 0.9898 0.1 0.9897 0.1 0.9922 0.3
S. cerevisiae C3 | S. cerevisiae C4 1.8 0.9975 0.1 0.9945 0.2 0.9944 0.2 0.9947 0.5
S. cerevisiae C5 | S. cerevisiae C6 0.8 0.9932 0.1 0.9861 0.1 0.9860 0.1 0.9884 0.2
S. pombe C1 S. pombe C2 10.1 || 0.9993 0.5 || 0.9855 2.5 || 0.98%4 2.5 || 0.9872 2.4
S. pombe C2 S. pombe C3 7.0 || 0.9993 0.3 || 0.9941 1.9 || 0.9940 3.2 || 0.9948 1.7
M. musculus C5 | P.troglodytes C5( 325.8 || 0.9999 14.6 1.0125 | 370.8 || 1.0104 | 524.3 || 1.0090 90.4
M. musculus C5 | H. sapiens C5 326.0 0.9999 14.6 1.0117 | 363.8 1.0102 | 542.3 1.0084 91.2
P. troglodytes C5| H. sapiens C5 354.8 || 0.9999 | 16.2 || 0.2475 | 401.0 || 0.1762 | 568.5 || 0.4743 | 100.0
H. sapiens C3 H. sapiens C5 371.1 || 0.9999 | 17.4 || 0.9988 | 441.1 || 0.9963 | 601.5 || 0.9891 | 104.9
H. sapiens C12 H. sapiens C9 2445 || 0.9999 [ 10.9 0.9995 | 195.7 [| 0.9962 | 344.5 || 0.9905 66.9
H. sapiens C12 | H. sapiens CY 152.1 || 0.9999 6.8 1.0029 | 104.0 || 0.9997 | 216.1 || 0.9992 41.5
H. sapiens C9 H. sapiens CY 137.9 || 0.9999 6.2 1.0039 73.6 1.0005 | 177.1 || 0.9995 38.1
H.sapiens C11 | H.sapiensC12 | 260.0 || 0.9999 | 11.2 || 0.9997 | 216.8 || 0.9965 | 320.7 || 0.9871 75.3
H. sapiens CY P. troglodytes C5| 200.1 || 0.9999 9.0 1.0004 | 152.8 || 0.9996 | 228.7 || 0.9971 55.6
H. sapiens C9 M. musculus C5 | 263.7 || 0.9999 10.7 || 1.0099 | 231.1 (| 1.0080 | 268.8 || 1.0073 73.2
A. thaliana C2 S. cerevisiae C2 20.5 0.9998 0.9 1.0001 5.9 1.0001 | 167.2 1.0001 5.1
A. thaliana C3 S. pombe C3 25.9 (| 0.9999 12 1.0002 7.8 1.0002 16.6 || 1.0004 6.4
S. cerevisiae C1 | S. pombe C1 5.8 0.9993 0.3 0.9999 15 0.9999 11.3 1.0001 1.4
A. thaliana C4 S. pneumoniae 20.6 || 0.9998 1.0 1.0007 7.3 1.0007 10.0 || 1.0013 5.1
Total ~ 2755 || 0.9992 123 || 0.9235 | 2507 || 0.9189 | 3874 || 0.9493 758

1.0075

compression distance (NCD) on DNA sequences, be-

P —— ' '
cause, as can be seen, it does not show any discrim- . M A

inant capabilities. On the other hand, XM and FCM R v L
seem to be able to distinguish the sequences. R e e 1
The XM method seems to behave better than FCM =~ oses | 1
for small sequences and also for sequences that are .~ [ 1
very smnar. For example, the NCD &. coli and S B S S e T e

S. entericéhas a value very small and we know from Ghromosomes

(Zhao et al., 2007) that this has a biological justifi- ool I ==
cation, since these genomes have a strong structural «w} . o Loango x|
relation. However, XM is much more time consum-  2°1 . R o ]
ing than FCM to accomplish the task. g ot T T e, %
The FCM method seems to perform better in =~ | < L os/ ]
sequences that are somewhat dissimilar and large. o e
A few examples are the chromosomes from the Gl oo ]
1 2 3 4 5 6 7 8 9 10 12 13 14 15 16 17 18 19 20 21 22 X Y

genomes:H. sapiensP. troglodytesand M. muscu- Chromosomes

lus. Moreover, as already mentioned, it is more time Eigyre 1: Normalized compression distance (NCD) for dif-

efficient than XM. To verify this observation, we have ferent methods between the human chromosome 11 and

ran a complete NCD for everld. sapienschromo- each of all other human chromosomes (top graph, the NCD

some. However, due to space restrictions, in Fig. 1, value, bottom graph, the time required).

we only present the NCD results of chromosome 11

with the rest of the chromosoméds.(sapien. position of the NCD values regarding the similarity
In Fig. 1, it is possible to verify that FCM pro- between chromosome 11 and chromosome X, and be-

vides the smallest NCD value and time, comparing tween chromosome 11 and chromosome 12.

with XM, in all entries. Moreover, FCM reveals some We have also studied the inter-chromosomal sim-

interesting results that are not unveiled by the other ilarities in theH. sapienggenome, has it can be seen

approaches. This can be observed, e.g., in the relativen Fig. 2. There are some aspects that we should point
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