
SPECIFYING SERVICES USING THE SERVICE ORIENTED
ARCHITECTURE MODELING LANGUAGE (SOAML)

A Baseline for Specification of Cloud-based Services

Brian Elvesæter, Arne-Jørgen Berre
SINTEF ICT, P. O. Box 124 Blindern, N-0314 Oslo, Norway

Andrey Sadovykh
SOFTEAM, 21 avenue Victor Hugo, 75016 Paris, France

Keywords: Service specification, Service oriented architecture, Service modelling, SoaML.

Abstract: The Service oriented architecture Modeling Language (SoaML) is a new specification from the Object
Management Group (OMG) that provides support for modelling services. The SoaML specification defines
three different approaches to specifying services; simple interfaces, service interfaces and service contracts.
In this paper we provide an overview of the SoaML language constructs and discuss the three different ways
to specify services. Furthermore, we provide practical modelling guidelines for how the different SoaML
service specification approaches can be aligned and used as a baseline for specifying cloud-based services.

1 INTRODUCTION

The Service oriented architecture Modeling
Language (SoaML) specification (OMG, 2009)
defines a UML profile and a metamodel for the
design of services within a service-oriented
architecture. The goals of SoaML are to support the
activities of service modelling and design and to fit
into an overall model-driven development approach,
supporting SOA from both a business and an IT
perspective.

The SoaML specification defines three different
approaches to specifying services; simple interfaces,
service interfaces and service contracts. The
different approaches prescribe using different parts
of UML, and understanding how these relate is not
obvious from reading the specification. Due to this
we have seen some confusion amongst software
engineering practitioners trying to apply SoaML.

In this paper we provide an overview of the
SoaML language and discuss the different ways to
specifying services. Furthermore, we provide
practical modelling guidelines for how the different
SoaML service specification approaches can be
aligned. The guidelines are based on our experience
from developing SoaML modelling tools and

methods, and proof-of-concept implementations in
industrial case studies (Stollberg et al., 2010).

The paper is structured as follows: In Section 2
we give an overview of the SoaML language.
Section 3 presents an illustrative example and
describes and discusses the different approaches to
service specification. In Section 4 we provide some
practical guidelines for how to align these different
SoaML specification approaches. In Section 5 we
discuss methodology issues and related work.
Finally, Section 6 concludes this paper.

2 OVERVIEW OF THE SOAML
LANGUAGE CONSTRUCTS

The SoaML specification defines a UML profile and
a metamodel that extends UML to support the range
of modelling requirements for SOA, including the
specification of systems of services, the specification
of individual service interfaces, and the specification
of service implementations. The SoaML metamodel
extends the UML metamodel to support an explicit
service modelling in distributed environments. This
extension aims to support different service
modelling scenarios such as single service

276
Elvesæter B., Berre A. and Sadovykh A..
SPECIFYING SERVICES USING THE SERVICE ORIENTED ARCHITECTURE MODELING LANGUAGE (SOAML) - A baseline for Specification of
Cloud-based Services.
DOI: 10.5220/0003393202760285
In Proceedings of the 1st International Conference on Cloud Computing and Services Science (CLOSER-2011), pages 276-285
ISBN: 978-989-8425-52-2
Copyright c
 2011 SCITEPRESS (Science and Technology Publications, Lda.)

description, service-oriented architecture modelling,
or service contract definition. This is done in such a
way as to support the automatic generation of
derived artefacts following the approach of Model
Driven Architecture (MDA) (OMG, 2003).

UML is a general-purpose modelling language
for visualising, specifying, constructing and
documenting artefacts of software-intensive systems.
A UML profile customizes UML for a specific
domain or purpose by using extension mechanisms
such as stereotypes and metaclasses. Figure 1 shows
the main stereotypes defined in the UML profile for
SoaML, e.g. the stereotype «ServiceInterface»
extends the UML metaclass Class.

Figure 1: Main UML extensions defined as stereotypes in
the UML Profile for SoaML (no relationships shown).

SoaML extends UML in six main areas:
Participants, service interfaces, service contracts,
services architectures, service data and capabilities.

Participants are used to define the service
providers and consumers in a system. A participant
may play the role of service provider, consumer or
both. When a participant acts as a provider it
contains service ports, and when a participant acts as
a consumer it contains request ports.

Service interfaces are used to describe the
operations provided and required to complete the
functionality of a service. A service interface can be
used as the protocol for a service port or a request
port.

Service contracts are used to describe interaction
patterns between service entities. A service contract
is used to model an agreement between two or more
parties. Each service role in a service contract has an

interface that usually represents a provider or a
consumer.

Services architectures are used to define how a
set of participants works together for some purpose
by providing and using services. The services are
expressed as service contracts in a services
architecture.

Service data are used to describe service
messages and message attachments. The message
type is used to specify the information exchanged
between service consumers and providers. An
attachment is a part of a message that is attached to
rather than contained in the message.

Capabilities represent an abstraction of the
ability to affect change. Capabilities identify or
specify a cohesive set of functions or resources that
a service provided by one or more participants might
offer.

3 APPROACHES TO
SPECIFYING SERVICES USING
SOAML

SoaML supports different approaches to SOA. This
has resulted in the definition of different but
overlapping language constructs in the UML profile.
The specification distinguishes between three
different approaches to specifying a service:

 The simple interface based approach uses a
UML interface to specify a one-way service
interaction.

 The service contract based approach extends
a UML collaboration to specify a binary or n-
ary service interaction.

 The service interface based approach extends
a UML class to specify a binary or n-ary
service interaction.

Both the service contract and service interface based
approaches entail the specification of simple
interfaces, typically one for each of the roles
participating in the service interaction. Thus a
service contract or a service interface can be seen as
an extension of the simple interface based approach.

The following subsections introduce an
illustrative example and describe and discuss the
three approaches in light of the example in more
details.

3.1 Illustrative Example

In this paper we have adopted the Dealer Network
Architecture example from the SoaML specification.
The example in the specification is somewhat

SPECIFYING SERVICES USING THE SERVICE ORIENTED ARCHITECTURE MODELING LANGUAGE (SOAML)
- A baseline for Specification of Cloud-based Services

277

difficult to read because of the different approaches
to service specifications. On closer inspection of the
example in the SoaML specification, we found out
that there were in fact two different variants of the
example; one favouring the service contract based
approach and the other favouring the service
interface based approach. These two variants are
slightly different and have been modelled using two
different modelling tools, thus the reader is faced
with a somewhat unclear and inconsistent running
example throughout the specification. A full
example favouring the service contract based
approached is documented in (Casanave, 2009) and
a full example favouring the service interface based
approach is documented in (Amsden, 2010). Both of
these authors were heavily involved in the SoaML
specification process. Furthermore, we also found
out that some UML tools do not properly support
UML collaboration, resulting in poor support for the
SoaML service contract based approach.

In this paper we merged and unified the two
different variants of the example used in the
specification and modelled the example using the
Modelio modelling tool (www.modeliosoft.com)
that equally supports both the service contract and
service interface based approaches of SoaML. The
example was also extended to show a full integration
and benefits of multi-party and compound service
contracts in specifying services architectures. Figure
2 shows the services architecture for the unified
example.

Figure 2: Services architecture for the Dealer Network
Architecture illustrative example with four participants
and the roles they play in the three service contract
specifications.

The Dealer Network Architecture consists of four
participants (dealer, manufacturer, agent and
shipper) interacting and fulfilling their roles defined
in the three service contracts: Secure Purchase
(specifying the roles buyer, seller and broker),

Shipping Request (specifying the roles sender and
shipper) and Shipping Status (specifying the roles
receiver and shipper). In the services architecture
the participants are bounded to the roles defined in
the service contracts through the collaboration uses
purchase (instance of Secure Purchase), ship
(instance of Shipping Request) and status (instance
of the Ship Status). Details of these service contracts
will be described in the subsequent sections.

3.2 Simple Interface based Approach

The simple interface based approach focuses
attention on a one-way interaction provided by a
participant on a port represented as a UML interface.
The participant receives operations on this port and
may provide results to the caller. This approach can
be used with “anonymous” callers and the
participant makes no assumptions about the caller or
the choreography of the service.

In the Dealer Network example there are three
services identified (as service contracts). Some of
these may in fact be simple one-way interactions and
could thus be modelled using the simple interface
based approach. Let us consider the Ship Status
service as a simple one-way interaction. Figure 3
shows the specification of this service, consisting of
the provider interface ShippingStatus (modelled as a
«Provider» UML interface) and the two message
types ShipmentStatusRequest and ShipmentStatus
(modelled as «MessageType» UML classes). The
message types represent the types of the input
parameter and the return type of the operation
queryShippingStatus defined in the provider
interface.

Figure 3: Specification of the Ship Status service using the
simple interface based approach, consisting of a simple
provider interface, its operations and message types, and
the corresponding port on a participant.

According to the services architecture Dealer
Network Architecture the participant Shipper must
realize the shipper role, which means to provide the
provider interface through a service port. Thus, to
complete the specification, we add the service port
service (modelled as a «Service» UML port) to the
participant Shipper (modelled as a «Participant»

Dealer Network Architecture
<<ServicesArchitecture>>

ship:Shipping Requeststatus:Ship Status

purchase:Secure Purchase

shipper

sender

shipper

receiver

sellerbuyer

broker

shipper:Shipper

manufacturer:Manufacturerdealer:Dealer

agent:EscrowAgent

ShipmentStatusRequest
<<MessageType>>

ShipmentStatus
<<MessageType>>

ShippingStatus
<<interface, Provider>>

Shipper
<<Participant>>

shipmentId : string status : string

queryShippingStatus(in message : ShipmentStatusRequest):ShipmentStatus

<<Service>> service:ShippingStatus

ShippingStatus

CLOSER 2011 - International Conference on Cloud Computing and Services Science

278

UML class or a «Participant» UML component (a
subclass of UML class)). The service port is typed
with the provider interface ShippingStatus and
exposes its provided interface.

The simple interface based approach can be seen
as a degenerate case of both the service contract and
service interface based approaches, only entailing
one provider interface. Figure 4 shows how the
simple interface can be specified as a service
contract Ship Status (modelled as a
«ServiceContract» UML collaboration). Note that a
contract involves at least two roles, e.g. consumer
and provider. In this case we use the role names
receiver and shipper instead of the generic consumer
and provider role names. Since we model a one-way
interaction only the provider side, i.e. the shipper
role, has a type, namely the provider interface
ShippingStatus. In this case we have only introduced
the UML collaboration, all other elements from the
simple interface based approach remain unaffected.

Figure 4: Specification of the Ship Status service using the
service contract based approach.

Figure 5 shows how the simple interface can be
modelled as a service interface. Here the service
contract has been replaced by the service interface
ShipStatusService (modelled as a «ServiceInterface»
UML class). The service interface contains a part
shipper that denotes the role which has the provider
interface type ShippingStatus. Furthermore, the
service interface class also realizes the
ShippingStatus interface. Note also, that in the case
of using the service interface based approach, the
corresponding port on the participant Shipper has
been typed by the service interface
ShipStatusService instead of the provider interface
ShippingStatus.

Here we could also have added the receiver role
to the service interface in order to completely
resemble the service contract, but this is not really
needed in this case since we do not define any

consumer interface type. A service contract however
needs to have a generic consumer role to be
complete, even though we do not have a consumer
interface, to ensure that the roles of the two
interacting participants can be linked using role
binding in a services architecture.

Figure 5: Specification of the Ship Status service (here
named ShipStatusService) using the service interface
based approach.

From the examples above we see that modelling
simple interfaces as either a service contract or a
service interface requires additional modelling
effort. Thus, the simple interface based approach is
recommended for modelling one-way service
interactions, since the addition of a service contract
or a service interface is unnecessary. However, if
you want to illustrate the particular use of a one-way
interaction service in a services architecture, you
will need to add a service contract modelled as a
UML collaboration. As explained above, this
fortunately does not affect any of the other elements
already specified using the simple interface based
approach.

3.3 Service Contract based Approach

A service contract based approach defines service
specifications that define the roles each participant
plays in the service (such as provider and consumer)
and the interfaces they implement to play that role in
that service. These interfaces are then the types of
ports on the participant, which obligates the
participant to be able to play that role in that service
contract.

The service contract based approach extends a
UML collaboration to model the structural part of
the service interaction. The approach can be used to
specify services in which there is a contractual
obligation, i.e. an agreement, between two or more
parties. This is the case where you have an

Ship Status
<<ServiceContract>>

ShipmentStatusRequest
<<MessageType>>

ShipmentStatus
<<MessageType>>

ShippingStatus
<<interface, Provider>>

Shipper
<<Participant>>

shipmentId : string status : string

queryShippingStatus(in message : ShipmentStatusRequest):ShipmentStatus

shipper:ShippingStatusreceiver:

<<Service>> service:ShippingStatus

ShippingStatus

Shipper
<<Participant>>

ShipmentStatus
<<MessageType>>

ShipmentStatusRequest
<<MessageType>>

ShippingStatus
<<interface, Provider>>

ShipStatusService
<<ServiceInterface>>

status : stringshipmentId : string

queryShippingStatus(in message : ShipmentStatusRequest):ShipmentStatus

shipper:ShippingStatus

<<Service>> service:ShipStatusService

ShippingStatus

SPECIFYING SERVICES USING THE SERVICE ORIENTED ARCHITECTURE MODELING LANGUAGE (SOAML)
- A baseline for Specification of Cloud-based Services

279

interaction pattern that involves an exchange of
messages which specify (simple) interfaces on both
sides.

Let us now consider the Secure Purchase service
contract from the Dealer Network and demonstrate
the use of the service contract based approach to
define a binary service contract, a multi-party
service contract and a compound service contract.
First assume that the Secure Purchase service
contract can be modelled as two separate service
contracts, one specifying the order interaction and
the other specifying the purchase interaction.

Figure 6 shows the specification of the Place
Order service contract, with the two roles consumer
and provider and their respective OrderPlacer and
OrderTaker consumer and provider interface types.
The service contract states that there is a dependency
between these two interfaces and this must also be
modelled explicitly using UML dependencies. The
participants interacting in this service contract fulfil
their roles by realizing the corresponding interfaces
and expose them through ports. From the role
bindings in the services architecture we deduce that
the Dealer has a request port Request typed by the
OrderPlacer interface, and the Manufacturer has a
service port Service typed by the OrderTaker
interface. Notice that we have not fully specified the
operation signatures and message types for the
interfaces. We will come back to this in Section 4.1
of this paper.

Figure 6: Specification of the Place Order service,
consisting of two roles, their respective consumer and
provider interface type, and the corresponding ports on the
participants.

In the example above the service contract acts as a
packaging of the two interfaces, ensuring that both
interfaces are a part of one service specification and
not specified as two independent service
specifications as two separate simple interfaces. In
addition to this structural specification it is
recommended to specify the behaviour of the service
contract, i.e. the service choreography or service

protocol. In fact, one can argue that the specification
of the service choreography is essential in order to
understand how to design the interfaces to support
the exchange of messages. SoaML is agnostic with
regards to behavioural modelling and basically states
that any UML behaviour, e.g. interaction models,
activity models or state machines, can be used.

Figure 7 shows the specification of the service
choreography using a UML interaction. Here we see
that we specify a conversation, i.e. message
exchange, between the two participants, and this
requires an interface to be implemented at both
sides. In this case the simple interface based
approach falls short as it is not able to capture this as
one single service specification.

Figure 7: Specification of the Place Order service
choreography (behaviour).

The service contract based approach is useful when
specifying interactions between two or more roles
that implies the establishment of some agreement
e.g. through message exchanges. A service contract
also serves as a reusable specification element that
can be re-used at design time to connect different
participants. Furthermore, the approach also
supports modelling of multiparty service contracts
involving three or more participants and compound
service contracts where existing service contracts
can be used to define more granular service
contracts.

Let us first look at a multiparty service contract.
Our example uses an Escrow purchase, where the
interaction between a buyer and a seller is mediated
through an Escrow broker. Figure 8 shows the
specification of the Escrow Purchase service
contract, with the three roles buyer, seller and
broker and their respective Purchaser, Seller and
EscrowAgent consumer and provider interface types.

Place Order
<<ServiceContract>>

Manufacturer
<<Participant>>

Dealer
<<Participant>>

OrderTaker
<<interface, Provider>>

OrderPlacer
<<interface, Consumer>>

order()
quoteRequest()

orderConfirmation()
quote()

provider:OrderTakerconsumer:OrderPlacer

<<Service>> Service:OrderTaker<<Request>> Request:OrderPlacer

OrderPlacer

OrderTaker

OrderPlacer

OrderTaker

opt
[]

provider:OrderTakerconsumer:OrderPlacer

quoteRequest

quote

order

orderConfirmation

CLOSER 2011 - International Conference on Cloud Computing and Services Science

280

The dependencies between the interfaces are
explicitly modelled using UML dependencies and
the participants have ports corresponding to the role
bindings in the services architecture. As can be seen
the ports on the Dealer, Manufacturer and
EscrowAgent participants each provides one and
requires two interfaces in order to comply with the
dependencies between the interfaces.

Figure 8: Specification of the Escrow Purchase service,
consisting of three roles, the respective consumer interface
and the two provider interface types, and the
corresponding ports on the participants.

Figure 9 shows the specification of the service
choreography using a UML interaction. Note that
this is a multiparty service contract because the
buyer also interacts with the seller directly through
the delivery message. With the exception of the
delivery, all other interactions are mediated through
an Escrow broker. The service interaction starts with
a deposit made by the buyer to broker. At a later
time a delivery is made and either accepted or
grievance is sent to the broker who forwards it to the
seller, which may file a justification in order to
clarify whether to accept or refund the payment.
This process repeats until the broker concludes the
transaction and either makes the escrowPayment to
the seller or escrowRefund to the buyer.

Figure 9: Specification of the Escrow Purchase service
choreography (behaviour).

Let us now look at a compound service contract.
Note that a compound service contract should not be
confused with a service that is implemented by
calling other services. A compound service contract
defines a more granular service contract based on
other service contracts. Figure 10 shows the
specification of the Secure Purchase compound
service contract, which combines the Place Order
and Escrow Purchase service contracts. In the case
of compound service contracts, the SoaML
specification prescribes that the types of the roles
should be modelled as classes instead of interfaces.
Moreover, according to the SoaML specification
they can in fact be of type service interfaces which
are explained in Section 3.4. In this example we use
UML classes stereotyped as either «Consumer» or
«Provider». Note that the Buyer and Seller have two
ports, each corresponding to the role played in the
Place Order and Escrow Purchase services. When a
compound service is used it looks no different than
any other service in a services architecture, thus
hiding the detail of the more granular service in the
high-level architecture yet providing traceability
through all levels.

Escrow Purchase
<<ServiceContract>>

Seller
<<interface, Provider>>

EscrowAgent
<<interface, Provider>>

Purchaser
<<interface, Consumer>>

Manufacturer
<<Participant>>

Dealer
<<Participant>>

EscrowAgent
<<Participant>>

escrow Payment()
grievance()

justification()
grievance()
deliveryAcceptance()
escrow Deposit()

escrow Refund()
justification()
delivery()

seller:Seller

broker:EscrowAgent

buyer:Purchaser

<<Service>> seller:Seller<<Request>> buyer:Purchaser

<<Service>> Service:EscrowAgent

Seller, EscrowAgent

Purchaser

Seller, Purchaser

E s c rowA ge nt

Seller

Pu rc ha se r, E scro wA g en t

loop

alt

[]

[]

[else]

alt

[else]

[]

seller:Sellerbroker:EscrowAgentbuyer:Purchaser

delivery

depositNotice
escrow Deposit

escrow Refund

justification

justification

grievance
grievance

deliveryAcceptance

escrow Payment

SPECIFYING SERVICES USING THE SERVICE ORIENTED ARCHITECTURE MODELING LANGUAGE (SOAML)
- A baseline for Specification of Cloud-based Services

281

Figure 10: Specification of the Secure Purchase
compound service contract which combines the two-party
Place Order and the multi-party Escrow Purchase service
contracts.

3.4 Service Interface based Approach

The service interface based approach is quite
similar to the service contract based approach in that
it also focuses on binary and n-ary service
interactions, requiring us to specify a set of related
(simple) interfaces as one service specification.
Whereas the service contract based approach
prescribes using UML collaboration, the service
interface based approach focuses on UML
components and allows the interconnection between
these components through ports. In order to connect
components through ports, the ports must specify
both required and provided interfaces.

The service interface based approach introduces
the concept of a service interface and a conjugate
service interface to type the ports on the provider
and consumer side respectively. Let us show this
through a typical bidirectional service interaction,
where a “callback” from the provider to the
consumer is specified as part of a conversation
between the participants. Figure 11 shows the
specification of the Place Order service previously
modelled as a service contract using the service
interface based approach instead. We name the
service interface PlaceOrderInterface, which
specifies the roles consumer and provider with their
corresponding interface types OrderPlacer and
OrderTaker respectively as before. The service
interface realizes the provider interface OrderTaker
and uses the consumer interface OrderPlacer. A
conjugate service interface denoted with the ~ (tilde)

prefix is used to type the port on the participant
playing the consumer role. The conjugate service
interface reverses the realization and uses
associations, i.e. it realizes the consumer interface
OrderPlacer and uses the provider interface
OrderTaker.

Figure 11: Specification of the Place Order service using
the service interface based approach.

Figure 12 shows how the participants fulfilling the
consumer and provider roles can be connected
through their ports. The Dealer participant has a
request port typed by the conjugate service interface
~PlaceOrderInterface, whereas the Manufacturer
participant has a service port typed by the service
interface PlaceOrderInterface. Both ports are
compatible with regards to the required and provided
interfaces, which thus can be connected. This allows
us to specify composite structures in UML where we
can connect the ports through service channels, e.g.
as illustrated with the Dealer Network Architecture
in Figure 12. Graphically, the interconnection
between these ports can now be simplified by only
showing the connector and mask out any required
and provided interfaces which only tend to clutter
the diagram.

Figure 12: Consumer and provider participants connected
through their request and service ports.

The service interface based approach adds further
details in order to align with UML component
modelling, which allows components to be

Secure Purchase
<<ServiceContract>>

Agent
<<Provider>>

Seller
<<Provider>>

Buyer
<<Consumer>>

:Escrow Purchase

:Place Order

sellerbuyer

broker

providerconsumer

broker:Agent

seller:Sellerbuyer:Buyer

Request:OrderPlacer

Service:OrderTaker

Service:EscrowAgent

buyer:Purchaser

seller:Seller

OrderTaker
<<interface, Provider>>

OrderPlacer
<<interface, Consumer>>

~PlaceOrderInterface
<<ServiceInterface>>

PlaceOrderInterface
<<ServiceInterface>>

order()
quoteRequest()

orderConfirmation()
quote()

provider:OrderTakerconsumer:OrderPlacer

provider:OrderTakerconsumer:OrderPlacer

Dealer Network Architecture

Manufacturer
<<Participant>>

Dealer
<<Participant>>

manufacturer:Manufacturer

dealer:Dealer

<<Service>> s:PlaceOrderInterface<<Request>> r:~PlaceOrderInterface

OrderTaker

OrderPlacer

OrderTaker

OrderPlacer

s
r <<ServiceChannel>>

CLOSER 2011 - International Conference on Cloud Computing and Services Science

282

composed and connected through ports. The addition
of the conjugate service interface type arguably adds
extra complexity, but it ensures syntactical
correctness in the model when connecting the ports.
Furthermore, the conjugate service interface type
could be automatically created in a SoaML
modelling tool based on the modelled service
interface type.

4 ALIGNING THE SERVICE
SPECIFICATION
APPROACHES

Although the three different service specification
approaches of SoaML are different they are still
somehow intertwined with respect to the fact that
simple interfaces are structural parts in both the
service contract and service interface based
approaches. The simple interface can be viewed as
degenerate cases of both these approaches as
explained in Section 3.2 of this paper.

Basically, we see two main approaches, the
service contract based approach that extends UML
collaboration and the service interface based
approach that extends UML class but focused on
components and composite structures connected
through ports. Reading the SoaML specification it is
unclear how to use and combine these approaches.
Furthermore, combining them may also lead to
duplicate modelling effort, in particular with respect
to the specification of the behavioural parts, i.e. the
service choreographies.

Our experience with SoaML modelling in
different project settings suggests that there are two
main ways of aligning the service contract and
service interface based approaches, namely through
refinements or through views. We have developed a
methodology that provides SoaML modelling
guidelines (Elvesæter et al., 2011) that includes the
two approaches, but favours the use of refinements
when starting from a top-down modelling approach.
Which approach to choose though, depends on the
complexity, size and technical focus of the
modelling scope at hand, and they may in fact also
be combined.

4.1 Aligning Service Contracts
and Service Interfaces
as Refinements

UML collaborations are often regarded as more
appropriate for modelling high-level architectures

rather than detailed design. Thus, one way of
combining the service contracts and service
interfaces is to regard service interfaces as
refinements of service contracts. We have found this
approach appropriate to describe business-level
architectures using service contracts and system-
level architectures using service interfaces. Figure
13 and Figure 14 illustrate this approach.

In Figure 13 we have the specification of “high-
level” or “business-level” consumer and provider
interfaces for the Place Order service contract as
explained earlier in this paper. In Figure 14 we
refine these interfaces and add more details with
respect to IT service implementation. Notice that
this approach can be supported by a one-to-one
mapping from a service contract and its interfaces to
a service interface and its interfaces. In the service
interface and its corresponding interfaces you may
refine the models towards more IT-level system
specifications.

Figure 13: Service contracts models the business
interfaces.

Figure 14: Service interface refines the service contract.

Place Order
<<ServiceContract>>

OrderTaker
<<interface, Provider>>

OrderPlacer
<<interface, Consumer>>

order()
quoteRequest()

orderConfirmation()
quote()

provider:OrderTakerconsumer:OrderPlacer

ConfirmationType
<<enumeration>>

CurrencyType
<<enumeration>>

OrderConfirmation
<<MessageType>>

Quote
<<MessageType>>

Order
<<MessageType>>

QuoteRequest
<<MessageType>>

OrderTaker
<<interface, Provider>>

OrderPlacer
<<interface, Consumer>>

PlaceOrderInterface
<<ServiceInterface>>

~PlaceOrderInterface
<<ServiceInterface>>

OutOfStock
Cancelled
Shipped
Confirmed

USD
EUR

shipmentID : string
confirmationDate : date
confirmation : ConfirmationType
providerOrderID : string
customerOrderID : string

currency : CurrencyType
price : float
request : QuoteRequest

quantity : integer
productID : string
orderDate : date
customerOrderID : string
customerID : string

quantity : integer
productID : string
quoteDate : date
customerID : string

<<signal>> order(in message : Order)
<<signal>> quoteRequest(in message : QuoteRequest)

<<signal>> orderConfirmation(in message : OrderConfirmation)
<<signal>> quote(in message : Quote)

consumer:OrderPlacer

provider:OrderTaker

consumer:OrderPlacer

provider:OrderTaker

SPECIFYING SERVICES USING THE SERVICE ORIENTED ARCHITECTURE MODELING LANGUAGE (SOAML)
- A baseline for Specification of Cloud-based Services

283

4.2 Aligning Service Contracts
and Service Interfaces as Views

Another way of aligning the service contract and
service interface based approaches is to consider
these as two different views on the same model, both
existing on the same abstraction level. Figure 15
illustrates this approach. Here the consumer and
provider interfaces types defined are the exact same
model elements used to type the roles in both the
service contract and the service interface. Thus, the
service contract and the service interface can be seen
as two different notations for the exact same thing
and one can argue that this duplicates some
modelling effort and should be avoided. However, as
the SoaML specification prescribes modelling
services architectures using service contracts, you
are required to specify service contracts if you also
want to specify a services architecture. Or to put it in
another way, it is only necessary to model the
service contracts views that are needed for the
services architectures that you have specified.

Figure 15: Service interfaces and service contracts are two
different views.

Note that, in this alignment approach it is
recommended to only specify behaviour in either the
service contract or the service interface, thus
avoiding some duplicate modelling effort for the
behaviour part. In the approach using refinements,
the service choreography (behaviour) of a service
interface would be a behavioural refinement of the
service choreography of a service contract.

5 METHODOLOGY DISCUSSION
AND RELATED WORK

Cloud computing and SOA are recognized game-

changing technologies for a cost-efficient and
reliable service delivery. Software as a Service
(SaaS) paradigm becomes more and more popular
enabling flexible license payment schemas and
moving the infrastructure management costs from
consumers to service providers. However, building a
SaaS system from scratch may require a huge
investment in time and efforts. Moreover, the
organizations’ legacy systems are difficult to reuse
due to platform, documentation and architecture
obsolescence.

The Model Driven Architecture (MDA) (OMG,
2003) and related efforts around domain-specific
languages have gained much popularity. These
technologies put the model in the centre of the
software engineering process. The software products
are built with subsequent model refinements and
transformations from business models (process,
rules, motivation), down to component architectures
(e.g. SOA), detailed platform specific design and
finally implementation.

The SoaML modelling language, as presented in
this paper, was designed to support the MDA and as
such provides a baseline modelling language for the
specification of any services within a service-
oriented environment, which included cloud-based
services. The SoaML language itself can be said to
be quite small, as it only specifies around twenty
main extensions to UML. These extensions provide
the key language constructs for specifying the
structure of services. As explained earlier, SoaML
do not specify which kind of behavioural notation to
use. The goal of SoaML was not to be a fully-
fletched modelling language supporting all aspects
of service-oriented architectures, but rather to be a
small core that can be extended and integrated with
other modelling languages, e.g. BPMN for
behavioural modelling. As such, the SoaML
language should be regarded by software engineers
and researchers looking into cloud-based services in
as a baseline or starting point for which to define
other language extensions required in cloud
computing.

We see evidence that SoaML is being supported
by UML tool vendors and incorporated as part of
their service-oriented methodologies. In particular,
IBM has incorporated SoaML in their Service-
Oriented Modeling and Architecture (SOMA)
methodology which is supported by their Rational
Software Architect (RSA) modelling tool (Amsden,
2010). Other vendors that provide SoaML support
are ModelDriven.org, NoMagic, SOFTEAM and
Sparx Systems (see www.soaml.org). In addition,
SoaML-based tools and methods for model-driven

OrderTaker
<<interface, Provider>>

OrderPlacer
<<interface, Consumer>>

PlaceOrderInterface
<<ServiceInterface>>

~PlaceOrderInterface
<<ServiceInterface>>

<<signal>> order(in message : Order)
<<signal>> quoteRequest(in message : QuoteRequest)

<<signal>> orderConfirmation(in message : OrderConfirmation)
<<signal>> quote(in message : Quote)

consumer:OrderPlacer

provider:OrderTaker

consumer:OrderPlacer

provider:OrderTaker

Place Order
<<ServiceContract>>

provider:OrderTakerconsumer:OrderPlacer

CLOSER 2011 - International Conference on Cloud Computing and Services Science

284

engineering of service-oriented landscapes were
developed in the European research project SHAPE
(Stollberg et al., 2010).

The current tools and methodologies using
SoaML focus mainly on supporting the MDA
approach, which emphasises models as the essential
artefacts. Similarly, the Architecture-Driven
Modernization (ADM) (see adm.omg.org) proposes
to start with knowledge discovery to recover models
and to re-build the new system in a forward MDA
process. The ADM initiative may be another starting
point in order to support migration of legacy systems
into the cloud. The European research project
REMICS (www.remics.eu), in which the authors
participate, aims to develop a complete process
including methods and tools for creating SoaML
models from the legacy artefacts and re-building
cloud-based systems by applying SOA and cloud
patterns.

6 CONCLUSIONS AND FUTURE
WORK

In this paper we have presented an overview of the
SoaML modelling language, and discussed the
different SoaML approaches to specifying services.
Our discussion has tried to clarify the differences
and similarities between the different SoaML
approaches in order to make SoaML more
comprehensible to software engineering
practitioners. Furthermore, we have presented a set
of practical modelling guidelines for how to align
the different approaches to specifying services using
SoaML. These guidelines can be adopted by
methodologists that want to include SoaML as part
of their own service engineering method. Finally, we
argue that SoaML could be used a baseline for
specification of cloud-based services. SoaML is a
language that can be extended with new modelling
constructs and integrated with other modelling
languages, to support a richer model-driven
approach to specifying cloud-based services.

The results presented in this paper are based on
experience from research and development of
SoaML tools and methods that have been evaluated
in proof-of-concept implementations in industrial
case studies. One aspect of our guidelines that
requires further work is better advice for behavioural
modelling. SoaML is quite open with regards to
behavioural modelling, and we are currently
investigating the use of BPMN 2.0 (OMG, 2011) as
an extension to SoaML for this purpose in the

European research project NEFFICS
(www.neffics.eu). Furthermore, we are researching
how SoaML can be applied in model-based
migration approaches where legacy systems are
modernized and migrated to new service-oriented
and cloud-based platforms. In fact, our future work
in the research project REMICS (www.remics.eu)
involves the specification of the SoaML4Cloud
language, which will extend SoaML to support
cloud-based services.

ACKNOWLEDGEMENTS

The origin of this research was co-funded by the
European Union in the frame of the SHAPE project
(FP7-ICT-216408) (www.shape-project.eu). The
research is being continued in the frame of the
NEFFICS project (FP7-+ICT-258076)
(www.neffics.eu), the REMICS project (FP7-ICT-
257793) (www.remics.eu) and the SINTEF project
SiSaS (sisas.modelbased.net).

REFERENCES

Amsden, J., 2010, Modeling with SoaML, the Service-
Oriented Architecture Modeling Language, Technical
article series, IBM.

Casanave, C., 2009, Enterprise Service Oriented
Architecture Using the OMG SoaML Standard, White
Paper, Model Driven Solutions, Inc.

Elvesæter, B., Carrez, C., Mohagheghi, P., Berre, A.-J.,
Johnsen, S. G., Solberg, A., 2011, Model-driven
Service Engineering with SoaML, in Service
Engineering - European Research Results, pp. 25-54,
Springer.

OMG, 2003, MDA Guide Version 1.0.1, Document
omg/03-06-01, Object Management Group (OMG).

OMG, 2009, Service oriented architecture Modeling
Language (SoaML), FTF Beta 2, Document ptc/2009-
12-09, Object Management Group (OMG).

OMG, 2011, Business Process Model and Notation
(BPMN), Version 2.0, Document formal/2011-01-03,
Object Management Group (OMG).

Stollberg, M., Benguria, B., Berre, A.-J., Cerri, D.,
Elvesæter, B., Fischer, K., Hahn, C., Jacobi, S.,
Landre, E., Panfilenko, D., Sadovykh, A., 2010,
SHAPE Whitepaper, SHAPE Collaborative Project.

SPECIFYING SERVICES USING THE SERVICE ORIENTED ARCHITECTURE MODELING LANGUAGE (SOAML)
- A baseline for Specification of Cloud-based Services

285

