
TOWARDS A CROSS PLATFORM CLOUD API
Components for Cloud Federation

Dana Petcu, Ciprian Crăciun
Institute e-Austria Timişoara & West University of Timişoara, Timişoara, Romania

Massimiliano Rak
Second University of Naples, Naples, Italy

Keywords: Cloud Computing, PaaS, Component oriented programming, API.

Abstract: Cross platform APIs for cloud computing are emerging due to the need of the application developer to combine
the features exposed by different cloud providers and to port the codes from one provider environment to
another. Such APIs are allowing nowadays the federation of clouds to an infrastructure level, requiring a
certain knowledge of programming the infrastructure. We describe a new approach for a cross platform API
that encompass all cloud service levels. We expect that the implementation of this approach will offer a higher
degree of portability and vendor independence for Cloud based applications.

1 INTRODUCTION

Cloud computing promises to enable on-demand ac-
cess to a large pool of resources that can be rapidly
provisioned and released with minimal management
effort or service provider interaction. Supposing that
this promise is kept, the adoption of the relatively new
distributed computing model hardly depends on the
simplicity and usefulness of the interfaces proposed
to the potential users.

Cloud application programming interfaces specify
how software applications interact with a cloud-based
platform where these applications can be deployed.
They offer ways by which the applications can re-
quest information from the platforms and use their
facilities. Cloud APIs are currently exposing their in-
terfaces using Web technologies (e.g. REST or SOAP
based services) or high level programming languages.

Looking from the perspective of the current user-
provider or application-cloud interaction we see two
types of cloud APIs: cloud provider ones and cross
platform ones. Moreover, as already happened with
new emerging technologies, providers develop a large
variety of proprietary solutions. These solutions
face and mixe different problems (from authentica-
tion mechanisms to resource management) reflecting
different interpretation of the new concept. Unfortu-
nately their users and applications are vendor-locked
until the portability problem is solved. On the other
hand, the fresh introduced and few cross platform
APIs attempt to abstract the details of implementa-

tions. It is expected that using a cross platform API
the developer of an application calls a common and
unified API and get a standard based answer regard-
less of the implementations of different providers.
The most important benefits of this approach are the
platform independence stimulating the offert of the
service market, the possibility to innovate by combin-
ing different providers services, as well as lower the
costs of the application implementation.

Following another dimension, that of the cloud
provisioning models, we can identify three cloud
APIs categories. The infrastructure ones are dealing
with the provisioning and configuration of resources.
The platform ones are providing a higher abstract
level, offering platform capabilities in terms of ser-
vices. The application ones are allowing to interface
and extend application running on clouds.

We argue that, until now, cross platform APIs
were produced only for infrastructure provisioning
model. We mention here the recent proposals of the
standardization groups, like OCCI and UCI, open-
source solutions, like libcloud, jClouds, SimpleAPI or
OpenNebula, and commercial ones, like DeltaCloud.
They are designed either to interface only with Java,
Python or PHP, or they are providing connectors or
wrappers to a small number of provider offers.

We consider that in order to eliminate the vendor-
lock in problem, a new approach for a cross platform
API is needed tackling with a common set of inter-
faces for all provisioning levels. The API should be
not only platform independent but also language in-

166 Petcu D., Crǎciun C. and Rak M..
TOWARDS A CROSS PLATFORM CLOUD API - Components for Cloud Federation.
DOI: 10.5220/0003388101660169
In Proceedings of the 1st International Conference on Cloud Computing and Services Science (CLOSER-2011), pages 166-169
ISBN: 978-989-8425-52-2
Copyright c 2011 SCITEPRESS (Science and Technology Publications, Lda.)



dependent. A such approach needs to be based on
a common understanding of terms, notions and rela-
tionships involved in cloud platform usage, mainly a
cloud ontology. In order to proof the concepts, we in-
tend to build both a software platform and a cloud
platform, conceived as a thin layer, a middleware,
which lives on the top of the cloud providers in or-
der to enable/help the federation approach. Supple-
mentary to the API implementation, the middleware
should allow the selection of the cloud providers ac-
cording to the needs of the applications, preferable at
run-time, based on contractual agreements, and even
to allow re-negotiations.

Following these beliefs, a development activity
has recently started in the frame of mOSAIC project
(www.mosaic-cloud.eu). In this paper we describe
the basic concepts and requirements of the cross plat-
form API that we propose. Next section describes
the terms. Section 3 is providing more details about
the components that are expected to be described in a
Cloud-based applications. Section 4 is discussing the
layers of the API set. Finally some conclusions and
future steps are provided.

2 API REQUIREMENTS AND
ARCHITECTURE

Before presenting the proposed API, we shall first try
to clarify the meaning of API in the context of cloud
computing, and what are the expectations of different
parties from such an API.

From a pure software engineering point of view
we have two API categories exposing operations for
a certain resource:in-process APIsandremote APIs.
The first one is what any developer uses on a daily
basis, a combination of objects, methods, functions,
or procedures (depending on the paradigm of the
programming language) abstracting the resources in
terms of memory usage, mutable of immutable, usu-
ally transparent, data-structures and usually opaque
pieces of machine executable or interpreted code; thus
using such an API is very comfortable for the devel-
oper and most of the times extremely efficient. On
the other side, surpassing a single process border and
bridging applications, we have the remote APIs, ei-
ther in the form of Web services (like SOAP or REST
based), remote calls (like Sun RPC, Java RMI, AMF),
message passing (like AMQP, STOMP), or applica-
tion dependent protocols (like FTP, SNMP). These
APIs are abstracting the resources as reactive (re-
quest/reply) opaque agents that communicate based
on fully transparent immutable data structures (like
XML, JSON, ASN.1, other binary serialization). In-

teroperability is favored over efficiency. A drawback
is the fact that remote APIs are harder to use, needing
wrappers of the first kind of APIs.

If we follow a quick survey of the APIs (see e.g.
related work section) exposed by the most prominent
IaaS cloud providers (like Amazon or RackSpace) or
proposed by the IaaS cloud standards (like OCCI or
CDMI), we observe that they fit exclusively in the se-
cond category, that of remote APIs, and more specif-
ically are of the Web services flavor, either SOAP
based (like Amazon ones), or REST based (like in
OCCI or CDMI). In what concerns the current state
of the interoperability and the programming language
independence requirements, it should be noticed that
several companies or open-source projects are provi-
ding custom bindings for a wide range of program-
ming languages. But even though at the network
level (data encoding, framing, message sequence,
etc.) there are standardization bodies, no standard-
ization effort is targeting the in-process APIs. Worst,
most libraries either incompletely implement the pro-
posed standards or try to wrap the lowest denominator
of the competing provider APIs. As a consequence a
cloud application developer is faced with a dilemma,
being forced to either choose a feature-full library cre-
ated by the chosen cloud provider targeting only his
own resource interfaces (getting locked in), or chose
a lowest denominator, standards compliant resource
API, in a rather incomplete implementation state.

On the other hand if we extend the definition
of Cloud computing to include self-managed dis-
tributed data resources – like for example the Cas-
sandra clusters from Facebook, the MongoDB shards
from SourceForge, or the Hypertable deployment of
Baidu – and surveying their interfacing solutions, we
observe that, again exclusively, they are in the oppo-
site corner of the remoting domain, employing RPC
solutions (e.g. Thrift, Avro, Protocol Buffers, or cus-
tom binary protocols). The reason for such a decision
is the need for performance and advanced features
against interoperability or a common data model, and,
as a consequence, a standardization process is not at
all possible or even desired (at least in the near future).

Thus going back to the developer of a cloud ap-
plication that might have the task not only to mix
resources from different cloud providers, but also to
interact with those exposed by such self-hosted dis-
tributed systems, we observe that currently no single
library or standard covers such a situation.

Our platform is targeted mainly at cloud applica-
tion developers, so we intend to offer them mainly
a unified in-process cloud API, but also a remote
one through so-called interoperability API. The first
one should be based on the emerging cloud remote

TOWARDS A CROSS PLATFORM CLOUD API - Components for Cloud Federation

167



API standards we have mentioned previously (OCCI,
CDMI), but should go also one step further providing
a feature-full unified API.

The unification aspect is threefold: (a) once we
try to unify both provisioning APIs (i.e. OCCI) and
data access APIs (i.e. CDMI) under the same li-
brary with common concepts and a common program-
ing patterns; (b) second we intend to find a com-
mon ground between real cloud resources (like Ama-
zon EC2 S3 SimpleDB, RackSpace WebFiles, Google
BigTable, etc.) and self-managed distributed data re-
sources (like Riak, Cassandra, Hypertable, HBASE,
etc.) thus exposing the same categories of data mod-
els and access patterns; and (c) by providing libraries
for multiple programming languages (mostly object
oriented like Java, Python, etc.) we achieve unifor-
mity from one development platform to another.

Two other goals that need to be met, and which are
in conflict with the uniformity approach, are: (1) the
minimization of the efficiency impact of the overall
API calls (e.g. latency, throughput); and (2) loosing
as little as possible from the advanced features offered
by each resource (e.g. the versioning and ACL sup-
port of Amazon S3, or the super column families of
Cassandra, and the vector clocks of Riak).

As a last goal, but by no means unimportant, we
must guide ourselves by the principle that the users
have different levels of knowledge and requirements,
and thus granting them, if performance or other judi-
cious reasons demands it, the possibility to jump over
abstraction layers and gain access to the original API.

Our approach is to offer a software platform and
a set of API as much as possible paradigm- and
technology- independent. In order to face the chal-
lenges of this approach we model applications in
terms of Cloud Building Blocks which are able to
communicate each other.

A Cloud Building Blockis any identifiable en-
tity inside the cloud environment. Cloud Building
Blocks can be cloud resources (which are under cloud
provider control) or Cloud Components. ACloud
Componentis a building block, controlled by user,
configurable, exibiting a well defined behavior, im-
plementing functionalities and exposing them to other
application components, and whose instances run in a
cloud environment consuming cloud resources. Sim-
ple examples of components are: a Java application
runnable in a platform as a service environment; or
a virtual machine, configured with its own operating
system, its web server, its application server and a
configured and customized e-commerce application
on it. Components can be developed following any
programming language, paradigm orin-processAPI.
An instance of a cloud component is in a cloud envi-

ronment what an instance of an object is in an object
oriented application.

Communication between cloud components takes
places through cloud resources (like message queues
– AMPQ, or Amazon SQS) or through non-cloud re-
sources (like socket-based applications). The same as
component development, communication can use any
paradigm and/orremoteAPI.

Even if cloud components can be developed in
many different way, the results are not equivalent in
terms of the overallquality of the final application.
A simple example is the case of the e-commerce ap-
plication developed in a single virtual machine: even
if it will be very easy to deploy a new e-commerce
application and to improve the performance of the e-
xisting one changing the configuration of the virtual
machine, the application does not scale well when the
workload grows too much. The web application must
be rewritten if there is a need of using more than one
virtual machine.

Our project aims at offering a way to develop
cloud components which are: (a)scalable, i.e. it
should support multiple instances of the same compo-
nent and scale well respect to the increasing number
of instances; (b)fault tolerant,i.e. it should be able
to handle in an automated as possible way the fault of
component instances; (c)manageable,i.e. it should
be easy to configure it, changing its working parame-
ters; (d)autonomous,i.e. it should be able to run in an
environment independently from other components.

The high level description of a cloud application,
in terms of inter-communicating components, is not
affected by the way in which components are devel-
oped (the programming language and the program-
ming paradigm adopted) or communicate between
them (like queues or sockets).

Achieving the aim of an unified API for multiple
programming languages requires a specific architec-
ture. We propose a layered architecture composed by:
(1) native protocol; (2) native API; (3) driver API; (4)
interoperability API; (5) connector API; (6) cloudlet
API; (7) user components.

At the lowest layer we have either thenative re-
source protocol(Web service, RPC, etc.), or anative
resource APIprovided as a library by the vendor for a
certain programming language; at this level we have
no uniformity (for example nothing between CDMI
resources and a Cassandra Thrift API), but we have
full access to all the features of the resource, and no
performance penalty.

One layer upwards we have thedriver API which
wraps the native API, providing the first level of uni-
formity: all resources of the same type are exported
with the same interface. Thus exchanging, for exam-

CLOSER 2011 - International Conference on Cloud Computing and Services Science

168



ple, an Amazon S3 with a Riak key-value store is just
a matter of configuration. Of course at this level we
are incurring some performance penalties (as we have
to trans-code from native a data model to our uniform
one), and we are starting to loose some custom re-
source features (like the ACL from Amazon S3).

The RPC-like-interoperability API aims to pro-
vide programming language interoperability and pro-
tocol syntax and semantic enforcements. It is not a
full API, but actually an RPC solution that abstracts
addressing, and provides the driver API with stubs,
and the connector API proxies.

The first layer that the developer is expected to
touch is theconnector APIwhich, depending on
the programming language, provides abstractions for
the cloud resources, suitable for the programming
paradigm. It can be roughly compared with the C’s
ODBC, Java’s JDBC, or even Java’s JDO. In fact this
is where we provide the second kind of uniformity
for the programming paradigms, as all the implemen-
tations of the connector API in object oriented pro-
gramming languages will have similar class hierar-
chies, method signatures, or patterns. About the per-
formance only small impact is expected, and there is
no feature loss due to the 1:1 mapping between what
the driver and the connector API provide.

Even thought the developer already can access
cloud resources, he or she must restrict himself or
herself to a cloud compliant programming methodo-
logy, which we provide (integrated with all the lay-
ers already mentioned) that we callCloudlet, as simi-
lar with the existing Java Servlet technology that pro-
vides standard programming components in J2EE en-
vironments and which was adopted even by Google
in their AppEngine PaaS solution. Again like in the
layer above little performance and no features are lost.

The native and driver APIs live inside adriver
daemon, meanwhile the connector, cloudlet APIs, and
the user code lives in what we call a component. Both
processes are usually on the same node, but the re-
source does not have a clearly defined process scope,
and in almost all cases it is outside of the current
node. The communication between these three scopes
is done as follows: between the driver daemon and the
actual resource we use the native networked resource
protocol (accessed through the native API), and be-
tween the the driver daemon and the component pro-
cess we use our custom interoperability API (by pro-
viding stubs on the driver side, and proxies on the
component side).

3 RELATED WORK

The requirements for cloud APIs only at the infras-
tructure level were recently synthesized in (OGF,
2010). A comprehensive study of the provider Web
APIs is provided also in (Velte et al, 2009). The au-
thors of (Mather et al, 2009) notice that API can man-
ifest in different forms, and two types of APIs were
identified: (1) APIs offered by IaaS cloud service
providers allowing users to create and manage cloud
resources, and (2) APIs that allow the description of
common behaviors that apply to requests/responses,
resource models which describe data structures used
in requests/responses, as well as requests that may be
sent to cloud resources, and the responses expected.
We are dealing with the second type.

The Orleans programming model (Larus, 2010)
is based also on the application decomposition in
loosely coupled components, each of which executes
in its own failure container. All communications be-
tween grains occurs across channels. We considered
a more general case in which the components of our
platform are communicating via resources (not nec-
essary channels). The notion of building blocks for
cloud computing and the assumption that the appli-
cation developers are aware how to break the appli-
cation into these building blocks is presented also in
(Liu and Orban, 2008). The contexts are different: the
paper that we mention is dealing with a library of op-
erators for combining these building blocks, while we
are talking about a more complex set of APIs.

The API architecture that we proposed is just a
piece of mOSAIC, that encompass the development
of a complete open-source platform allowing the de-
velopment of applications using services from mul-
tiple cloud providers. Following the proposed time-
frame of the development phase, a first proof-of-
concept implementation of the full software stack be-
hind the proposed cross platform API will be avail-
able in less than one year.

REFERENCES

Larus, J. (2010). Programming Clouds. InLNCS6011.

Liu, H., and Orban, D. (2008). GridBatch: Cloud Com-
puting for Large-Scale Data-Intensive Batch Applica-
tions. InCCGrid 2008. IEEE Computer Press.

Mather, T., Kumaraswamy, S., Latif, S. (2009).Cloud Secu-
rity and Privacy: An Enterprise Perspective on Risks
and ComplianceO’Reilly Media.

OGF (2010). Open Cloud Computing Interface - Use cases
and requirements for a Cloud API.

Velte, A.T, Velte, T.J. and Elsenpeter, R. (2009).Cloud
Computing, A Practical Approach. McGraw-Hill.

TOWARDS A CROSS PLATFORM CLOUD API - Components for Cloud Federation

169


