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Abstract: Nowadays, more than ever, security is considered to be critical issue for all electronic transactions. This is 
the reason why security services like those described in IPSec are mandatory to IPV6 which will be adopted 
as the new IP standard the next years. Moreover the need for security services in every data packet that is 
transmitted via IPv6, illustrates the need for designing security products able to achieve higher throughput 
rates for the incorporated security schemes. In this paper such a design is presented which manages to 
increase throughput of SHA-256 hash function enabling efficient software/hardware co-design.  

1 INTRODUCTION 

Security is now considered as a must-have service 
for almost all kind of e-applications. This is the 
reason why in IPv6, which is bound to be adopted 
worldwide, IPSec (SP800-77, 2005) is a mandatory 
protocol. IPSec (Internet Protocol Security) is a 
protocol suite for securing Internet Protocol (IP) 
communications by authenticating and encrypting 
each IP packet of a data stream. IPSec can be used to 
protect data flows between a pair of hosts (e.g. 
computer users or servers), between a pair of 
security gateways (e.g. routers or firewalls), or 
between a security gateway and a host.   

In IPSec and in other applications like keyed-
hash message authentication codes (HMACs) (FIPS 
198-1, 2007) and the 802.16 standard for Local and 
Metropolitan Area Networks incorporate 
authenticating services, an authenticating module 
that includes a hash function is nested in the 
implementation of the application.  

However, in these specific applications there is 
an urgent need to increase their throughput, 
especially of the corresponding server of these 
applications and this is why, as time goes by, many 
leading companies improve their implementations of 

hash functions. Although software encryption is 
becoming more prevalent today, hardware is the 
embodiment of choice for military and many 
commercial applications (Schneier, 1996). The 
security scheme of these throughput-demanding 
applications like HMAC in IPSEC and SSL\TLS 
incorporate encryption and authenticating modules.  

 The latter mentioned facts were strong 
motivation to propose a hardware design and 
implementation applicable to SHA-256 (FIPS 180-2, 
2002) hash function which will dominate in the near 
future.  

The above mentioned SHA-256 module is able 
to be efficiently embedded in a design and mapping 
of IPSec components in a reconfigurable platform. 
This way, a platform aiming to boost performance of 
IPSec with low cost will be created, in which only 
the critical kernels/components of IPSec will be 
mapped for execution on the (expensive) 
reconfigurable logic. This way the proposed design  
is ideal for IPSec software/hardware co-design 
aiming to achieve high throughput data rates. 
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2 PROPOSED DESIGN  

The generic architecture of a hash function is shown 
in Fig. 1. Due to the blocks’ logic variation from 
round to round numerous implementations (Diez, 
2002), (Sklavos, 2005 - Lee, 2006), are based on 
four pipeline stages of single operation blocks. Also 
from a heuristic survey (Sklavos, 2005) to hash 
functions it is clear enough that the best compromise 
is to apply four pipeline stages so as to quadruple 
throughput and keep the hash core small as well. 
This selection was made in the presented 
optimization process as it is shown in Fig.1.  

 

 

Figure 1: SHA-256 hash core architecture with 4 pipeline 
stages. 

Exploring the generic architecture of Fig. 1 it is 
easily extracted that the critical path is located 
between the pipeline stages. The other units, MS 
RAM and the array of constants, do not contribute 
due to their nature (memory and hardwired logic 
respectively), while control unit is a block 
containing very small counters which also don’t 
contribute to the overall maximum delay. Thus, 
optimization of the critical path should be solely 
focused on the operation block.  

The operation block of SHA-256 is shown in 
Fig.2. The critical path (darker line) is located on the 
computation of at and et values that requires four 
addition stages and a multiplexer for feeding back 
the output data. 

At the first step of our optimization process, a 
number of operations are partially unrolled. That 
number is determined by a separate analysis on 
SHA-256 hash function. 

 

 

Figure 2: SHA-256 operation block. 

This analysis compares variations of partially 
unrolled operations, their corresponding throughput, 
the required area and then calculating the proper 
ratio (cost function). In Fig. 3, the results of a cost 
function analysis for SHA-256 algorithm, performed 
in Virtex-II FPGA family, are illustrated. As it is 
shown, selecting to partially unroll two operations 
results in the best achieved Throughput/Area ratio 
(ratio > 2). 

 

 

Figure 3: Effect of unrolling the operation blocks of SHA-
256.   

In Fig. 4, the consecutive SHA-256 operation 
blocks of Fig. 2, have been modified so as to exploit 
parallel calculations. The gray marked areas on Fig. 
4 indicate the parts of the proposed SHA-256 
operation block that operate in parallel. 

It is noticed that two single addition levels have 
been introduced to the critical path that now consists 
of six addition stages needed for the computation of 
at and et values. Although, this reduces the 
maximum operation frequency, the throughput is 
increased significantly since the message digest is 
now computed in only 32 clock cycles (instead of 
64). The area requirements are increased since more 
adders have been used in order to achieve the partial 
unrolling. 

SECRYPT 2010 - International Conference on Security and Cryptography

310



 

 

Figure 4: Two unrolled SHA-256 operation blocks. 

The next step of the optimization process for our 
design has to do with the spatial pre-computation 
technique. Taking into consideration the fact that 
some outputs are derived directly from some inputs 
values respectively we can assume that it is possible 
during one operation to pre-calculate some 
intermediate values that will be used in the next 
operation. These pre-calculations are related only 
with those output values that derive directly from the 
latter mentioned input values. This pre-computation 
technique is applied on the partially unrolled 
operation block in Fig. 4 and the new modified 
operation block is shown in Fig. 5. 

 

 

Figure 5: Partially unrolled operation block with pre-
computed values.  

Observing Fig. 5 it is noticed that the critical 
path is now located on the computation of the 
peripheral value p1 that is introduced in Fig. 5. The 

critical path has been reduced from six addition 
stages and a multiplexer to four addition stages, two 
non-linear functions (noted as Maj and Ch in Fig. 5) 
and a multiplexer. Comparing to the conventional 
implementation of the single operation block shown 
in Fig. 2, theoretically throughput has been in-
creased by 80%-90%. 

This has been achieved by pre-calculating some 
intermediate values and moving the pipeline 
registers to an appropriate intermediate point to store 
them. The new operation block now consists of two 
units, the “Pre-Computation” unit which is 
responsible for the pre-computation of the values 
that are needed in the next operation and the “Post-
Computation” unit which is responsible for the final 
computations of each operation.   

The third step of our optimization process is a 
technique for applying the system-level pre-
computation, so as to achieve data pre-fetching. It 
was noticed that all Wt values can be computed and 
be available for adequate time before they are really 
needed in each operation t since they are computed 
through some XOR bitwise operations. Also the 
values of the constants Kt are known a priori. These 
two facts give us the potential of pre-computing the 
sum Wt + Kt outside of the operation block. The sum 
is then saved into a register that feeds the operation 
block and thus the externally (regarding the 
operational block) pre-computed sum Wt + Kt is 
available at the beginning of each tth operation. So at 
the operational block, from now on it will be 
assumed that this sum available at the beginning of 
each operation and its computational time is 
excluded from the critical path. The new operational 
block is illustrated in Fig. 6. 

 

 

Figure 6: Partially unrolled operation block with pre-
computed values for SHA-256 with pre-fetching of W+K 
values. 
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Inspecting Fig. 6, we observe that the critical 
path is located on the computation of the peripheral 
value p1, and consists of four addition stages and 
two non-linear functions. However we notice that at 
the beginning of this path there is the value p4 that is 
pending to be added to a sum that at the same time is 
being calculated. 

So for this case, a CSA can be used in order to 
add the three values in advance compared to the 
necessary time in case we used two adders as in 
Fig.6. The Carry Save Adder is applied on the “Post-
Computation” unit as it is depicted in Fig.7 where 
we have also used a Carry Save Adder in the “Pre-
Computation” unit. This way the critical path inside 
the operation block has been reduced to one 
Addition stage, two Non-linear functions and two 
Carry Save Adders that are required in order to 
compute the value p1. 

The final proposed operation block for SHA-256 
is illustrated in Fig. 7. It processes two operations in 
a single clock cycle, and the critical path is shorter 
than that of the conventional implementation, 
resulting in an increase of through-put of more than 
110% (theoretical). The introduced area penalty is 3 
adders, 4 Carry Save Adders, two 32-bit registers 
and 2 non-linear functions. The introduced area 
penalty is about 35% for the whole SHA-256 core 
compared to the conventional pipelined 
implementation. This corresponds to an area penalty 
of about 9% for the whole security scheme.  This 
area penalty is worth paying for about 110% 
increase of throughput.  
 

 

Figure 7: Proposed SHA-256 operation block. 

3 RESULTS AND COMPARISONS 

In order to evaluate the proposed optimized design, 
SHA-256 hash function was captured in VHDL and 
was fully simulated and verified. The XILINX 
FPGA technologies were selected as the targeted 
technologies, synthesizing the designs for the Virtex 
FPGA family. To exhibit the benefits of applying 
our optimization process, SHA-256 hash function 
was implemented following the steps of this 
optimization process and is compared with other 
existing implementations proposed either by 
academia or industry.  

Table 1: Performance Characteristics and comparisons. 

SHA-256 

Implementation Op. Freq.
(MHz) 

Throughput 
(Mbps)  

Post-
synthesis 

Post 
Place & 
Route 

Area 
CLBs

(Ting et al,   
2002) a 88.0 87 - 1261 

(Sklavos et al, 
2007) a 83 326 - 1060 

(Chaves et al, 
2006) a 82 646 - 653 

(Glabb et al, 
2008) a 77 308 - 1480 

(Zeghid et al, 
2007) a 53 848 - 2530 

Proposed a 35.1 2210 2077 1534 
(Chaves et al, 

2006) a 150 1184 - 797 

(McEvoy et al, 
2005) b 133 1009 - 1373 

(Zeghida et al, 
2007) a 81 1296 - 1938 

Proposed c 36.4 2330 2190 1655 
(CAST Inc) d

(Commercial IP) 96 - 756 945 

(Helion Inc) d

(Commercial IP) - - 1900 1614 
(LUTs)

(Cadence Inc) d
(Commercial IP) 133 - 971 asic 

a
P Virtex FPGA family            cP Virtex-E FPGA family 

       P

d
P Virtex 4 FPGA family 
 
The results from the latter implementations are 

shown in Table 1, for a variety of FPGA families. 
There are reported both post-synthesis and post-
place & route results. The reported operating 
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frequencies for the proposed implementations are 
related to the corresponding post-synthesis results 

As it can be easily seen, the increase observed 
for SHA-256, is about 110% gain in throughput and 
30% area penalty compared to a non-optimized 
implementation with four pipeline stages 
(implemented in the same technology). 

This way the improvement that arises from our 
optimization process is confirmed and evaluated 
fairly, verifying the theoretical analysis in the 
previous section. Furthermore, comparing the 
implementations of other researchers to our 
implementations, it can be observed that all of them 
fall short in throughput, in a range that varies from 
0.75 – 26.4 times less than the proposed 
implementation.  

4 CONCLUSIONS 

In this paper a design for SHA-256 was proposed, 
which achieves high throughput with a small area 
penalty, thus enabling efficient software/hardware 
co-design. The optimization process used is generic 
and can be exploited to a wide range of existing hash 
functions that are currently used or will be deployed 
in the future and call for high throughputs.  

This optimization process led to a design with 
significant increase of throughput (about 110% for 
SHA-256), compared to corresponding conventional 
designs and implementations, with a small area 
penalty. The results derived from their 
implementation in FPGA technologies confirm the 
theoretical results of the proposed design and 
implementation. 
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