
ULTRA HIGH SPEED SHA-256 HASHING CRYPTOGRAPHIC
MODULE FOR IPSEC HARDWARE/SOFTWARE CODESIGN

Harris Michail1, 2, 3, George Athanasiou1, Angeliki Kritikakou1,Costas Goutis1
1VLSI Laboratory, Departement of Electrical & Computer Engineering, University of Patras, Rio Campus, Patras, Greece

2Departement of Computer Engineering and Informatics, University of Patras, Rio Campus, Patras, Greece
3 Departement of Mechanical Engineering, Technological and Educational Institute of Patras, Patras, Greece

Andreas Gregoriades, Vicky Papadopoulou
Departement of Computer Science and Engineering, European University of Cyprus, Nicosia, Cyprus

Keywords: Hash-Functions, Hardware design, VLSI, High-Throughput, IPSec, SHA-256

Abstract: Nowadays, more than ever, security is considered to be critical issue for all electronic transactions. This is
the reason why security services like those described in IPSec are mandatory to IPV6 which will be adopted
as the new IP standard the next years. Moreover the need for security services in every data packet that is
transmitted via IPv6, illustrates the need for designing security products able to achieve higher throughput
rates for the incorporated security schemes. In this paper such a design is presented which manages to
increase throughput of SHA-256 hash function enabling efficient software/hardware co-design.

1 INTRODUCTION

Security is now considered as a must-have service
for almost all kind of e-applications. This is the
reason why in IPv6, which is bound to be adopted
worldwide, IPSec (SP800-77, 2005) is a mandatory
protocol. IPSec (Internet Protocol Security) is a
protocol suite for securing Internet Protocol (IP)
communications by authenticating and encrypting
each IP packet of a data stream. IPSec can be used to
protect data flows between a pair of hosts (e.g.
computer users or servers), between a pair of
security gateways (e.g. routers or firewalls), or
between a security gateway and a host.

In IPSec and in other applications like keyed-
hash message authentication codes (HMACs) (FIPS
198-1, 2007) and the 802.16 standard for Local and
Metropolitan Area Networks incorporate
authenticating services, an authenticating module
that includes a hash function is nested in the
implementation of the application.

However, in these specific applications there is
an urgent need to increase their throughput,
especially of the corresponding server of these
applications and this is why, as time goes by, many
leading companies improve their implementations of

hash functions. Although software encryption is
becoming more prevalent today, hardware is the
embodiment of choice for military and many
commercial applications (Schneier, 1996). The
security scheme of these throughput-demanding
applications like HMAC in IPSEC and SSL\TLS
incorporate encryption and authenticating modules.

 The latter mentioned facts were strong
motivation to propose a hardware design and
implementation applicable to SHA-256 (FIPS 180-2,
2002) hash function which will dominate in the near
future.

The above mentioned SHA-256 module is able
to be efficiently embedded in a design and mapping
of IPSec components in a reconfigurable platform.
This way, a platform aiming to boost performance of
IPSec with low cost will be created, in which only
the critical kernels/components of IPSec will be
mapped for execution on the (expensive)
reconfigurable logic. This way the proposed design
is ideal for IPSec software/hardware co-design
aiming to achieve high throughput data rates.

309
Michail H., Athanasiou G., Kritikakou A., Goutis C., Gregoriades A. and Papadopoulou V. (2010).
ULTRA HIGH SPEED SHA-256 HASHING CRYPTOGRAPHIC MODULE FOR IPSEC HARDWARE/SOFTWARE CODESIGN.
In Proceedings of the International Conference on Security and Cryptography, pages 309-313
DOI: 10.5220/0002991403090313
Copyright c© SciTePress

2 PROPOSED DESIGN

The generic architecture of a hash function is shown
in Fig. 1. Due to the blocks’ logic variation from
round to round numerous implementations (Diez,
2002), (Sklavos, 2005 - Lee, 2006), are based on
four pipeline stages of single operation blocks. Also
from a heuristic survey (Sklavos, 2005) to hash
functions it is clear enough that the best compromise
is to apply four pipeline stages so as to quadruple
throughput and keep the hash core small as well.
This selection was made in the presented
optimization process as it is shown in Fig.1.

Figure 1: SHA-256 hash core architecture with 4 pipeline
stages.

Exploring the generic architecture of Fig. 1 it is
easily extracted that the critical path is located
between the pipeline stages. The other units, MS
RAM and the array of constants, do not contribute
due to their nature (memory and hardwired logic
respectively), while control unit is a block
containing very small counters which also don’t
contribute to the overall maximum delay. Thus,
optimization of the critical path should be solely
focused on the operation block.

The operation block of SHA-256 is shown in
Fig.2. The critical path (darker line) is located on the
computation of at and et values that requires four
addition stages and a multiplexer for feeding back
the output data.

At the first step of our optimization process, a
number of operations are partially unrolled. That
number is determined by a separate analysis on
SHA-256 hash function.

Figure 2: SHA-256 operation block.

This analysis compares variations of partially
unrolled operations, their corresponding throughput,
the required area and then calculating the proper
ratio (cost function). In Fig. 3, the results of a cost
function analysis for SHA-256 algorithm, performed
in Virtex-II FPGA family, are illustrated. As it is
shown, selecting to partially unroll two operations
results in the best achieved Throughput/Area ratio
(ratio > 2).

Figure 3: Effect of unrolling the operation blocks of SHA-
256.

In Fig. 4, the consecutive SHA-256 operation
blocks of Fig. 2, have been modified so as to exploit
parallel calculations. The gray marked areas on Fig.
4 indicate the parts of the proposed SHA-256
operation block that operate in parallel.

It is noticed that two single addition levels have
been introduced to the critical path that now consists
of six addition stages needed for the computation of
at and et values. Although, this reduces the
maximum operation frequency, the throughput is
increased significantly since the message digest is
now computed in only 32 clock cycles (instead of
64). The area requirements are increased since more
adders have been used in order to achieve the partial
unrolling.

SECRYPT 2010 - International Conference on Security and Cryptography

310

Figure 4: Two unrolled SHA-256 operation blocks.

The next step of the optimization process for our
design has to do with the spatial pre-computation
technique. Taking into consideration the fact that
some outputs are derived directly from some inputs
values respectively we can assume that it is possible
during one operation to pre-calculate some
intermediate values that will be used in the next
operation. These pre-calculations are related only
with those output values that derive directly from the
latter mentioned input values. This pre-computation
technique is applied on the partially unrolled
operation block in Fig. 4 and the new modified
operation block is shown in Fig. 5.

Figure 5: Partially unrolled operation block with pre-
computed values.

Observing Fig. 5 it is noticed that the critical
path is now located on the computation of the
peripheral value p1 that is introduced in Fig. 5. The

critical path has been reduced from six addition
stages and a multiplexer to four addition stages, two
non-linear functions (noted as Maj and Ch in Fig. 5)
and a multiplexer. Comparing to the conventional
implementation of the single operation block shown
in Fig. 2, theoretically throughput has been in-
creased by 80%-90%.

This has been achieved by pre-calculating some
intermediate values and moving the pipeline
registers to an appropriate intermediate point to store
them. The new operation block now consists of two
units, the “Pre-Computation” unit which is
responsible for the pre-computation of the values
that are needed in the next operation and the “Post-
Computation” unit which is responsible for the final
computations of each operation.

The third step of our optimization process is a
technique for applying the system-level pre-
computation, so as to achieve data pre-fetching. It
was noticed that all Wt values can be computed and
be available for adequate time before they are really
needed in each operation t since they are computed
through some XOR bitwise operations. Also the
values of the constants Kt are known a priori. These
two facts give us the potential of pre-computing the
sum Wt + Kt outside of the operation block. The sum
is then saved into a register that feeds the operation
block and thus the externally (regarding the
operational block) pre-computed sum Wt + Kt is
available at the beginning of each tth operation. So at
the operational block, from now on it will be
assumed that this sum available at the beginning of
each operation and its computational time is
excluded from the critical path. The new operational
block is illustrated in Fig. 6.

Figure 6: Partially unrolled operation block with pre-
computed values for SHA-256 with pre-fetching of W+K
values.

ULTRA HIGH SPEED SHA-256 HASHING CRYPTOGRAPHIC MODULE FOR IPSEC HARDWARE/SOFTWARE
CODESIGN

311

Inspecting Fig. 6, we observe that the critical
path is located on the computation of the peripheral
value p1, and consists of four addition stages and
two non-linear functions. However we notice that at
the beginning of this path there is the value p4 that is
pending to be added to a sum that at the same time is
being calculated.

So for this case, a CSA can be used in order to
add the three values in advance compared to the
necessary time in case we used two adders as in
Fig.6. The Carry Save Adder is applied on the “Post-
Computation” unit as it is depicted in Fig.7 where
we have also used a Carry Save Adder in the “Pre-
Computation” unit. This way the critical path inside
the operation block has been reduced to one
Addition stage, two Non-linear functions and two
Carry Save Adders that are required in order to
compute the value p1.

The final proposed operation block for SHA-256
is illustrated in Fig. 7. It processes two operations in
a single clock cycle, and the critical path is shorter
than that of the conventional implementation,
resulting in an increase of through-put of more than
110% (theoretical). The introduced area penalty is 3
adders, 4 Carry Save Adders, two 32-bit registers
and 2 non-linear functions. The introduced area
penalty is about 35% for the whole SHA-256 core
compared to the conventional pipelined
implementation. This corresponds to an area penalty
of about 9% for the whole security scheme. This
area penalty is worth paying for about 110%
increase of throughput.

Figure 7: Proposed SHA-256 operation block.

3 RESULTS AND COMPARISONS

In order to evaluate the proposed optimized design,
SHA-256 hash function was captured in VHDL and
was fully simulated and verified. The XILINX
FPGA technologies were selected as the targeted
technologies, synthesizing the designs for the Virtex
FPGA family. To exhibit the benefits of applying
our optimization process, SHA-256 hash function
was implemented following the steps of this
optimization process and is compared with other
existing implementations proposed either by
academia or industry.

Table 1: Performance Characteristics and comparisons.

SHA-256

Implementation Op. Freq.
(MHz)

Throughput
(Mbps)

Post-
synthesis

Post
Place &
Route

Area
CLBs

(Ting et al,
2002) a 88.0 87 - 1261

(Sklavos et al,
2007) a 83 326 - 1060

(Chaves et al,
2006) a 82 646 - 653

(Glabb et al,
2008) a 77 308 - 1480

(Zeghid et al,
2007) a 53 848 - 2530

Proposed a 35.1 2210 2077 1534
(Chaves et al,

2006) a 150 1184 - 797

(McEvoy et al,
2005) b 133 1009 - 1373

(Zeghida et al,
2007) a 81 1296 - 1938

Proposed c 36.4 2330 2190 1655
(CAST Inc) d

(Commercial IP) 96 - 756 945

(Helion Inc) d

(Commercial IP) - - 1900 1614
(LUTs)

(Cadence Inc) d
(Commercial IP) 133 - 971 asic

a
P Virtex FPGA family cP Virtex-E FPGA family

 P

d
P Virtex 4 FPGA family

The results from the latter implementations are

shown in Table 1, for a variety of FPGA families.
There are reported both post-synthesis and post-
place & route results. The reported operating

SECRYPT 2010 - International Conference on Security and Cryptography

312

frequencies for the proposed implementations are
related to the corresponding post-synthesis results

As it can be easily seen, the increase observed
for SHA-256, is about 110% gain in throughput and
30% area penalty compared to a non-optimized
implementation with four pipeline stages
(implemented in the same technology).

This way the improvement that arises from our
optimization process is confirmed and evaluated
fairly, verifying the theoretical analysis in the
previous section. Furthermore, comparing the
implementations of other researchers to our
implementations, it can be observed that all of them
fall short in throughput, in a range that varies from
0.75 – 26.4 times less than the proposed
implementation.

4 CONCLUSIONS

In this paper a design for SHA-256 was proposed,
which achieves high throughput with a small area
penalty, thus enabling efficient software/hardware
co-design. The optimization process used is generic
and can be exploited to a wide range of existing hash
functions that are currently used or will be deployed
in the future and call for high throughputs.

This optimization process led to a design with
significant increase of throughput (about 110% for
SHA-256), compared to corresponding conventional
designs and implementations, with a small area
penalty. The results derived from their
implementation in FPGA technologies confirm the
theoretical results of the proposed design and
implementation.

ACKNOWLEDGEMENTS

This work was supported by action “Young
Researchers from Abroad” which is funded by the
Cypriot state-Research Promotion Foundation
(RPF/IPE).

REFERENCES

Chaves, R. and Kuzmanov, G.K. and Sousa, L. A. and
Vassiliadis, S. (2006) “Improving SHA-2 Hardware
Implementations”, Workshop on Cryptographic
Hardware and Embedded Systems (CHES 2006), pp.
298-310.

Cadence, “Hashing Algorithm Generator SHA-256:
Technical Data Sheet”, Web page available at

http://www.cadence.com/datasheets/SHA256_Datashe
et.pdf.

CAST Inc., Web page, available at http://www.cast-
inc.com/cores.

FIPS 180-2, (2002) “Secure Hash Standard”, FIPS
Publication 180-1, NIST, US Dept of Commerce.

FIPS 198-1, “The Keyed-Hash Message Authentication
Code (HMAC)”, FIPS Publication 180-1, NIST, US
Dept of Commerce, 2007.

Glabb, R. And Imbertb, L. and Julliena, G. and
Tisserandb, A. and Charvillon, N.V. (2007) “Multi-
mode operator for SHA-2 hash functions”, Journal of
Systems Architecture, Elsevier Publishing, vol. 53, is.
2-3B, pp. 127–138.

Helion Technology Ltd, Data Security Products, Web
page, available at
http://www.heliontech.com/auth.htm.

Lien, R. And Grembowski, T. And Gaj, K. (2004) “A 1
Gbit/s Partially Unrolled Architecture of Hash
Functions SHA-1 and SHA-512”, in LNCS, vol. 2964,
pp. 324-338, Springer.

McEvoy, R.P. and Crowe, F.M. and Murphy, C.C. and
William, P. (2006) “Optimisation of the SHA-2
Family of Hash Functions on FPGAs”, Emerging
VLSI Technologies and Architectures (ISVLSI’06),
pp.317-322.

Schneier, B. (1996). “Applied Cryptography – Protocols,
Algorithms and Source Code in C” , Second Edition,
John Wiley and Sons.

Selimis, G. and Sklavos, N. and Koufopavlou, O. (2003)
“VLSI Implementation of the Keyed-Hash Message
Authentication Code for the Wireless Application
Protocol”, in ICECS'03, pp.24-27.

Sklavos, N. and Koufopavlou, O. (2005) “Implementation
of the SHA-2 Hash Family Standard Using FPGAs”,
Journal of Supercomputing, Kluwer Academic
Publishers, vol. 31, pp. 227-248.

SP800-77, “Guide to IPSec VPN’s”, NIST, US Dept of
Commerce, 2005.

Ting, K. K. and Yuen, S. C. L. and Lee, K.-H. and Leong, P. H.
W. (2002)“An FPGA based SHA-256 processor”, Lecture
Notes in Computer Science (LNCS), vol. 2438, pp. 577–585.
Springer.

Zeghid, M. and Bouallegue, B. and Bagagne, A.
Machhoot, M. and Tourki, R. (2007) “A
Reconfigurable Implementation of the new Hash
Algorithm”, Availability, Reliavility and Security,
(ARES 2007), pp.281-285.

Zeghid, M. and Bouallegue, B. and Machhoot, M. and
Bagagne, A. and Tourki, R. (2008) “Architectural
Design Features of a Programmable Hgh Throughput
Reconfigurable SHA-256 Processor”, Journal of
Information Assurance and Security, pp.147-158.

ULTRA HIGH SPEED SHA-256 HASHING CRYPTOGRAPHIC MODULE FOR IPSEC HARDWARE/SOFTWARE
CODESIGN

313

