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Abstract:  One of the fundamental assumptions for machine-learning based text classification systems is that the 
underlying distribution from which the set of labeled-text is drawn is identical to the distribution from 
which the text-to-be-labeled is drawn. However, in live news aggregation sites, this assumption is rarely 
correct. Instead, the events and topics discussed in news stories dramatically change over time. Rather than 
ignoring this phenomenon, we attempt to explicitly model the transitions of news stories and classifications 
over time to label stories that may be acquired months after the initial examples are labeled. We test our 
system, based on efficiently propagating labels in time-based graphs, with recently published news stories 
collected over an eighty day period. Experiments presented in this paper include the use of training labels 
from each story within the first several days of gathering stories, to using a single story as a label. 

1 INTRODUCTION 

The writing, vocabulary, and topic of news stories 
rapidly shift within extremely small periods of time. 
In recent years, new events and breaking, “hot”, 
stories almost instantaneously dominate the majority 
of the press, while older topics just as quickly recede 
from popularity (Project for Excellence in 
Journalism, 2008). For typical automated news-
classification systems, this can present severe 
challenges. For example, the ‘Political’ and 
‘Entertainment’ breaking news stories of one week 
may have very little in common, in terms of subject 
or even vocabulary, with the news stories of the next 
week. An automated news classifier that is trained to 
accurately recognize the previous day/month/year’s 
stories may not have encountered the type of news 
story that will arise tomorrow. 

Unlike previous work on topic detection and 
tracking, we are not attempting to follow a particular 
topic over time or to determine when a new topic 
has emerged ((http://www.nist.gov/speech/tests/tdt/) , 
(Allen, 2002),(Mori et al., 2006)). Instead, we are 
addressing a related problem of immediate interest 
to live news aggregation sites: given that a news 
story has been published, in which of the site’s 
preset categories should it be placed? 

The volume of news stories necessitates the use 
of an automated classifier. However, one of the 
fundamental assumptions in machine learning based 
approaches to news classification is that the 

underlying distribution from which the set of 
labeled-text is drawn is identical to the distribution 
from which the text-to-be-labeled is drawn. Because 
of the rapidly changing nature of news stories, this 
may not hold true. In this paper, we present a graph-
based approach to address the problem of explicitly 
capturing both strong and weak similarities within 
news stories over time and to use these efficiently 
for categorization. Our approach combines the 
paradigm of Min-Hashing and label propagation in 
graphs in a novel way. While Min-Hashing is well-
understood in information retrieval applications, our 
application of it to create a temporal similarity graph 
appears to be new. Label propagation is gaining 
popularity in the field of machine learning as a 
technique for semi-supervised learning. Our 
approach to label propagation follows our previous 
work (Baluja et al., 2008) , where equivalent views 
of a basic algorithm termed Adsorption were 
established, and the technique was successfully 
employed for propagating weak information in 
extremely large graphs to create a video 
recommendation system for YouTube.  

The aims of this paper are to present the 
following techniques that we anticipate will have 
general applicability for data mining in industrial 
settings: formulation of temporal similarities via 
graphs created using Min-Hashes, and the 
application of label propagation as an off-the-shelf 
tool for classification tasks when very little ground 
truth is available. 
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Figure 1: Distribution of Stories Acquired over Testing Period. 

The next section describes the data collected and 
presents a series of experiments to develop strong,  
realistic, baselines for performance. Section 3 gives 
a detailed description of the Adsorption algorithm. 
Section 4 presents the empirical results to establish 
the Adsorption baselines for this task. Section 5 
presents extensive results with tiny amounts of 
labeled data (e.g., a single labeled example). Section 
6 concludes the paper and offers avenues for future 
exploration.  

2 DATA AND INITIAL 
EXPERIMENTS 

For the experiments conducted in this paper, we 
examined 11,014 unique news stories published 
over an 80 day period in 2008. The news stories 
were manually placed into one of seven categories 
(% composition): “Politics” (19.8%), 
“Internet”(6.0%), “Health”(8.8%), 
“Environment”(8.3%), “Entertainment”(10.8%), 
“Business”(31.6%), or “Sports”(14.5%). Figure 1 
shows the number of stories gathered each day from 
each class. Note that a few of the entries are 0; due 
to errors, no stories were gathered on those days. 
Although there are numerous methods to pre-
process and represent text ((Pomikalek and 
Rehurek, 2007), (McCallum and Nigam, 1998)), we 
chose an extremely simple technique for 
reproducibility. Alternate, more sophisticated, pre-
pre-processing techniques will improve all of the 
results obtained in this paper. For simplicity, we 
only generated a binary bag-of-words representation 
for each news story by determining the presence (or 
absence) of each word in the vocabulary. The 
vocabulary consisted of all words in the complete 
set of articles, except those words that occurred in 
less than 10 news stories (too infrequent) or those 

that occurred in more than 15% of the documents 
(too frequent); these words were simply discarded. 

2.1 Initial Experiments 

In the first set of experiments, we examine how two 
standard machine learning techniques, support 
vector machines ((Cortes and Vapnik, 1995), 
(Joachims, 2002)) and k-nearest neighbor, perform 
on the standard task of classifying news stories into 
the 1-of-7 categories described earlier. This task is 
constructed as a standard machine learning 
classification task; a total of 3900 news stories are 
used (the first 3900 of the set described in Section 
4). 

In Table 1, we vary the number of labeled 
examples between 100 and 500, and label the 
examples 500-3900 using an SVM with linear 
kernel (Joachims, 2002). Additionally, a full set of 
experiments were conducted with non-linear 
kernels, such as Radial Basis Functions. The 
performance did not improve over using a linear 
kernel, this may be due to the little labeled data 
provided. Note that because the SVM is a binary 
classifier, we train 21 SVM models to distinguish 
each class from each other class. The performance 
of the SVM-system dramatically improved with 
more labeled samples. Additionally, if we continue 
to ignore the temporal nature of the task, we can use 
the test set as unlabeled data and take advantage of 
unlabeled-training methods. We attempted this in 
the training process for the SVM through the use of 
transductive learning (in SVM-Light ((Joachims, 
2002), (Joachims, 1999)); however, that did not 
significantly impact the performance (Ifrim and 
Weikum, 2006) reported similar results). 

Besides  the  overall  performance,  to  view  the 
 effects of degradation of performance over time, we 
also examine the performance of the first (in time) 
100 samples classified in the test set compared with 
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the last 100 samples classified; these results are 
shown in the last two columns of Table 1. Note that, 
as expected, the unlabeled stories that are classified 
close to the period from which the labeled stories 
were taken are labeled more accurately than those 
that are labeled further away.  

2.2 k-Nearest Neighbor 

The experiments with k-nearest neighbor (k-NN) 
mirror those conducted with SVMs in the previous 
section. However, in order to make the k-NN 
process efficient, there must be a rapid method to 
find the nearest-neighbors. For this, we use a 
hashing scheme based on sparse sketches of the 
news stories. The sketches are created using a Min-
Hash scheme (Cohen, et al., 2001) that is then 
looked up using an approximate hashing approach 
termed LSH. Previously, this technique has been 
successfully applied to the large-scale lookup of 
music and images (Baluja and Covell, 2008). 
Although a full discussion of these approaches is 
beyond the scope of this paper, both will be briefly 
described since the distance calculations are also 
used as the basis of the weights in the Adsorption 
graph. 

Table 1: SVM Performance, measured with varying 
Labeled Samples. 

Labeled 
Examples 

Overall 
Performance 
(Samples 
500-3900) 

Initial 
Performance 
(Samples 
500-600) 

Later 
Performance 
(Samples 
3800-3900) 

0-100 58.5 66 41 
0-200 76.0 86 68 
0-300 81.6 84 72 
0-400 85.2 92 81 
0-500 86.2 95 83 

Min-Hash creates compact fingerprints of sparse 
binary vectors such that the similarity between the 
two fingerprints provides a reliable measure of the 
probability that the two original vectors were 
identical. Because of the sparseness of the bag-of-
words presence vector that is used for the news 
stories, it is an ideal candidate for this procedure. 
Min-Hash works as follows: select a random, but 
known, reordering of all the vector positions. We 
call this a permutation reordering. Then for each 
story, (for a given permutation reordering) pick the 
minimum vector-element that is ‘on’ (in our that is 
present in the news story). It is important to note 
that the probability by which two news stories will 
have the same minimum vector-element is the same 
as its Jaccard coefficient value. Hence, to get better 
estimates of this value, we repeat this process p 

times, with p different permutations to get p 
independent projections of the bit vector. Together, 
these p values are the signature of the bit vector. 
Various values of p were tried. For the remainder of 
this paper, we use p=500; this is the signature length 
of each vector, and is therefore the length of the 
representation of each news story. 

Table 2: k-Nearest Neighbor, with Varying Labeled 
Samples, Best Value for k given in Column 1. 

Labeled 
Examples 
(best value 
of k shown) 

Overall 
Performance 
(Samples  
500-3900) 

Initial 
Performance 
(Samples  
500-600) 

Later 
Performance 
(Samples  
3800-3900) 

0-100 (10) 81.3 85 79 
0-200 (1) 80.9 86 78 
0-300 (10) 82.2 90 76 
0-400 (10) 83.3 90 79 
0-500 (10) 83.4 92 80 

Even with the compression afforded with Min-
Hash, efficiently finding near-neighbors in a 500 
dimensional space is not a trivial task; naïve 
comparisons are not practical. Instead, we use 
Locality-Sensitive Hashing (LSH) (Gionis et al., 
1999). In contrast to standard hashing, LSH 
performs a series of hashes, each of which examines 
only a portion of the sub-fingerprint. The goal is to 
partition the feature vectors (in this case the Min-
Hash signatures) into sub-vectors and to hash each 
sub-vector into separate hash tables. Each hash table 
uses only a single sub-vector as input to the hash 
function. Candidate neighbors are those vectors that 
have collisions in at least one of the sub-fingerprint 
hashes; the more collisions the more similar. 
Together with Min-Hash, LSH provides an effective 
way to represent and lookup nearest neighbors of 
large, sparse binary vectors. The results with the k-
NN system are given in Table 2. In order to make 
the baselines as competitive as possible, we 
searched over a large range of possible k-values for 
each trial to find the best answer; it is given below. 
Note that for smaller number of training examples, 
k-NN outperformed SVMs; as the number of 
training examples increased, the performance of k-
NN dropped below SVMs. 

3 ADSORPTION 

The  genesis  of  the  family  of  algorithms that we  
collectively call Adsorption (Baluja et al., 2008) is 
the following question: assuming we wish to 
classify a node in a graph in terms of class-labels 
present on some of the other nodes, what is a 
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principled way to do it? Perhaps the easiest answer 
to this question is to impose a metric on the 
underlying graph and classify the label by adopting 
the labels present on its nearest neighbor. There are 
a variety of metrics to choose from (e.g., shortest 
distance, commute time or electrical resistance, 
etc.), but most of these are expensive to compute, 
especially for large graphs. Furthermore, 
conceptually simple ones like shortest distance have 
undesirable properties; for example, they do not take 
into account the number of paths between the 
labeled and unlabeled nodes. Adsorption provides 
an intuitive, iterative, manner in which to propagate 
labels in a graph.  

The first step is setting up the problem in terms 
of a graph. For the news story classification task, the 
embedding is straightforward: each story is a node 
in the graph, and the weights of the edges between 
nodes represent the similarity between two news 
stories. The similarity is computed via the MIN-
HASH/LSH distance described previously; if there 
is a collision via the LSH procedure, then an edge 
exists and the weights is non-zero and positive. In 
the simplest version of the algorithm, the stories that 
are labeled, are labeled with a single category. The 
remaining nodes, those to be labeled, will gather 
evidence of belonging to each of the seven classes 
as Adsorption is run. At the end of the algorithm, for 
each node, the class with the largest accumulated 
evidence is assigned to the node (and therefore the 
news story). When designing a label propagation 
algorithm in this framework, there are several 
overarching, intuitive, desiderata we would like to 
maintain. First, node v should be labeled l only 
when there are short paths, with high weight, to 
other nodes labeled l. Second, the more short paths 
with high weight that exist, the more evidence there 
is for l. Third, paths that go through high-degree 
nodes may not be as important as those that do not 
(intuitively, if a node is similar to many other nodes, 
then it being similar to any particular node may not 
be as meaningful). Adsorption is able to capture 
these desiderata effectively. 

Next, we present Adsorption in its simplest 
form: iterated label passing and averaging. We will  
also present an equivalent algorithm, termed 
Adsorption-RW, that computes the same values, but 
is based on random walks in the graphs. Although 
not  presented in this paper, Adsorption can also be 
 defined as a system of linear equations in which we 
can express the label distribution at each vertex as a 
convex combination of the other vertices. Our 
presentation follows our prior work (Baluja et al., 
2008), which also includes additional details. These 
three interpretations of the Adsorption algorithm 
provide insights into the computation and direct us 

to important practical findings; a few will be briefly 
described in Section 3.3. 

 
Figure 2: Basic adsorption algorithm. 

3.1 Adsorption via Averaging 

In Adsorption, given a graph where some nodes 
have labels, the nodes that carry some labels will 
forward the labels to their neighbors, who, in turn, 
will forward them to their neighbors, and so on, and 
all nodes collect the labels they receive. Thus each 
node has two roles, forwarding labels and collecting 
labels. The crucial detail is the choice of how to 
retain a synopsis that will both preserve the essential 
parts of this information as well as guarantee a 
stable (or convergent) set of label assignments. 

Formally, we are given a graph ),,( wEVG =  
where V  denotes the set of vertices (nodes), 
E denotes the set of edges, and R→Ew :  denotes 
a nonnegative weight function on the edges. Let 
L denote a set of labels, and assume that each node 
v  in a subset VVL ⊆  carries a probability 
distribution vL  on the label set L . We often refer to 

LV  as the set of labeled nodes. For the sake of 
exposition, we will introduce a pre-processing step, 
where for each vertex LVv∈ , we create a “shadow” 
vertex v~  with exactly one out-neighbor, namely v , 
connected via an edge ),~( vv ; furthermore, for each 

LVv∈ , we will re-locate the label distribution vL  
from v  to v~ , leaving v  with no label distribution. 
Let V~ denote the set of shadow vertices, 

{ }LVvvV ∈= |~~ . From now on, we will assume that 
at the beginning of the algorithm, only vertices in 
V~  have non-vacuous label distributions. See Figure 
2 for the full algorithm.  

Some comments on Adsorption: (1) In the 
algorithm, we say that convergence has occurred if 
the label distribution of none of the nodes changes 
in a round. It can be shown that the algorithm 

Algorithm Adsorption: 
Input: LVLwEVG ,),,,(=  

repeat 
for each VVv ~∪∈ do: 
Let ∑= u uv LvuwL ),(  

end-for 
Normalize vL to have unit 1L  norm 

until convergence 
Output: Distributions }|{ VvLv ∈  
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converges to a unique set of label distributions. (2) 
Upon convergence, each node VVv ~∪∈  carries a 
label distribution, provided there is a path from v  to 
some node LVu∈ . (3) We do not update the label 
distribution in each round; rather, we recompute it 
entirely, based on the distributions delivered by the 
neighbors. (4) Adsorption has an efficient iterative 
computation (similar to PageRank (Brin and Page , 
1998)), where, in each iteration, a label distribution 
is passed along every edge.  

Recalling that our goal was to maintain a 
synopsis of the labels that are reachable from a 
vertex, let us remark that the normalization step 
following the step of computing the weighted sum 
of the neighbors’ label distribution is crucial to our 
algorithm. Labels that are received from multiple (or 
highly-weighted neighbors) will tend to have higher 
mass after this step, so this normalization step 
renders the Adsorption algorithm as a classifier in 
the traditional machine learning sense. The 
algorithm, as presented, is a modification of the 
label propagation algorithm of Zhu et. al. ((Brin and 
Page , 1998), (Zhu et al., 2003)), where they 
considered the problem of semi-supervised classifier 
design using graphical models. They also note that 
their algorithm is different from a random-walk 
model proposed by Szummer and Jaakkola 
(Szummer and Jaakkola, 2001); in the next section 
we will show that there is a very different random 
walk algorithm that coincides exactly with the 
Adsorption algorithm. The latter fact has also been 
noticed independently by Azran (Azran, 2007). This 
aspect of the Adsorption algorithm distinguishes it 
from the prior works of Zhu et al; the enhanced 
random walk model we present generalizes the work 
of Zhu et al., and presents a broader class of 
optimization problems that we can address1. The 
approach of Zhu et al. is aimed at labeling the 
unlabeled nodes while preserving the labels on the 
initially labeled nodes and minimizing the “error” 
across edges. In Adsorption, there is a subtle, but 
vital, difference, the importance attached to 
preserving the labels, as well as the importance of 
near vs. far neighbors is explicitly controlled 
through the use of the injection-label weights and 
abandonment probabilities. These will both be 
described in detail in Section 3.3. The random walk 
equivalence, under the mild conditions of 
ergodicity, immediately implies an efficient 
algorithm for the problem, a fact not obvious from a 
general formulation as minimizing a convex 

                                                           
1 We thank P. Talukdar (personal communication, 

November 2008) for pointing this out. 

function. From a broader standpoint, it is interesting 
to note that this family of “repeated averaging” 
algorithms have a long history in the mathematical 
literature of differential equations, specifically in the 
context of boundary value problems (i.e., estimating 
the heat at a point of a laminar surface, given the 
boundary temperatures). 

3.2 Adsorption via Random Walks 

The memoryless property of the Adsorption 
algorithm that we alluded to earlier immediately 
leads to a closely related interpretation. Let us 
“unwind” the execution of the algorithm from the 
final round, tracing it backwards. For a vertex 

Vv∈ , denote by vN  the probability distribution on 
the set of neighbors of v  described by 

)),(/(),()( ∑= uv vuwvuwuN  that is, the probability 
of u  is proportional to the weight on the edge 

),( vu . The label distribution of a vertex v  is simply 
a convex combination of the label distributions at its 
neighbors, that is, ∑= u uvv LuNL )( ; therefore, if 
we pick an in-neighbor u  of v .at random according 
to vN  and sample a label according to the 
distribution uL , then for each label Ll ∈ , )(lLv is 
precisely equal to [ ])(Exp lLuu , where the  
 

 
Figure 3: Adsorption in terms of random walks. 

expectation arises from the process of picking a 
neighbor u  according to vN . Extending this to 
neighbors at distance 2, it is easy to see that for each 
label [ ])(ExpExp)(, uw lLlLLl wv =∈  where an in-
neighbor u  of v  is chosen according to vN  and an 
in-neighbor w  of u  is chosen according to uN . 
Expanding this out, we see that 

( ) ( ) ( ) ( )v v u w
w u

L l N u N w L l= ∑∑ . 

Algorithm Adsorption-RW 
Input: LVLwEVG ,),,,(= , distinguished vertex 

v  
Let }},|)~,{(,~(~ wVvvvEVVG L∈= ∪∪  
Define 1)~,( =vvw  for all LVv∈  
done := false 
vertex := v  
while (not done) do: 

vertex := pick-neighbor ),,( wEv  
if (neighbor V~∈ ) 

done := true 
end-while
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Table 3: Adsorption, with Varying Number of Connections Per Node, 200 Labeled Nodes. 

 Maximum 
Number of 
Connections 
per Node 

Overall 
Performance 
(Samples  
500-3900) 

Initial 
Performance 
(Samples  
500-600) 

Later 
Performance 
(Samples  
3800-3900) 

Adsorption 10 80.1 90 72 
100 88.1 92 83 
500 86.6 91 84 
1000 85.8 91 82 
Unlimited 82.4 94 80 

 
Notice that )(uNv  is the probability of reaching 
u from v  in one step of a random walk starting 
from v  and picking a neighbor according to vN , 
and similarly, )(wNu  is the probability of picking a 
neighbor w  of u  according to uN  . Notice also the 
crucial use of the Markov property 
(memorylessness) here: conditioned on the random 
walk having reached u , the only information used 
in picking w  is uN , which depends only on u , and 
not on where we initiated the random walk from. 
Finally, note that if the random walk ever reaches 
one of the shadow vertices z~  where LVz∈ , then 
there is no in-edge into z , so the random walks 
stops. Thus vertices in V~ are “absorbing states” of 
the Markov chain defined by the random walk. A 
simple induction now establishes that the 
Adsorption algorithm is equivalent to the following 
variation, described in terms of random walks on the 
reverse of the graph G  together with the edges 
from V~ to V . See Figure 3. Here, pick-
neighbor ),,( wEv  returns a node u such that 

Evu ∈),( (so that there is an edge from v  to u  in 
the reversed graph) with 
probability )),(/(),( ∑u vuwvuw . 

In our exposition below, the algorithm takes a 
starting vertex v  for the random walk, and outputs 
a label distribution vL  for it when it reaches an 
absorbing state. Thus, the label distribution for each 
node is a random variable, whose expectation yields 
the final label distribution for that vertex. To obtain 
label distributions for all vertices, this procedure 
needs to be repeated many times for every vertex, 
and the average distributions calculated. This yields 
a very inefficient algorithm; therefore, in practice, 
we exploit the equivalence of this algorithm to the 
averaging Adsorption algorithm in Section 2.2, 
which has very efficient implementations.  

It is instructive to compare algorithm 
Adsorption-RW with typical uses of stationary 
distributions of random walks on graphs, such as the 
PageRank algorithm (Brin and Page , 1998). In the 
case of PageRank, a fixed Markov random walk is 
considered; therefore, the stationary probability 
distribution gives, for each node of the graph, the 
probability that the walk visits that node. In the 

absence of any absorbing node (and assuming the 
walk is ergodic), the initial choice of the node from 
which the random walk starts is irrelevant in 
determining the probability of reaching any 
particular node in the long run. Consequently, these 
methods do not allow us to measure the influence of 
nodes on each other. In our situation, labeled nodes 
are absorbing states of the random walk; therefore, 
the starting point of the walk determines the 
probability with which we will stop the walk at any 
of the absorbing states. This implies that we may use 
these probabilities as a measure of the influence of 
nodes on each other. 

3.3 Injection and Abandonment 
Probabilities in Adsorption  

The three equivalent renditions of the algorithm 
(averaging, random walk, system of linear 
equations) lead to a number of interesting variations 
that one may employ. For example, in the viewpoint 
of a linear system of equations, it is easy to see how 
we can restrict which labels are allowed for a given 
node. In another variation, we can model the 
“amount of membership” of a node to a class. Recall 
the notion of a “shadow” node v~  that act as a 
“labelbearer” for v . A judicious choice of edge 
weight along the edge to the label-bearer, or 
equivalently the label injection probability, helps us 
control how the random walk behaves (this is 
equivalent to choosing the transition probability 
from v  to v~  in the reversed graph). For example, 
lower transition probabilities to the shadow nodes 
may indicate lower membership in the label class 
(e.g. a news story is ½ in politics as it is only 
tangentially related, etc). Note that indicating ½ 
politics label does not imply that the other ½ must 
be assigned to another class. This will be used in 
experiments described in Section 5. 

Another important insight is realized when 
examining Adsorption in terms of random walks. 
Instead of considering the standard random walk on 
an edge-weighted graph, one may consider a 
“hobbled walk,” where at each step, with some 
probability, which we call the abandonment proba-  
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Table 4: Adsorption Performance, with Varying Labeled Samples, 500 connections per node. 

 Labeled  
Examples 

Overall 
Performance 
(Samples  
500-3900) 

Initial 
Performance 
(Samples  
500-600) 

Later 
Performance 
(Samples  
3800-3900) 

 
Adsorption 

0-100 86.4 91 84 
0-200 86.6 91 84 
0-300 86.4 91 82 
0-400 86.8 92 84 
0-500 86.5 93 83 

 
bility; the algorithm abandons the random walk 
without producing any output label. Our 
experiments (here and in other applications) have 
confirmed that abandoning the random walk with a 
small probability at each iteration is a very useful 
feature. It slows down the random walk in a 
quantifiable way: the influence of a label l  on a 
node u falls off exponentially in the number of 
nodes along the paths from nodes that carry l  to u . 
This strengthens the effect of nearby nodes; this has 
proven crucial to obtaining good results in large 
graphs. 

4 INITIAL EXPERIMENTS WITH 
ADSORPTION 

In the experiments presented in this section, we use 
the same data that was presented in Section 2, and 
apply the Adsorption algorithm. Given the similarity 
measurements that were computed via the MIN-
HASH & LSH combination described earlier, the 
graph and weights are constructed by simply setting 
each story as a node in the graph, and the weights of 
the edges between stories as the distance as 
specified by the distance computation mentioned 
above. The stories that are in the labeled set have 
shadow nodes attached to them with the correct 
label; stories outside of the labeled set do not have 
shadow nodes. Adsorption computes a label 
distribution at each node; the label with the 
maximum value at the end of the Adsorption run is 
considered the node’s (and therefore story’s) 
classification. In constructing the graph to use with 
Adsorption, a number of options are available. 
Encoding domain-specific information into the 
graph topology may be a powerful way to express 
any a priori or expert knowledge of the task. For 
example, knowing that the most accurate 
classifications are likely to happen in stories 
temporally close to the labeled stories, connections 
to nodes representing earlier news stories may 
receive a higher weighting; or connections to the 
labeled set may be prioritized over other 

connections, etc. Nonetheless, to avoid confusing 
the causes of the performance numbers and 
introducing ad-hoc, domain specific, heuristics, we 
experimented with only domain-independent 
parameters. One of the most salient is when we 
construct the graph, we can limit the number of the 
closest neighbors that we connect with each node. In 
Table 3, we experiment with connecting each 
neighbor only with, at most2, its S=10, 100, 500, 
1000 most similar stories3. Perhaps the most 
interesting observation is that increasing the number 
of connections does not necessarily increase the 
performance. As the number of maximum 
connections is increased, eventually the connections 
encode such weak similarities between the news 
stories that it better not to use them. Currently, we 
set the maximum number of connections empirically 
(to 500); in the future, other methods will be 
explored. 

Having set the connection count, we examine 
the effects of the number of labeled training 
samples. The Adsorption algorithm reveals 
performance with 100 labeled examples that is 
comparable or exceeds in overall and long-term 
performance to the best k-NN and SVM 
performance with 500 labeled examples. Results are 
shown in Table 4.  

In the next section, we continue the empirical 
evaluation by looking at larger numbers of news 
stories, and the effects of even fewer labels 

5 FULL-SCALE EXPERIMENTS 

The first full-scale experiment parallels the 
experiments presented to this point. We assume that 
we have 100 labeled examples and that we would  

                                                           
2 Because there may be fewer than S collisions for a news story in 

the LSH hash-tables that are used to rapidly estimate 
similarity, every node may not have the maximum S 
connections. 

3 Recall that since the connections are undirected, a node may 
have more than S connections. The total number of undirected 
connections will not exceed VS * .  
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Figure 4: Performance of Adsorption and k-NN over 81 days. 

like to categorize examples that appear up to 80 
days later after the labeled examples were classified. 
The performance is shown in Figure 4, each day in 
which a news story was gathered is shown in the 
graph. In Figure 4 (right), the comparative results 
for k-NN are given. The average performance for 
Adsorption is 87.8%, k-NN: 82.5%. Other 
techniques such as Naïve-Bayes and SVMs were 
also tried; of these other techniques, k-NNs 
performed the best. Specifically, Naïve-Bayes 
performed worse than both SVMs and k-NNs, and 
SVMs performed worse than k-NNs.  

In our second experiment, we explore the 
ramifications of having two orders of magnitude less 
training data. Only a single example is labeled on 
day 1. The goal is to examine the articles in the last 
three days (days 78-81), and to rank them according 
to the probability of being in the same class as the 
single labeled example from the first day. This 
scenario is a proxy for a very common scenario 
encountered in practice in sites like 
news.google.com and other news aggregation sites. 
A user may read only a small number of articles one 
day, and then come back to the site many days later. 
Although there is not much evidence of the user’s 
preferences, we know simply that of all the articles 
the user could have chosen to read on day 1, (s)he 
read a single one. In this case, the labels from the 
first day’s article are simply 0: article was not read 
or 1: the article was read. For Adsorption, we 
weighted the examples with label 0 with an injection 
probability of 0.1 to reflect uncertainty of why the 
user did not read the article, was it because of 
interest, time, or simply not noticing it? The articles 
labeled 1 (“read”), continued to have an injection  
probability of 1.0. 
The performance was measured as follows. 500 
articles from the last few days of the experiment 
were ranked according to their probability of being 
from the same class as the ‘read’ article. The full 
Adsorption connectivity graph was used, as 
described in the previous experiments, to propagate 
the label through time. In Figure 5, we examine the 

top-N (N = 5, 10, 25, 50) of the ranked articles, and 
give the percentage of the N that are from the same 
class. As can be seen, Figure 5 (Left), even with a 
single example, the average precision rate is 
approximately 84% with Adsorption for the top-5 
examples, and over 80% for the top-10. In Figure 5 
(Right), the same experiment is performed, but 
measures the effect of having added a second 
labeled example (from the same class as the first). 
All algorithms improve dramatically over all ranges 
of N. Interestingly, a single additional labeled 
example provides information that all the algorithms 
effectively exploit. Adsorption continues to 
outperform K-NN and SVMs4 in both tests, for all 
values of N. 

6 CONCLUSIONS & FUTURE 
WORK 

In this paper, we have presented an efficient and 
simple procedure in which to incorporate an often 
ignored signal into the task of news classification: 
time. Although the writing, vocabulary and topics of 
the news stories rapidly change over time, we are 
able to perform the classification of news stories 
with very little training data that is received only in 
the beginning of the testing period.  
There are many avenues for future research, both in 
this task and in the development of Adsorption. 
First, a comparison with different unlabeled data 
learning systems is warranted. Although, in this 
study, we used transductive SVMs as means to 
incorporate unlabeled data, it did not improve 
performance significantly. Other methods, such as 
spectral clustering may do better. Although most 
other techniques do not incorporate a notion of time, 
perhaps combinations of the other methods with the  

                                                           
4 The use of unlabeled samples through transductive 

learning for the SVM was again used here. It slightly 
improved performance in a few trials; the best of both 
is given here. 
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Figure 5: Experiments with 1 & 2 labeled examples. Precision at 5,10,25, and 50 results in retrieving examples from the 
same class as the single labeled example (left) or two labeled examples (right). 

ones presented here can be devised; this is 
potentially large area of interest. Second, we used a 
simple graph structure that did not incorporate all of 
the available domain information (e.g. all the labeled 
examples are at the beginning). Using the graph 
structure to encode domain knowledge will be very 
relevant in new domains as well. Further, graph 
pruning algorithms are of interest, especially in the 
cases in which domain knowledge may not be 
readily available; as was seen in the experiments, 
more connections do not imply improved 
performance. Finally, this test was conducted over a 
period of approximately 3 months with real 
examples of rapidly shifting news stories that 
exemplify current news-aggregation-site challenges; 
longer tests are forthcoming. 
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