Fuzzy Logic for Neonatal EEG Analysis: A Systematic Review
Samuel Cardoso, Samuel Cardoso, Juliano Buss, Javier Gomez, Helida Santos, Giancarlo Lucca, Adenauer Yamin, Renata Reiser
2025
Abstract
Machine learning has advanced in healthcare, aiding diagnostics, treatment, and monitoring. In neonatal health, it helps to classify and predict conditions such as hypoxic-ischemic encephalopathy, which requires early detection. Thus, EEG pattern analysis is key in improving the neonatal prognosis. In this work, we present a systematic review of the literature to identify strategies currently employed to classify and predict neonatal EEG patterns using fuzzy logic. Fuzzy logic is particularly valuable for handling uncertainties in biological signals and improving interpretability. Five studies were selected and analyzed, focusing on applying fuzzy systems to detect epileptic events. The reviewed studies highlight techniques involving EEG data, emphasizing the role of fuzzy logic in advancing the understanding and management of neonatal neurological conditions, contributing to the state of the art in this critical field.
DownloadPaper Citation
in Harvard Style
Cardoso S., Buss J., Gomez J., Santos H., Lucca G., Yamin A. and Reiser R. (2025). Fuzzy Logic for Neonatal EEG Analysis: A Systematic Review. In Proceedings of the 27th International Conference on Enterprise Information Systems - Volume 1: ICEIS; ISBN 978-989-758-749-8, SciTePress, pages 840-847. DOI: 10.5220/0013362800003929
in Bibtex Style
@conference{iceis25,
author={Samuel Cardoso and Juliano Buss and Javier Gomez and Helida Santos and Giancarlo Lucca and Adenauer Yamin and Renata Reiser},
title={Fuzzy Logic for Neonatal EEG Analysis: A Systematic Review},
booktitle={Proceedings of the 27th International Conference on Enterprise Information Systems - Volume 1: ICEIS},
year={2025},
pages={840-847},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0013362800003929},
isbn={978-989-758-749-8},
}
in EndNote Style
TY - CONF
JO - Proceedings of the 27th International Conference on Enterprise Information Systems - Volume 1: ICEIS
TI - Fuzzy Logic for Neonatal EEG Analysis: A Systematic Review
SN - 978-989-758-749-8
AU - Cardoso S.
AU - Buss J.
AU - Gomez J.
AU - Santos H.
AU - Lucca G.
AU - Yamin A.
AU - Reiser R.
PY - 2025
SP - 840
EP - 847
DO - 10.5220/0013362800003929
PB - SciTePress