Large Language Model-Informed Geometric Trajectory Embedding for Driving Scenario Retrieval

Tin Sohn, Maximilian Dillitzer, Maximilian Dillitzer, Tim Brühl, Robin Schwager, Tim Dieter Eberhardt, Michael Auerbach, Eric Sax

2025

Abstract

This paper introduces a Large Language Model-informed geometric embedding for retrieving behavioural driving scenarios from unlabelled trajectory data, aimed at improving the search of real driving data for scenario-based testing. A Variational Recurrent Autoencoder with a Hausdorff Distance-based loss generates trajectory embeddings that capture detailed spatial patterns and interactions, offering enhanced interpretability over traditional mean squared error-based models. The embeddings are further organised through unsupervised clustering using HDBSCAN, grouping scenarios by similarities at the scene, infrastructure, behaviour, and interaction levels. Using GPT-4o for describing scenarios, clusters, and inter-cluster relationships, the approach enables targeted scenario retrieval via a Graph Retrieval-Augmented Generation pipeline, enabling a natural language search of unlabelled trajectories. Evaluation demonstrates a retrieval precision of 80.2% for behavioural queries involving infrastructure, multi-agent interactions, and diverse traffic conditions.

Download


Paper Citation


in Harvard Style

Sohn T., Dillitzer M., Brühl T., Schwager R., Eberhardt T., Auerbach M. and Sax E. (2025). Large Language Model-Informed Geometric Trajectory Embedding for Driving Scenario Retrieval. In Proceedings of the 11th International Conference on Vehicle Technology and Intelligent Transport Systems - Volume 1: VEHITS; ISBN 978-989-758-745-0, SciTePress, pages 66-75. DOI: 10.5220/0013276500003941


in Bibtex Style

@conference{vehits25,
author={Tin Sohn and Maximilian Dillitzer and Tim Brühl and Robin Schwager and Tim Eberhardt and Michael Auerbach and Eric Sax},
title={Large Language Model-Informed Geometric Trajectory Embedding for Driving Scenario Retrieval},
booktitle={Proceedings of the 11th International Conference on Vehicle Technology and Intelligent Transport Systems - Volume 1: VEHITS},
year={2025},
pages={66-75},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0013276500003941},
isbn={978-989-758-745-0},
}


in EndNote Style

TY - CONF

JO - Proceedings of the 11th International Conference on Vehicle Technology and Intelligent Transport Systems - Volume 1: VEHITS
TI - Large Language Model-Informed Geometric Trajectory Embedding for Driving Scenario Retrieval
SN - 978-989-758-745-0
AU - Sohn T.
AU - Dillitzer M.
AU - Brühl T.
AU - Schwager R.
AU - Eberhardt T.
AU - Auerbach M.
AU - Sax E.
PY - 2025
SP - 66
EP - 75
DO - 10.5220/0013276500003941
PB - SciTePress