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Abstract:  The increasing success of application of machine and deep learning in many areas of medicine, in particular 
in imaging diagnostics (Rajpurkar et al., 2020), is pushing towards the implementation of AI-based 
approaches to extract knowledge from health records data (EHR) (Li et al., 2020). The potential of 
sophisticated strategies to derive regularities from very large collection of textual data, such as language 
models, is also generating strong expectations about the capability of extracting information unstructured 
textual notes as well as in generating biomedical texts (Segura-Bedmar et al., 2022; Luo et al., 2022). The 
COVID-19 pandemics, being one of the most relevant healthcare challenges synchronously happened 
worldwide, has represented a strong push towards the timely use of EHR data to characterize the clinical 
course of the COVID-19 disease. Successful examples are represented by cooperative international efforts, 
such as the Consortium for Clinical Characterization of COVID-19 by EHR (4CE) initiative (Brat et al., 
2020). However, EHR data are particularly complex, due to their multifaceted nature and inherent relationship 
with the health care organizations generating the data. In a recent paper, Kohane and colleagues summarizing 
the experience carried on in leading 4CE have identified six main challenges that have proven to be crucial 
for running EHR-based projects (Kohane et al., 2021): i) data completeness, ii) data collection and handling, 
iii) data type, iv) robustness of methods against EHR variability (within and across institutions, countries, and 
time), v) transparency of data and analytic code, and vi) the need of multidisciplinary approach. Those topics, 
in the context of structured EHR data, have been recently further systematized by a consensus paper by the 
European Society of Cardiology and the BigData@Heart consortium that has defined the CODE-EHR best-
practice framework for the use of structured electronic health-care records in clinical research (Kotecha et al., 
2022). When applying ML to EHR data the above-mentioned aspects become even more important, since 
data-driven approaches may easily suffer from biases, incompleteness, and lack of contextual information. 
These problems may lead to models that, even if evaluated with a rigorous statistical testing, can be hardly 
applicable in practice. As a matter of fact, the “local” nature of the EHR data collection may lead to models 
that cannot be easily exported in clinical settings other than the one that have generated the training data. For 
this reason, it is important to provide ML models with additional strategies for self-assessment during clinical 
use. Recently, reliability has been proposed as an instrument to verify the quality of point predictions, based 
on two principles: the density principle and the local fit principle (Nicora et al., 2022). The density principle 
verifies if the case to be evaluated by the model is similar to examples the training set. The local fit principle 
verifies that the trained model performs well on training subsets that are similar to the instance under 
evaluation. Reliability and explainability can be seen as safeguards and instruments towards a more 
trustworthy use of AI and Machine learning. In this talk all these aspects will be discussed through some 
examples and a few suggestions will be given for future research in this area. 
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