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Abstract: The GediNET tool is based on the Grouping, Scoring, Modeling (G-S-M) approach for detecting disease-
disease association (DDA). In this study, we have developed the pro version, GediNETPro, that utilizes the 
Cross-Validation (CV) information to detect patterns of disease groups association by applying clustering 
approaches, such as K-means, extracted from the groups' ranks over the CV iterations. Additionally, a cluster 
score is computed to measure its significance to provide a deep analysis of the output of GediNET, yielding 
new biological knowledge that GediNET did not detect. Further, GediNETPro utilizes a visualization 
approach, such as a heatmap, to get novel insights and in-depth analysis of the disease groups clusters 
revealing the relationship between diseases that might be used for developing effective interventions for 
diagnosing. We have tested GediNETPro on the Breast cancer dataset downloaded from the TCGA database. 
Results showed deeper insight into the interaction and collective behavior of the DDA, facilitating the 
identification and association of potential biomarkers. 

1 INTRODUCTION 

A significant challenge in the field of bioinformatics 
has been found lately in discovering novel disease-
disease associations (DDA). Such a challenge is due 
to the heterogeneity of available molecular data that 
does not sufficiently support this discovery 
(Suratanee & Plaimas, 2015). Small efforts have been 
made in this era; thus, more research is needed for 
DDA detection. Revealing novel DDA can contribute 
to discovering relationships between diseases and 
provide opportunities for early diagnosis and 
prognosis of diseases (Žitnik et al., 2013). 

Considerable efforts have been made to design 
comprehensive frameworks to understand the 
complex association of targeted diseases. Most of the 
advanced tools based on feature selection applied to 
gene expression data implement machine learning 
and statistical approaches. Biological knowledge is 
utilized to identify meaningful relationships between 
diseases.  
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This knowledge can be obtained from various 
biological databases such as DisGeNET(Piñero et 
al., 2017), OMIM (Hamosh et al., 2000), and 
eDGAR (Babbi et al., 2017). Such knowledge-
integrated methods shifted the pure data-oriented 
approaches into integrative ones.  

Analyzing RNA-seq profiling data while 
combining pre-existing biological knowledge has 
leveraged the traditional clustering, and machine 
learning approaches into knowledge-based 
integrative systems. Different integrative tools have 
adapted the Grouping-Scoring-Modeling (G-S-M) 
approach for integrated biological knowledge 
through different computation tools such as SVM-
RCE (Yousef, Bakir-Gungor, et al., 2020; Yousef et 
al., 2007; Yousef, Jabeer, et al., 2021), SVM-RNE 
(Yousef et al., 2009), maTE (Yousef et al., 2019), 
CogNet (Yousef, Ülgen, et al., 2021), mirCorrNet 
(Yousef, Goy, et al., 2021), miRModuleNet (Yousef 
et al., 2022), integrating Gene Ontology (Yousef, 
Sayıcı, et al., 2021). Furthermore, a comprehensive 
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review of G-S-M approaches is proposed by 
(Yousef, Kumar, et al., 2020). A similar tool, 
TextNetTopics, details the in-text mining-centered 
G-S-M approach (Yousef & Voskergian, 2022).  

We have developed GediNETPro to extract 
hidden biological knowledge by detecting co-
occurrence patterns of groups (disease groups) by 
visualizing the tool's output. Insights are better attained 
when transforming the cumulative tables into figures 
and heatmaps where biological interpretations are 
easily explained. The main functionality of the new 
GediNETPro is to analyze the group frequency 
distribution over each rank to elucidate the collective 
behavior of the BRCA mechanism.  

2 METHODS 

2.1 Dataset 

The gene expression dataset used in this study is the 
Breast Invasive Carcinoma (BRCA) downloaded 
from the Cancer Genome Atlas (TCGA cancer). The 
dataset is available from the National Cancer Institute 
on the GDS data portal (Tomczak et al., 2015). 
Luminal A, Luminal B, HER2-enriched, and Basal-
like intrinsic subtypes, provided by the study of 
(Missori et al., 2020). The data consist of two classes 
of samples: pos (positive class) and neg (negative 
class). The number of pos samples is 302, whereas 
neg samples are 247. The gene expression raw counts 
were downloaded and normalized using the Trimmed 
Mean of M-values method (TMM) implemented by 
the edgeR Bioconductor package (Robinson et al., 
2010). The number of genes is 21839.  

In our study, we refer to a specific disease group 
as a set of genes associated with this disease. The pre-
existing biological knowledge hosted in the database 
DisGeNET version 7.0, including 3241576 gene-
disease associations, was downloaded from (Piñero et 
al., 2017). The total number of group diseases is 
30,170. We filtered cancer-related associations 
considering the cases by the Neoplastic processes. 
The filtered data include 22,690  gene-disease 
associations of 2200 different groups of diseases 
(named as groups). The groups are scored by the S 
component over 100 iterations.  

2.2 GediNETPro 

In the field of Machine Learning, one is required to 
evaluate the model created after training the 
classifier. Different approaches for evaluating the 
performance are used, such as k-fold cross-

validations, repeated k-fold, and leave-one-out 
(Wong, 2015).  

Monte Carlo Cross-Validation (MCCV), also 
known as a repeated random sub-sampling CV, is a 
consistent method to split the dataset into training and 
testing parts. As the name suggests, it randomly 
chooses the percentage of each split in each iteration, 
meaning no defined percentage of the dataset is left 
out in each iteration. MCCV is preferred over leave-
one-out CV as the splits' proportion is independent of 
the number of iterations which avoids the cause of 
over-fitting in prediction (Xu & Liang, 2001).  

To perform the MCCV, first, the dataset is 
randomly split into training and testing parts. In each 
iteration, the percentage of splits is different; for 
example, it might be 80% training and 20% testing or 
75% training and 25 % testing. Some data splits are 
never selected in training, and others are chosen more 
than once. Second, the model is computed by fitting 
the ML using the training part, and the model's 
performance is evaluated with the testing dataset. The 
performance metrics are calculated through cross-
validation iterations. 

Our recently developed integrative machine 
learning-based tool GediNET(Yousef & Qumsiyeh, 
2022), detects disease-disease association and gene 
biomarkers for the disease under study. The tool 
based on the G-S-M approach initially incorporates 
gene-disease associations from the DisGeNET 
database (Piñero et al., 2017). Each group has a 
unique disease name and associated genes with the 
disease. Further, the task of the S component is to 
compute a score that measures to what extent it is 
differentially expressed considering the given two 
classes. This is performed after training each group 
with its associated sub_data using a Random Forest 
(RF) classifier. The GediNET tool was implemented 
in KNIME (Berthold et al., 2008). 

GediNET provides a unique output of a list of 
groups ranked by a score, while the traditional 
approach output is a list of genes ranked by a score. 
Additionally, it provides a relationship between the 
top detected significant disease groups among those 
groups and their association with the main disease 
under study. Besides, in the original version of 
GediNET, a Monte Carlo CV (MCCV) is applied to 
estimate the tool's performance. We have applied 100 
iterations of splitting the data into training and testing, 
where 90% of the data is used for training the 
classifier (the M component). While the remaining 
10% is used for testing to evaluate its performance. 
The aggregation of all those splits is collected while 
the means and standard deviations are reported for 
each performance measurement. However, the tool 
 

BIOINFORMATICS 2023 - 14th International Conference on Bioinformatics Models, Methods and Algorithms

196



 
Figure 1: Illustration of the GediNETPro. The input panel contains the gene expression data and the grouping table. 
Component G creates the sub_datasets based on the Input panel. The MCCV panel uses the S component to perform the 
looping. The P component tracks the output of MCVV and S to be stored as a cumulative table. 

did not exploit the knowledge that can be extracted 
from the MCCV iterations. Therefore, we have 
developed a new component, P, to extract the hidden 
patterns in MCCV using the new pro version. Figure 
1 illustrates the GediNETPro version that utilizes the 
MCCV to reveal hidden patterns and additional 
biological knowledge.  

The "Input" panel in Figure 1 contains the two-
class gene expression table and the grouping table. 
Both tables will serve as input to the G component. 
The G component creates for each disease group its 
related two-class sub_datasets (G panel, Figure 1) by 
extracting the related columns (genes) from the 
original data with the class label (the c column in G 
panel, Figure 1) based on the Input panel. The 
"MCCV" panel cooperates with the S component to 
perform looping of r iterations. The P component 
collects cumulative information from each disease 
group, including gene sets, scores, and ranks. All the 
information is collected under the "Cumulative 
Table" in Figure 1, P component, whereas the 
"Cumulative Table" is summarized (See an example 

in Table 4). In the current version, we have redefined 
the rank according to Table 1, utilizing the score 
(accuracy) computed by the S component (See Figure 
1).  

This way of ranks allows us to explore the patterns 
of the groups in more depth. 

Table 1: The Rank scale is based on the score values. 

Rank  Score, ACC 
1 >0.95 
2 [0.90 -0.95) 
3 [0.85-0.9) 
4 [0.8-0.85) 
5 [0.75-0.8) 
6 [0.7-0.75) 
7 [0.65-0.7) 
8 [0.6-0.65) 
9 [0.55-0.6) 
10 <0.55 
11 Absent of group 
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Table 1 shows that the value of 11 are assigned to 
the group that failed to extract its associated 
subdataset due to filtering out genes with low signal.  

2.3 P Component: Detect Patterns of 
Diseases Associations  

Let's assume we have m groups of diseases. The S 
component assigns each group a score and a rank over 
the r iterations (We have set r to be 100). As a result, 
a matrix R with m rows and 100 columns is 
computed, where each row represents one disease 
group and the columns are the iterations ranks. R(i,j) 
is the rank assigned by the S component for group i 
in iteration j. Table 4 is an example of such output, 
where the ranks are stored in the column "Ranks list." 

Let Rp be row p of matrix R representing all rank 
values over the 100 iterations. Each Rp is a point in 
100 dimensions. One way to detect patterns of group 
ranks is by computing the similarity between Rp, p= 
1,...,m. Clusters of those rows (points) would serve to 
find associations between diseases (groups). We have 
used K-means to detect such clusters. Then for each 
cluster, a cluster score is assigned by averaging all the 
scores of its members. We have used K-means that 
estimate the number of clusters. The cluster with the 
least value is the most significant cluster that contains 
the top-ranked groups. The pseudocode of the new P 
component is presented in Table 2. 

Table 2: Pseudocode for detecting patterns of ranks of 
disease groups over 100 iterations. 

P component 
 
R is the diseases group ranks matrix over 100 iterations 
 
Let k be the estimated number of clusters over R 
clusters = K-means (R,k)  //Apply clustering approach  
for i = 1 to k  
     c_score{i} = mean (clusters{i}) //compute the 
average ranks of each cluster  
 sort (c_score, “increasing order”)  

We have implemented the P component in Knime 
(Berthold et al., 2008) using H2O.ai. H2O k-means 
node has the option of estimating the number of 
clusters that were used in P. 

3 RESULTS 

GediNETPro is executed on the BRCA-TCGA data 
with 100-fold MCCV. The performance measures of 
accuracy, sensitivity, specificity, and AUC are 

reported in Table 3. The performance of the top-10 
ranked groups is cumulatively presented in Table 3. 
The last row presents the results of Group number 1, 
the top-ranked cumulative group, with an AUC of 
0.91, specificity of 0.83, the sensitivity of 0.83, and 
accuracy of 0.83, obtained by an average of 6.17 
genes. The last second row, Group number 2, presents 
the performance results of the top cumulatively two 
groups. 

Table 3: The average 100 MCCV performance metrics table 
of GediNETPro for the top-ranked 10 groups. 

 
As seen from Table 3 no improvement in the AUC 

after the level of 4 accumulative groups. However, 
the user might be interested to examine more than 4 
top groups to explore the association between disease 
groups. Since there is no change in the value of AUC, 
one might use this level as the optimal threshold of 
the number of groups.  

 
Figure 2: The frequency of the groups ranks over all the 
iterations. 

Figure 2. shows that none of the disease groups (1 
out of 207, 565) reaches the highest rank of 1, which  
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Table 4: CumulativeTable of GediNETPro analysis of the molecular subtype datasets of BRCA. The table summarizes 
frequency, average score and rank, number of associated genes, and corresponding gene list over 100 iterations. 

 

 
impacts the performance of GediNETPro to have an 
accuracy of about 84%, as shown in Table 3. We also 
have seen that about 50% of the groups are ranked 
above the average in the range [1-6]. However, 
researchers would be interested mainly in the groups 
that are highly ranked. We might consider the range 
[1-4] for that purpose. Moreover, just 1% of the 
groups ranked with the lowest rank of 10. This is the 
impact of the filter step we applied using the statistics 
t-test, as explained in more detail in (Qumsiyeh et al., 
2022). 

Table 4 is an example of a "Cumulative Table" 
that appears in Figure 1, with summary statistics. The 
average score and rank over the 100 iterations for 
each disease group are calculated in the S component 
(S panel, Figure 1) and presented correspondingly 
under the "Average Score" and "Average Rank" 
columns. The number of associated genes for each 
disease group and their unique associated genes are 
listed in the "#Associated Gene" and "Associated 
Genes" columns, respectively. 

 
 
 
 
 

3.1 Detect Clusters of Groups by P 
Component 

The output creates 2414 groups, thus a rank matrix R 
with dimensions of 2414 rows and 100 columns.  

Applying the P component detects 8 clusters of 
groups while the top-ranked cluster gets the score of 
2.79, which has 316 disease groups, as illustrated in 
Table 5. All the disease groups belonging to cluster_0 
have similar high ranks over the iteration. 

Table 5: The summary output of component P describes 8 
detected clusters of disease groups. 

Cluster name Number of 
Groups 

Group Score 
 

cluster_0 316 2.79 
cluster_1 379 3.73 
cluster_2 257 4.76 
cluster_3 498 5.83 
cluster_4 279 6.72 
cluster_5 247 7.56 
cluster_6 218 8.47 
cluster_7 220 10.61 
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Table 6: The top 10 ranked disease groups detected by 
component P. 

Disease Group Name Score 

ADENOMA_OF_LARGE_INTESTINE 2.29 

MALIGNANT_GLIOMA 2.3 

CONVENTIONAL_(CLEAR_CELL)_RENA
L_CELL_CARCINOMA 

2.3 

PAPILLARY_THYROID_CARCINOMA 2.31 

MALIGNANT_NEOPLASM_OF_THYROID 2.31 

ASTROCYTOMA 2.33 

NON-SMALL_CELL_LUNG_CARCINOMA 2.33 

SECONDARY_MALIGNANT_NEOPLASM
_OF_LYMPH_NODE 

2.35 

EPITHELIAL_OVARIAN_CANCER 2.36 

CARCINOMA_OF_URINARY_BLADDER,_
INVASIVE 

2.36 

Table 6 shows the top-ranked 10 disease groups 
that belong to cluster_0 with their score, as suggested 
in the pseudocode to be the mean of all the ranks over 
the 100 iterations.  

3.2 Detect Clusters of Group by 
Visualization 

One of the outputs of GediNETPro is the heatmap in 
Figure 3, which illustrates the clusters of diseases 
over the 100 iterations. Random groups of diseases 
with their average rank and iteration information are 
visualized in the heatmap Figure 3. The rank scale is 
also apparent in Figure 3. The top-ranked groups are 
colored dark red, whereas low-ranked groups rarely 
detected within the 100 iterations are colored blue and 
dark purple. Therefore, while analyzing the heatmap, 
significant diseases that have red color are essential 
to be analyzed. Once analyzed, new information 
would reveal hidden patterns with new biological 
meanings. For example, as seen in Figure 3, the 
MALIGNANT NEOPLASM OF GALLBLADDER 
and MALIGNANT NEOPLASM OF STOMACH 
co-occurred with a very high rank. Thus, these two 
diseases might be associated with the BRCA disease. 

Moreover, for validation, according to the 
literature, we have found a strong connection between 
the two diseases and BRCA. Missori, Giulia, et al. 

(Missori et al., 2020) have reported that breast 
cancer's potential development of secondary 
malignant growth within gallbladder tissues is very 
high. The growth of small flat nodules on the inner 
surface of the gallbladder mucous cells for patients 
with breast cancer is also expected. Their findings 
reported the significance of carefully examining the 
Gallbladder postoperatively for older patients with 
breast cancer. They also confirmed a high risk of 
getting Gallbladder cancer from Stomach cancer. 

From Figure 3, HEREDITARY NON-
POLYPOSIS COLON CANCER TYPE 2 AND 
HYPERPLASTIC POLYP diseases are two 
complementary pairs. This means that when one 
group appears highly ranked in a specific iteration, 
the second complementary one appears with a lower 
rank. This is true for these two disease groups over 
the 100 iterations. 

Furthermore, Figure 3 shows 6 significant disease 
groups that are highly ranked and appear in all 
iterations. These groups are MALIGNANT 
NEOPLASM OF GALLBLADDER, MALIGNANT 
NEOPLASM OF STOMACH, NON-SMALL CELL 
LUNG CARCINOMA, RENAL CARCINOMA, 
THYROID NEOPLASM AND TRANSITIONAL 
CELL CARCINOMA OF BLADDER. Their average 
rank is reported to be 3.01, 2.41, 2.33, 2.66, 2.38, and 
2.74, respectively. Such behaviour invites and 
suggests more investigations are needed to find 
hidden patterns and possible correlations between 
these diseases and BRCA at the molecular-basis cell 
level.   

The low ranks, such as 9 and 10, would also 
provide biological knowledge. For example, Figure 3 
shows that the disease WELL DIFFERENTIATED 
HEPATOCELLULAR CARCINOMA was scored all 
over the iterations with a very low rank, suggesting 
that this disease is not associated with the BRCA 
disease.  

The S component assigns each group a score, 
which is also assigned to the genes that are members 
of this group. Thus, in the end, we will also have 
information about the ranks of the genes. The 
RobustRankAggreg (Kolde et al., 2012) is applied on 
those 100 lists to assign a p-value for each gene. For 
visualization, genes that are less than 5 times 
appearing out of 100 iterations are filtered out genes 
with a p-value less than 0.05 are selected. Then we 
selected 50 genes randomly that are presented in 
Figure 4 as a heatmap. Figure 4 shows that most of 
those genes belong to groups that are also highly 
ranked.  
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Figure 3: Heatmap of groups with rank information over 100 iterations. 

 
Figure 4: Heat map of the genes ranks over iterations. 
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4 CONCLUSIONS 

In this study, we have described the GediNETPro 
based on four components: the three components G, 
S, and M, inherited from GediNET with a new 
component, P. The new component P detect clusters 
or patterns of disease groups based on their rank 
values assigned by the S component. A new cluster-
score is computed to detect the most significant 
cluster of groups. Traditional approaches mainly use 
CV or other cross-validation techniques to evaluate 
performance measurements. However, GediNETPro 
utilizes the ranks or scores all over the iterations to be 
used in the P component to detect hidden patterns of 
the group's ranks. We hypothesize that disease groups 
that share the same cluster might have similar 
biological functions. This should be validated as 
future work. Using heatmaps to visualize the data 
allowed us to detect patterns that would shed light on 
additional biological knowledge of the output. 
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