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Abstract: Anomaly detection is the task of recognising novel samples which deviate significantly from pre-established
normality. Abnormal classes are not present during training meaning that models must learn effective rep-
resentations solely across normal class data samples. Deep Autoencoders (AE) have been widely used for
anomaly detection tasks, but suffer from overfitting to a null identity function. To address this problem, we
implement a training scheme applied to a Denoising Autoencoder (DAE) which introduces an efficient method
of producing Adversarially Learned Continuous Noise (ALCN) to maximally globally corrupt the input prior
to denoising. Prior methods have applied similar approaches of adversarial training to increase the robustness
of DAE, however they exhibit limitations such as slow inference speed reducing their real-world applicability
or producing generalised obfuscation which is more trivial to denoise. We show through rigorous evaluation
that our ALCN method of regularisation during training improves AUC performance during inference while
remaining efficient over both classical, leave-one-out novelty detection tasks with the variations-: 9 (normal)
vs. 1 (abnormal) & 1 (normal) vs. 9 (abnormal); MNIST - AUCavg: 0.890 & 0.989, CIFAR-10 - AUCavg: 0.670
& 0.742, in addition to challenging real-world anomaly detection tasks: industrial inspection (MVTEC-AD -
AUCavg: 0.780) and plant disease detection (Plant Village - AUC: 0.770) when compared to prior approaches.

1 INTRODUCTION

The task of anomaly detection is challenging due to
deviations from normality being continuous and spo-
radic by nature. Anomalous space is open-set con-
tinuous, meaning that strictly supervised classifiers,
although performing well across tasks in anomaly de-
tection (Gaus et al., 2019; Bhowmik et al., 2019) are
restricted by their limited exposure to abnormal ex-
amples during training. It is impossible for datasets
to contain every possible deviation in the anoma-
lous data thus supervised (classification-based) ap-
proaches cannot generalise to the continuous nature in
which anomalous samples may deviate from normal-
ity. This means that there will always exist anomalous
deviations in anomaly space which present as adver-
sarial examples to supervised methods.

Generative-based anomaly detection methods
(Schlegl et al., 2017; Schlegl et al., 2019; Zenati et al.,
2018; Akcay et al., 2019b; Akcay et al., 2019a) train
solely across normal examples in order to approxi-
mate the underlying distribution of normality. They
work by learning meaningful features to solely rep-
resent normal samples which will cause a relatively
small reconstruction error after decoding; conversely,

the model will fail to reconstruct anomalous samples
fully due to null exposure of the anomalous parts dur-
ing training. As such, the reconstruction error be-
tween input and output provides a sound metric to
measure anomalous deviation of presented samples.
The benefit of this (semi-supervised) training is that
normal (non-anomalous) data is often relatively in-
expensive and plentiful to obtain within real-world
anomaly detection tasks.

Autoencoders (AE) are well-suited to the ap-
proximation of the the underlying data distribution
across the normal class. They exhibit stability dur-
ing training unlike their Generative Adversarial Net-
work (GAN) (Goodfellow et al., 2014) based counter-
parts which exhibit training difficulties such as mode-
collapse or convergence instability (Zhang et al.,
2018). AE do however risk converging to a pass-
through identity function (1) (Bengio et al., 2013) for
which the mapping from input x to output x′ is a null
function such that limy→0 y = L(x,x′)⇒ x≃ x′ where
L is the reconstruction error. Although this can still
learn limited underlying information about the distri-
bution of the training data, this over-fitting allows the
reconstruction of anomalous regions within the input
which negatively affects performance in the task of
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semi-supervised anomaly detection. To prevent this,
Denoising Autoencoders (DAE) (Bengio et al., 2013)
are trained to produce unperturbed reconstructions
from purposefully noised input. This applies a level
of regularisation to the AE such that convergence to a
trivial solution is not straightforward. It allows an AE
to learn more robust and meaningful features across
normality as well as remain invariant of noise present
in the input (Salehi et al., 2021; Jewell et al., 2022).

Adding noise to input images in the task of semi-
supervised anomaly detection has been explored pre-
viously (Salehi et al., 2021; Jewell et al., 2022; Pathak
et al., 2016). The Adversarially Robust Autoencoder
(ARAE) (Salehi et al., 2021) works by forcing per-
ceptually similar samples closer in their latent repre-
sentations by crafting adversarial examples that are
constrained to be 1) perceptually similar to the in-
put, but have 2) maximally distant latent encoding.
The adversarial samples are produced by traversing
the latent space at each training epoch to find samples
which optimally satisfy conditions 1 and 2. This pro-
cess significantly increases computational overhead
of the model due to the demands of satisfying such
constraints. As such, the latency of ARAE (Salehi
et al., 2021) is slow during training.

The One-Class Learned Encoder-Decoder
(OLED) (Jewell et al., 2022) partially obfuscates the
input data with a mask produced by an additional
autoencoder network called the Mask Module (MM).
The MM is optimised to produce masks which max-
imise the reconstruction error of the DAE module. A
limitation of this method is that the produced masks
are visually similar across all datasets, becoming,
in-essence, a one-size-fits-all type of obfuscation.

In this work, we address the limitations of prior
work (Salehi et al., 2021; Jewell et al., 2022) by pro-
ducing tailored noise to the given task efficiently by
extending the notion of optimised adversarial noise
for robust training with the Adversarially Learned
Continuous Noise (ALCN) method. Our method
has two parts which are trained simultaneously: 1)
The Noise Generator Gnoise module which produces
maximal and continuous noise which is bespoke to
the training data and 2) The Denoising Autoencoder
Gdenoise module which is trained to reconstruct input
images corrupted (by weighted sum) by the output of
Gnoise.

In this work, we propose the following contributions:

– A novel method of adding continuous adversar-
ially generated noise to input images which are
optimised to be maximally challenging for a de-
noising autoencoder to reverse.

– Exhaustive evaluation of this approach against

prior noising methods (Salehi et al., 2021; Jew-
ell et al., 2022; Pathak et al., 2016) as well as
against manually defined noise (Random Speckle
and Gaussian) across ‘leave-one-out’ anomaly de-
tection tasks formulated via the MNIST (LeCun
et al., 2010) and CIFAR-10 (Krizhevsky and Hin-
ton, 2009) benchmark datasets.

– Extended evaluation over real-world anomaly
detection tasks including industrial inspection
(MVTEC (Bergmann et al., 2019)) and the plant
leaf disease detection (Plant Village (Hughes and
Salath’e , 2015)) with side-by-side comparison
against leading state-of-the-art methods (Akcay
et al., 2019b; Akçay et al., 2019; Vu et al., 2019a;
Zenati et al., 2018; Schlegl et al., 2017; Ruff
et al., 2018a; Perera et al., 2019; Abati et al.,
2019; Salehi et al., 2021; Jewell et al., 2022) via
the Area Under Receiver Operator Characteristic
(AUC) metric.

2 RELATED WORK

Existing anomaly detection methods have gained
exceptional success in identifying data instances
which deviate significantly from established normal-
ity. However, the current methods struggle to ad-
dress fully the two enduring anomaly detection chal-
lenges. Firstly, data availability and coverage is al-
ways limited for the anomalous class such that those
limited anomaly examples present provide poor cov-
erge of the full sprectrum of possible anomalous de-
viations. Second, is the challenge of a high-skewed
dataset distribution such that normal instances dom-
inate but with anomaly contamination (Pang et al.,
2019). In order to combat these challenges, deep
anomaly detection methods operate in a domain of
a binary-class, semi-supervised learning paradigm.
These are typically trained to solely represent nor-
mal class data with varying representations spanning
the latent space of Generative Adversarial Networks
(GAN) (Schlegl et al., 2017; Akcay et al., 2018;
Zenati et al., 2018), distance metric spaces within
(Pang et al., 2018; Ruff et al., 2018b) or intermediate
representations via autoencoders (Zhou and Paffen-
roth, 2017). Subsequently, these learned representa-
tions are used to define normality as an anomaly score
correlated to reconstruction error (Schlegl et al., 2017;
Akcay et al., 2018; Zenati et al., 2018) or distance-
based measures (Pang et al., 2018; Ruff et al., 2018b).

Generally, semi-supervised anomaly detection ap-
proaches (Schlegl et al., 2017; Akcay et al., 2018;
Akçay et al., 2019) are based on learning a close
approximation to the true distribution of normal in-
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stances by using generative methods, such as (Akcay
et al., 2018; Akçay et al., 2019; Barker and Breckon,
2021). The initial strategy uses autoencoder (LeCun
et al., 2015) architectures such as a variational au-
toencoder (VAE) (Kingma and Welling, 2014), where
a latent representation z is learned from the image
space X via an encoder mapping via Pr(z|x). Sequen-
tially, a decoder maps from z back to image space
via Pr(i′|x) to produce x′. The encoder and decoder
is trained to minimise reconstruction error between
the original image x ∈ X and the reconstruction im-
age x′. However, in general, they do not closely
capture the data distribution over X due to the over-
simplification of the learned prior probability p(z|x).
VAE (Kingma and Welling, 2014) are only capable of
learning a uni-modal distribution, which fails to cap-
ture complex distributions that are commonplace in
real world anomaly detection scenarios (Barker and
Breckon, 2021).

AnoGAN (Schlegl et al., 2017) combats this sim-
plification by adopting GAN in the anomaly detec-
tion approach. AnoGAN (Schlegl et al., 2017) is the
first GAN-based method, where the model is trained
to learn the manifold z only on normal data. When
anomalous xa is going through the generator network
(G), it produces an l2 reconstruction error which,
if large enough from learned normal data distribu-
tion will be flagged anomalous. Although effectively
proven, the computational performance is prolonged
hence limiting real-world applicability. GANomaly
(Akcay et al., 2019b) solves this issue by training an
encoder-decoder-encoder network with the adversar-
ial scheme to capture the normal distribution within
the image and latent space. It is achieved by training a
generator network and a secondary encoder in order to
map the generated samples into a second latent space
ẑ which is then used to better learn the original latent
priors z, mapping between latent values efficiently at
the same time as the generator G learns the distri-
bution manifold over data x. Efficient GAN Based
Anomaly Detection (EGBAD) also addresses the per-
formance issue in AnoGAN by adopting a Bidirec-
tional GAN (Donahue et al., 2019) into its architec-
ture. The primary idea is to solve, during training, the
optimisation problem minG,EmaxDV (D,G,E) where
the features of X are learned by the network E to pro-
duce the pair of (x,E(x)). The main contribution is to
allow EGBAD to compute the anomaly score without
Γ optimisation steps during inference as it happens in
AnoGAN (Schlegl et al., 2017).

Although GAN-based methods for anomaly de-
tection have risen to prominence and gained signifi-
cant results, they suffer from volatile training issues
such as mode collapse (Thanh-Tung and Tran, 2020),

leading to potential inability for the generator to pro-
duce meaningful output. On the other hand, autoen-
coder (LeCun et al., 2015) based architectures are
much more stable than GAN-based approaches, but
can overfit to a pass-through identity (null) function
as previously discussed. To combat this, regularisa-
tion in the form of adding deliberate corruption to the
input data often takes place (Adey et al., 2021; Salehi
et al., 2021; Jewell et al., 2022).

The work of (Adey et al., 2021) adds purposeful
corruption to the normal input data and subsequently
forces the autoencoder to reconstruct it, or denoise it.
It enables the model to compress anomaly score to
zero for normal pixel, resulting clean anomaly seg-
mentation which significantly improve performance.
ARAE (Salehi et al., 2021) works by injecting adver-
sarial samples into the training set so that the model
can fit the original sample and the adversarial sample
at the same time. It is shown that ARAE (Salehi et al.,
2021) learns more semantically meaningful features
of normal class by training an adversarially robust au-
toencoder in a latent space, resulting competitive per-
formance with state-of-the-art in novelty detection.

The work of OLED (Jewell et al., 2022) offers
another approach in noise perturbation in input data,
where instead of being perturbed by noise, input im-
ages are subjected to masking through the use of
Mask Module (MM). The masks generated by MM
are optimized to cover the most important parts of the
input image, resulting in a comparable reconstruction
score across sample. Through optimal masking, the
proposed approach learns semantically richer repre-
sentations and enhances novelty detection at test time.

Motivated by the idea intention pre-encoding in-
put corruption, we propose a novel approach for ad-
versarially generated noise which, when added to the
input data, is very challenging for the denoising au-
toencoder to reverse. Our approach, Adversarially
Learned Continuous Noise (ALCN), it consists of two
parts, Noise Generator Gnoise and Denoising Autoen-
coder Gdenoise. The former produces maximal and
continuous noise which is bespoke to the training data
while the latter trained to reconstruct input images
perturbed (by weighted sum) with this maximal noise.

3 PROPOSED APPROACH

Our proposed method is outlined in Figure 1. In our
approach, we utilise a Denoising Autoencoder Gen-
erator (Gdenoise) network together with a GAN-like
Noise Generator (Gnoise) network. These are concur-
rently adversarially trained using the process outlined
in Algorithm 1. In a given step, the weights of Gnoise
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Figure 1: Overview of adversarial noise learning architecture featuring: top-Noise Generator Module Gnoise, bottom- Denois-
ing module Gdenoise.

are updated first with gradient ascent with respect
to the reconstruction error so that at any given step,
Gnoise produces differing corruption from the previ-
ous step which Gdenoise then attempts to reverse by
optimising the reconstruction error with gradient de-
scent.

Training across dataset x∈RB×C×H×W ∈ X where
{B,C,H,W} represent the batch size, number of
channels, height and width, respectively, starts by
training the noise generator Gnoise. A linear vector
of size B× 256 random variables φ is sampled from
a standard Gaussian normal distribution φ ∼ N(µ :
0,σ : 1) and fed through Gnoise to produce noise n of
shape RB×C×H×W . The added Sigmoid layer ( 1

1+e−l )
on the final layer of Gnoise binds the noise values con-
tinuously between [0,1]. We combine the noise n
to the input image x using a weighted sum by utilis-
ing the linear blending operator noise(x,n) = α(x)+
(1−α)(n) where α is randomly sampled on each step
within bounds α→ [0.2,0.9] ∈ R+. The linear blend
operator ensures that the magnitude of the values of
noise(x,n) match with the pixel intensities of x and n.
Values of x are normalised with 0 mean and unit vari-
ance meaning that the values of noise(x,n) are such
that Gdenoise is prevented from discriminating between
the noise corrupted pixels and the original image pix-
els based on differing pixel intensity.

If alpha is static during training, Gnoise can
theoretically perfectly optimise the generated noise
n to destroy all information in image x ∈ X such
that all values in noise(x,n) are set to 1 such that

Algorithm 1: Adversarial Noise Training.

W{G}← init ▷ Initialise G randomly
W{NG}← init ▷ Initialise NG randomly
Train One Epoch:
for mini-batch: x⊂ X do
weights{Gnoise}← True
weights{Gdenoise}← False
α← [0.2,0.9] ▷ Randomly select α

z← N(µ = 0,σ = 1) ▷ |z|= {|x|,256}
x′← Gdenoise((1−α)Gnoise(z)+αx)

W{Gnoise}
backpropagate←−−−−−−−− OptimGnoise

(−L(x,x′))
weights{Gnoise}← False
weights{Gdenoise}← True
x′← Gdenoise(Gnoise(z)+ x)

W{Gdenoise}
backpropagate←−−−−−−−− OptimGdenoise

(L(x,x′))
end for

n = ( 1−α·x∈X
1−α

). The noise(x,n) cannot converge to
all zeros where n = −(α·x∈X

1−α
) due to the logical ar-

gument that the values of noise n produced by Gnoise
are bound to [0,1] ∈R+ because of the Sigmoid layer
on the output of Gnoise and x is such that ∀xi ∈ x→
{0,1},∃xi ∈ x |xi = 1 implying that if (xi ∈ x = 1)
then n = −α

1−α
⇒ n < 0 ∀α ∴ n /∈ R+. To prevent con-

vergence to the trivial solution n = ( 1−α·x∈X
1−α

) in our
experiments, we: 1) Set the value of α to be randomly
continuously sampled for each step during training
and 2) The input of Gnoise is sampled from the Gaus-
sian distribution N(0,1) which applies some level of
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randomness during sampling.
The noise(x,n) is then used as input to Gdenoise to

reconstruct x from noise(x,n), reversing the corrup-
tion caused by Gnoise. The corrupted image noisex,n is
encoded to the latent vector z and then subsequently
decoded into a synthetic reconstruction x′.

Adversarial learning is accomplished by the mini-
max optimisation between the Gdenoise and Gnoise
modules. Weights of Gdenoise are optimised to min-
imise L , the reconstruction error between x and x′

whereas the weights of Gnoise are conversely opti-
mised to maximise L . Loss terms in the overall loss
are given scalar regularisation terms λ0 and λ1 for
losses LGdenoise and LGnoise respectively. The overall
optimisation function in this work is:

argmin argmax
Gdenoise Gnoise

=LGdenoise(x,x
′)λ0+LGnoise(x,x

′)λ1

(1)

This method of training encourages the noise gen-
erator to produce masks which optimally corrupt the
input. Such optimal noise makes the denoising pro-
cess more difficult as the denoising module must not
only learn meaningful features of the input data, but
such learned representations should not carry forward
out-of-distribution (anomalous) features to the syn-
thetic reconstruction.

3.1 Loss Function

In our experiments, we find that the use of Focal Fre-
quency Loss (FFL) (Jiang et al., 2021) created higher-
fidelity reconstructions and a slight increase in AUC
performance. FFL is based on the L2 distance (loss)
between the real image x and the generated image x′

in the Fourier (frequency) domain. Pixel coordinates
of x (xi) and x′ (x′i) are used in conjunction to their
respective frequency spectrum coordinates (x f req

i &
x′ f req

i ) from the Discrete Fourier Transform (DFT) as
follows:

F(ϑ) = (
ϑi ·ϑ f req

i
|H|

)|ϑ = {x,x′} (2)

The loss is defined as the total distance in fre-
quency domain with respect to amplitude and phase
in the following formula:

L(x,x′) = ||e−i2π(F(x))− e−i2π(F(x′))||2 (3)

Figure 2 shows visually how using an L2 loss
loosely approximates the frequency representation of
x, but fails to capture high-frequency information

present in the image. FFL (Jiang et al., 2021) how-
ever, can more closely approximate the frequency do-
main as seen in this figure, the frequency representa-
tions of x and x′ are closely matched. This property
makes it highly suitable for use in our reconstruction-
driven anomaly detection approach.

Original Image (x) 
MVTEC (Hazelnut) Fourier Transform (x) Fourier Transform (x') 

 Training using L2 Loss
Fourier Transform (x') 

Training using FFL

Figure 2: Visualisation of frequency domain after Fourier
Transform operation of reconstruction x′ from input image x
both with and without using FFL (Jiang et al., 2021) during
training.

4 EXPERIMENTAL SETUP

We present our experimental setup in terms of the
benchmark datasets used for evaluation (Section 4.1)
and the implementation details of our approach (Sec-
tion 4.2).

4.1 Datasets

We make use of four established benchmark datasets
that are commonplace for evaluation within the
anomaly detection domain:

• MNIST (LeCun et al., 2010): A collection of
69,018 hand-written single digits from 0 to 9 of
resolution 28× 28. For this dataset we utilise a
80 : 20 (55,209 : 13,807) split between training
and testing respectively across the data.

• CIFAR-10 (Krizhevsky and Hinton, 2009): A
set of 50,026 low-resolution (32× 32) images
split into ten classes of common objects. A 80 : 20
(40,012 : 10,012) split between training and test-
ing sets are utilised across this dataset.

• MVTEC-AD (Bergmann et al., 2019): Bench-
mark dataset of 6,809 images for quality control
in industrial visual inspection. The data is com-
posed of fifteen classes of both non-anomalous,
defect free objects as well as a set of defective
anomalous counter-parts. A 70 : 30 split for
training and testing respectively is applied for
each class.
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Table 1: Quantitative results (class name indicates AUC, AUCavg of all classes) of models across MNIST (LeCun et al., 2010)
(upper) and CIFAR-10 (Krizhevsky and Hinton, 2009) (lower) datasets (Protocol 1).

Model MNIST
0 1 2 3 4 5 6 7 8 9 AUCavg

VAE (Kingma and Welling, 2014) 0.55 0.10 0.63 0.25 0.35 0.30 0.43 0.18 0.50 0.10 0.34
AnoGAN (Schlegl et al., 2017) 0.61 0.30 0.54 0.44 0.43 0.42 0.48 0.36 0.40 0.34 0.43
EGBAD (Zenati et al., 2018) 0.78 0.29 0.67 0.52 0.45 0.43 0.57 0.40 0.55 0.35 0.50
GANomaly (Akcay et al., 2019b) 0.89 0.65 0.93 0.80 0.82 0.85 0.84 0.69 0.87 0.55 0.79
ADAE (Vu et al., 2019b) 0.95 0.82 0.95 0.89 0.82 0.91 0.89 0.80 0.93 0.63 0.86
DAE 0.84 0.97 0.79 0.64 0.53 0.61 0.66 0.55 0.71 0.57 0.69
DAE+Random Noise 0.84 0.93 0.66 0.66 0.52 0.62 0.72 0.56 0.75 0.53 0.68
DAE+Gaussian Noise
∼ N(0,0.5) 0.88 0.97 0.77 0.66 0.55 0.62 0.75 0.55 0.71 0.57 0.70

DAE + ALCN 0.97 0.97 0.96 0.89 0.85 0.88 0.92 0.80 0.93 0.76 0.89

Model CIFAR-10
Plane Car Bird Cat Deer Dog Frog Horse Ship Truck AUCavg

VAE (Kingma and Welling, 2014) 0.59 0.40 0.52 0.44 0.46 0.50 0.38 0.51 0.64 0.49 0.49
AnoGAN (Schlegl et al., 2017) 0.51 0.49 0.41 0.40 0.34 0.39 0.34 0.41 0.56 0.51 0.44
EGBAD (Zenati et al., 2018) 0.58 0.52 0.39 0.45 0.37 0.49 0.36 0.54 0.42 0.55 0.47
GANomaly (Akcay et al., 2019b) 0.63 0.63 0.51 0.58 0.59 0.62 0.68 0.61 0.62 0.62 0.61
ADAE (Vu et al., 2019a) 0.63 0.73 0.55 0.58 0.50 0.60 0.60 0.61 0.62 0.67 0.61
DAE 0.50 0.68 0.61 0.55 0.69 0.53 0.62 0.60 0.63 0.71 0.61
DAE+Random Noise 0.63 0.53 0.54 0.54 0.65 0.59 0.64 0.55 0.66 0.63 0.60
DAE+Gaussian Noise
∼ N(0,0.5) 0.57 0.68 0.57 0.54 0.65 0.54 0.55 0.52 0.57 0.53 0.57

DAE + ALCN 0.77 0.71 0.62 0.57 0.72 0.62 0.72 0.60 0.66 0.69 0.67

• Plant Village (Hughes and Salath’e , 2015):
Visual images of the leaves of vital agricultural
edible plants together with anomalies containing
common visual leaf diseases for each respective
plant.

4.2 Implementation Details

Our method is compared across the MNIST (LeCun
et al., 2010) and CIFAR-10 (Krizhevsky and Hinton,
2009) datasets due to their inherent simplicity while
training as well as giving sufficient bench-marking
for the evaluation between the techniques included in
this work. Evaluation is conducted in two protocols
following from established methods for ‘leave-one-
out’ anomaly detection tasks. During protocol 1 (1
vs. rest), one digit is regarded as anomalous and re-
maining classes are normal as performed by: (Akcay
et al., 2018; Akçay et al., 2019; Barker and Breckon,
2021; Zenati et al., 2018; Schlegl et al., 2017; Schlegl
et al., 2019). Protocol 2 (rest vs. 1) as performed by:
(Ruff et al., 2018a; Perera et al., 2019; Abati et al.,
2019; Salehi et al., 2021; Jewell et al., 2022) is the
opposite in that one digit is normal and the nine re-
maining classes are anomalous.

The split ratio for the data is 80 : 20 for train-
ing and testing respectively as conducted by (Zenati
et al., 2018; Akcay et al., 2019b). During training, the
Adam optimiser is used for both Gdenoise and Gnoise

with learning rates of 1× 10−5 and 8× 10−3 respec-
tively. An image resolution of 28×28 is implemented
throughout ‘leave-one-out’ anomaly detection tasks
(LeCun et al., 2010; Krizhevsky and Hinton, 2009).
We implement a larger resolution of 256×256 across
MVTEC (Bergmann et al., 2019) and Plant Village
(Hughes and Salath’e , 2015) however. A batch size
of 4096 is employed across MNIST and CIFAR-10
and a batch size of 16 is used across MVTEC and
plant village during training on an NVidia GTX 1080
TI GPU. We evaluate our method using the Area Un-
der Receiver Operator Characteristic (AUC) metric.

Table 2: Quantitative results (AUCavg) of models including
ARAE (Salehi et al., 2021) and OLED (Jewell et al., 2022)
across MNIST (LeCun et al., 2010) (left) and CIFAR-10
(Krizhevsky and Hinton, 2009) (right) datasets (Protocol 2).

MNIST CIFAR-10
Method AUCavg AUCavg

DSVDD (Ruff et al., 2018a) 0.948 0.648
OCGAN (Perera et al., 2019) 0.975 0.733
LSA(Abati et al., 2019) 0.975 0.731
ARAE (Salehi et al., 2021) 0.975 0.717
OLED (Jewell et al., 2022) 0.985 0.671
DAE + ALCN 0.989 0.742
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Table 3: Quantitative results (class name indicates AUC, AUCavg of all classes) of models across MVTEC-AD (Bergmann
et al., 2019) dataset.

Model MVTEC-AD
Bottle Cable Caps. Carpet Grid H’nut Leath. M’nut Pill Screw Tile T’brush T’sistor Wood Zipper AUCavg

VAE (Kingma and Welling, 2014) 0.66 0.63 0.61 0.51 0.52 0.30 0.41 0.66 0.51 1 0.21 0.30 0.65 0.87 0.87 0.58
AnoGAN (Schlegl et al., 2017) 0.80 0.48 0.44 0.34 0.87 0.26 0.45 0.28 0.71 1 0.40 0.44 0.69 0.57 0.72 0.56
EGBAD (Zenati et al., 2018) 0.63 0.68 0.52 0.52 0.54 0.43 0.55 0.47 0.57 0.43 0.79 0.64 0.73 0.91 0.58 0.60
GANomaly (Akcay et al., 2019b) 0.89 0.76 0.73 0.70 0.71 0.79 0.84 0.70 0.74 0.75 0.79 0.65 0.79 0.83 0.75 0.76
Skip-GANomaly (Akçay et al., 2019) 0.93 0.67 0.71 0.79 0.65 0.90 0.90 0.79 0.75 1 0.85 0.68 0.81 0.91 0.66 0.80
DAE+ALCN 0.94 0.84 0.86 0.84 0.97 0.92 0.62 0.86 0.75 1 0.79 0.65 0.73 0.93 0.70 0.83

5 RESULTS

Extensive comparison of the results of our method
compared to prior methods are outlined in Tables 1, 2,
3, 4 and 5. Tables 1 and 2 outline the quantitative re-
sults of the DAE+ALCN method across both MNIST
(LeCun et al., 2010) and CIFAR-10 (Krizhevsky and
Hinton, 2009) ‘leave-one-out tasks’ across both pro-
tocol 1 (9 normal/1 anomalous) and protocol 2 (1 nor-
mal/9 anomalous). Across the real-world anomaly de-
tection tasks outlined in this paper (Bergmann et al.,
2019; Hughes and Salath’e , 2015), Table 3 out-
lines the quantitative results of our method across
the MVTEC-AD (Bergmann et al., 2019) industrial
inspection dataset and Table 4 presents the results
across the Plant Village dataset (Hughes and Salath’e
, 2015).

5.1 Leave One Out Anomaly Detection

5.1.1 Protocol 1

Table 1 outlines the results of each approach across
the MNIST and CIFAR-10 datasets. We begin by
comparing our vanilla DAE approach without any
noise regularisation and this results in an AUCavg of
0.69 across MNIST and 0.61 across CIFAR-10. This
is weak compared to other methods in the table. Ap-
plying Gaussian noise obtains an AUCavg of 0.70 on
MNIST and 0.57 on CIFAR-10. Our DAE+ALCN
approach applied to the DAE architecture achieves the
best AUC score on 90% of the classes with an aver-
age AUC of 0.89 and produces the best scores on 60%
classes of CIFAR-10 with an average AUC score of
0.67.

5.1.2 Protocol 2

Table 2 presents the results across the protocol 2
variant (1 normal/9 anomalous) across both MNIST
and CIFAR-10. Our DAE+ALCN method obtains
an AUCavg of 0.989 across MNIST and an AUCavg
of 0.742 across CIFAR-10, outperforming all prior
methods including OLED (Jewell et al., 2022) which
uses discrete noise, as previously stated in this work.

This gives illumination as to the benefit of using be-
spoke continuous noise while training.

5.2 Real-world Tasks

Table 4: Quantitative results (AUCavg) of models across
Plant Village (Hughes and Salath’e , 2015) dataset.

Model Plant Village
AUCavg

VAE (Kingma and Welling, 2014) 0.65
AnoGAN (Schlegl et al., 2017) 0.65
EGBAD (Zenati et al., 2018) 0.70
GANomaly (Akcay et al., 2019b) 0.73
Skip-GANomaly (Akçay et al., 2019) 0.77
DAE+ALCN 0.77

5.2.1 MVTEC-AD Industrial Inspection Dataset

In this experiment we compare our DAE+ALCN
method against prior semi-supervised anomaly detec-
tion methods across the MVTEC-AD task (Bergmann
et al., 2019) to verify that we can apply our method to
a real-world example rather than solely across syn-
thetic and trivial leave-one-out tasks.

The results of this experiment are shown in Table
3. It can be observed that DAE+ALCN obtains the
highest average AUC score of 0.83, outperforming all
other methods on 10 out of the 15 classes in MVTEC-
AD dataset.

5.2.2 Plant Village Dataset

The Plant Village dataset (Bergmann et al., 2019)
is challenging due to the large intra-class variance
present in this dataset. Leaves of a given plant can
vary vastly in appearance with respect to shape and
colour. As such, it is challenging to map the underly-
ing distribution of the leaves. The quantitative results
of methods across this dataset are presented in Table
4. Our DAE+ALCN method obtains an AUCavg of
0.77 which is the same as that of Skip-GANomaly
(Akçay et al., 2019). Both methods far-outperform
prior methods across this dataset.
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Table 5: Comparison of model complexity (number of parameters (millions)) and inference time (milliseconds).

Model
DAE AnoGAN EGBAD GANomaly DAE + ALCN

Parameters (Million) 1.12 233.04 8.65 3.86 9.87
Inference Time/Batch MNIST 2.36 667 8.02 9.7 4.54

(Millisecond) CIFAR-10 2.73 611 9.55 10.53 5.23

Cable

Anomaly Score: 0.15

Bottle

Skip-GANomaly DAE+Adversarial Noise

Input Output Input Output

Training 
Class 

Anomaly Score: 0.07Anomaly Score: 0.05

Anomaly Score: 0.12

Figure 3: Comparison between Skip-GANomaly(Akcay
et al., 2019a) and DAE+Adversarial Noise of feeding vastly
out-of-distribution (Hazelnut and Grid) examples through
models trained on a different class (Cable and Bottle).

Figure 3 illustrates the results of an input which is
an out-of-distribution example through both the Skip-
GANomaly (Akçay et al., 2019) and DAE+ALCN
into models trained on only another specific class
singular (Figure 3, left label). The objective be-
ing that Skip-GANomaly (Akçay et al., 2019) and
DAE+ALCN should reconstruct out-of-distribution
examples within the original class distribution. How-
ever, it can be seen in Figure 3 that Skip-GANomaly
(Akçay et al., 2019) successfully reconstructs an out-
of-distribution example given weight to the conclu-
sion that it has converged to a pass-though identity
function and just copies information from input to
output (i.e. hazelnut/grid observed in both input +
output), despite the fact the model has never been
exposed to these class examples in training. For
Skip-GANomaly this leads to low anomaly scores
of 0.05 and 0.12 for Cable and Bottle respectively.
By contrast, our DAE+ALCN architecture, man-
ages to reconstruct such out-of-distribution exam-
ples back into the training classes thus resulting in
the anomaly scores 0.07 for Cable (0.02 larger than
Skip-GANomaly (Akcay et al., 2019a)) and 0.15
for Bottle (0.03 higher than Skip-GANomaly (Akcay
et al., 2019a)). This shows that given vastly out-of-
distribution examples, the DAE+ALCN network is
more robust to misclassification and less prone to a
pass-through identity-like reconstruction output.

Overall these experiments show that using our ad-
versarial noise as a regularisation technique can en-
able even a simple architecture such as the Denoising

Autoencoder outlined in Figure 1 to obtain better re-
sults than more complex model architectures.

5.3 Model Complexity

An outline of model complexity together with in-
ference time per batch is outlined in Table 5. The
DAE+ALCN architecture has 9.87 Million param-
eters which is slightly larger than EGBAD (Zenati
et al., 2018) which is at 8.65 Million but still or-
ders of magnitude smaller relative to that of AnoGAN
(Schlegl et al., 2017). The magnitude of our model
comes from the noise generation module (ALCN)
in addition to the DAE module which is fairly light
weight at 1.12 million parameters. This means that
during training, the adversarial noising approach out-
lined in this paper adds a significant memory over-
head to the model during training however, has an in-
ference speed of 4 milliseconds per batch which is
significantly faster than the other methods, but gener-
ating the noise during inference adds a slight overhead
of 2.5ms over the standard DAE architecture.

5.3.1 Qualitative Results

Figure 4 illustrates the qualitative results of
DAE+ALCN across different datasets. The first
column for each example shows the input images
to the model. The second column illustrates the
adversarial noise which is added to the input resulting
in those images (3rd column). This adversarial noise
+ input is then fed into DAE and the resulting output
after denoising (4th column). Of particular interest
are the noise examples across the MNIST (LeCun
et al., 2010) and Plant Village (Hughes and Salath’e
, 2015) datasets. From Figure 4 we can observe that
the adversarial noise tends towards the style/shape of
the input data which, when added to the image, adds
a large level of input obfuscation (Figure 4 - Input +
Noise columns). Despite this, the DAE architecture
is able to successfully reconstruct the original input
images from this maximally noised version with
significant fidelity (Figure 4 - Output columns).
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Figure 4: Examples of input image, generated adversarial noise, input + noise addition and resulting reconstructed output (left
→ right).
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6 CONCLUSION

In this work we introduce a novel approach for im-
proved robustness semi-supervised anomaly detection
by adversarially training a noise generator to produce
maximal continuous noise which is then added to in-
put data. In the same training step, a simple Denois-
ing Autoencoder (DAE) is optimised to reconstruct
the denoised, unperturbed input from the noised in-
put. Through this simple approach, we vastly improve
performance on semi-supervised anomaly detection
tasks across both benchmark ‘leave-one-out’ anomaly
and challenging real-world anomaly detection tasks,
outperforming prior work in the field. Via abla-
tion, we also show the DAE with adversarial noise
approach demonstrates superior performance against
prior fixed-parameter noising strategies (random and
Gaussian) across the leave-one-out benchmark tasks.
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