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Abstract: Sleep’s impact on mood and health is widely recognized by medical researchers with such understanding 
disseminating among average people in recent years. The main objective of this work was the development 
of machine learning algorithms for automatic sleep cycles detection. The features were selected based on 
the AASM manual, which is considered the gold standard for human technicians. For training the models 
we used MESA, a database containing 2056 full overnight unattended polysomnographies. With the goal of 
developing an algorithm that would only require a photoplethysmography (PPG) device to be able to 
accurately predict sleep stages and quality, the main channels used from this dataset were peripheral oxygen 
saturation and PPG. Testing the performance of Random forest, Gradient Boosting, Gaussian Naive-bayes, 
K-Nearest Neighbours, Support Vector Machine and Multilayer Perceptron classifiers, and using features 
extracted from the dataset, we achieved 80.50 % accuracy, 0.7586 Cohen’s kappa, and 77.38% F1-score, for 
five sleep stages, using a Multilayer Perceptron. To assess its performance in a real-world scenario we 
acquired sleep data and compared the classifications attributed by a popular sleep stage classification 
android app and our algorithm, resulting in a strong level of agreement (90.96% agreement, 0.8663 Cohen’s 
kappa), for four sleep stages. 

1 INTRODUCTION 

Sleep’s impact on mood and health is widely 
recognized by medical researchers with such 
understanding disseminating among average people 
in recent years. While newer studies strengthen the 
suspected link between inadequate sleep and a wide 
range of infirmities (Minkel et al., 2012), the general 
population is not very conscious of their sleep 
quality. As a result, there is much interest in having 
proper means of studying sleep, given its importance 
and how difficult it is to accurately diagnose sleep 
disorders, considering how individuals are affected 
by sleep loss, and their ability to recover from said 
sleep loss, varies significantly (Tkachenko and 
Dinges, 2017). The discovery of the brain’s 
electrical activity was the main contributor 
responsible for the development of the field of sleep 
medicine in the second half of the 20th century. The 
examination of the electroencephalogram (EEG) 
patterns that occur during sleep lead to the current 
division of the sleep period into different stages, thus 

creating the basis of sleep medicine and the study of 
human sleep (Worley, 2018). One of the major 
discoveries was that sleep is much more restorative 
to both waking cognition and health when it occurs 
and goes through the appropriate physiological 
sequences. This is to say that, due to the way that 
sleep is structured into distinct stages, where each 
one has a certain set of characteristics and its own 
physiological role, the exclusive measurement of the 
amount of time slept is not enough for the quality of 
sleep to be determined. As such, sleep quality 
depends not only on total time slept but on many 
other factors such as fragmentation, amount of time 
spent in each sleep stage, and how the sleep cycles 
are structured. 

Currently, polysomnography (PSG) is the most 
common technique used to study sleep disorders, 
being able to record multiple biosignals 
simultaneously (Rundo and Downey, 2019; Karlen 
et al., 2009). It has, however, the issue of being 
expensive and inconvenient (Kelly et al., 2012), with 
the fact that this type of exam is normally performed 
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in a clinic additionally raising the issue of negative 
bias, as people may behave differently than normal 
when they know they are being monitored. 
Furthermore, there is the matter of longitudinal data. 
Laboratory PSGs are usually a single-night snapshot, 
whereas sleep is a dynamic process that is affected 
by the existence and intensity of many other factors 
that vary from day to day.  

Wearable sleep-trackers, on the other hand, are 
low-cost devices capable of measuring biosignals 
and, from this data, inferring information about 
certain behaviours, like sleep. They present many 
advantages over PSG, such as their convenience, 
ease of use, affordability and data accessibility, with 
the possibility of using some sort of cloud-based 
platform for storage of data, thus allowing the 
acquisition of an unprecedented amount of 
information about sleep and other behaviours or 
health parameters. 

Because of the costs and time expenditures 
associated with PSG, there is much interest in the 
development of algorithms that can be deployed in a 
wearable device, being able to automatically and 
accurately classify sleep stages with a similar degree 
of accuracy as the current gold-standard. Ideally, 
such an algorithm should also strive to be as simple 
as possible (both in terms of signals used and model 
complexity). 

1.1 State-of-the-Art 

As sleep disorders are common in modern society, 
with the main difficulty of their treatment being 
detection and diagnosis (Pavlova and Latreille, 
2019), and with the recent increase in popularity of 
using wearable devices in medicine (Akkaş et al., 
2020), some studies have already been developed on 
the performance of models for sleep stage prediction 
using different biosignals, features or classifiers. 

In the literature about the performance of these 
kinds of wearables, it was possible to find 
information about Fitbit Charge 2, which records 
wrist activity through accelerometers and pulses 
through photoplethysmography (PPG). In Stucky et 
al. (2021), the authors compared this device against 
portable home PSG, displaying reasonably accurate 
mean values of sleep and heart rate (HR) estimates, 
should it follow careful data processing. One other 
device is the Heally Recording System which, 
through the combination of embedded sensors and 
electrodes in a shirt that measures respiratory and 
cardiac physiology, monitors sleep based on 
autonomic signals. It exhibited accuracy at 
approximately 80% agreement with manual scoring, 

which is similar to accuracies obtained through 
actigraphy, considered an appropriate method for the 
assessment of sleep in patients with certain sleep 
disorders (McCall and McCall, 2012). 

Other studies, relying on ML, have successfully 
developed algorithms for sleep stage prediction. For 
example, Tsinalis et al. (2020) managed to obtain 
sleep stage-specific characteristics with an average 
accuracy of 86% based on EEG data, while Yildirim 
et al. (2019), developed and applied a 19-layer 1D 
convolutional neural network model to EEG and 
EOG signals, achieved the highest classification 
accuracies for 5 of its 6 sleep classes as over 91%.  

More specifically for studies using the same 
dataset (that will be described in the next section) 
that was chosen for this work, we have Kudo et al. 
(2022) that, using PPGs and accelerometers’ 
information extracted from the public datasets Apple 
watch Sleep (Walch et al., 2019), and Multi-Ethnic 
Study of Atherosclerosis (MESA) (Zhang et al., 
2018; Chen et al., 2015), achieved a macro F1 score 
of 0.655 and Cohen’s kappa score of 0.527, using a 
recurrent neural network. Another similar study, 
published by Sridhar et al. (2020), using the ECG 
signal of both the Sleep Heart Health Study (Quan et 
al., 1997) and the MESA dataset for training, 
validation and testing of the developed algorithm, 
obtained an 47 overall performance of 77% accuracy 
and 0.66 Cohen’s kappa against the reference stages 
on a held-out portion of the datasets used for 
training. 

All these studies suggest that the development of 
similar fully automatic recognition systems could 
serve as a suitable replacement for manual 
inspection of PSG signals, particularly for large-
scale studies. 

2 DATASET DESCRIPTION 

Initially, the algorithm was trained through the use 
of a publicly available online database, selected 
from others such as the NCH Sleep DataBank (Lee 
et al., 2021), or the Sleep Heart Health Study. After 
a comparison between several of these databases, 
one was selected based on its size, sensor quality 
and quantity, detail of the scoring, and how recently 
collected was the data. 

The set of PSG recordings used for this work 
was obtained from MESA. This dataset included a 
sleep exam with 2237 participants, consisting of full 
overnight unattended polysomnographies that were 
conducted between 2010-2012, and had the 
following demographics described in Table 1.  
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Table 1: Dataset demographics of the MESA database 
(adapted from (NSRR team, 2022)). 

Characteristics Value 
Number of PSGs 2056 
Number of Patients 2237 

Age (Years) 
Mean 69.6 
Median 69.0 
Standard deviation ± 9.2 

Minimum 54.0 
Maximum 95.0 

Gender 
Female 1198 
Male 1039 

Race/ethnicity 
White, Caucasian 830 
Chinese American 265 
Black, African-American 616 
Hispanic 526 

The information pertaining to the PSG studies in 
the MESA dataset are contained in two separate file 
formats for each study. The EDF files store 27 
biosignal channels, from which we used only three, 
HR information, the PPG recording, and oxygen 
saturation. With the exception of the PPG signal that 
was sampled at 256 Hz, the channels were sampled 
at 1 Hz. On the other hand, the XML files contain 
annotations corresponding to the PSG recordings, 
such as sleep stages and their duration. 

For the real-world validation of the developed 
models, 14 nights of sleep were acquired using a 
biosignalsPlux device on the posterior side of the 
left wrist (Plux Wireless Biosignals, 2022) that 
recorded both PPG and accelerometer data, and a 
smartwatch (Ticwatch E2) on the right wrist. 

3 METHODOLOGY 

In order to build the code developed in this work to 
analyse and process the dataset, as well as build the 
ML models, Python was used through the code 
editor Spyder. Several different libraries were used, 
including BeautifulSoup4, Pandas, NumPy, scikit-
learn, Tensorflow, and hrvanalysis. After the 
development of the algorithms, to test them in a real-
world scenario, they were used to classify the sleep 
stages of the acquired 14 nights of sleep. These 
classifications were then compared to the results 

obtained from “Sleep as Android“ (Chaudhry, 
2017), which is one of the most reviewed android 
sleep analysis smartphone applications, using the 
measurements taken using the smartwatch.  

In the next Sub-Sections, the algorithms used to 
perform the classification of the data, the metrics 
upon which they are evaluated, and both which 
features and how they were extracted are described. 

3.1 Data Pre-Processing and Feature 
Extraction 

The first step of the extraction of the data from the 
PPG records was the standardization of the signal, 
achieved through the subtraction of the signal’s 
mean followed by its division by its standard 
deviation. After that, the signal was segmented in 
short windows (half second interval) and the mean 
of each of these intervals was subtracted to minimize 
baseline drift. Subsequently a 4th order Chebyshev 
II bandpass filter (sampling frequency of 256 Hz and 
cut-off frequencies of 0.05 and 30 Hz) was used. 

At this stage we segmented the signal according 
to the sleep stage annotations and began extracting 
features. These features, a total of 30, range from the 
maximum, mean and minimum values of oxygen 
saturation and HR, in this case also including its 
standard deviation, to features related to heart rate 
variation (HRV). The resulting analysis of HRV is 
grouped under time-domain and frequency-domain.  

In the time-domain, 12 features were used, such 
as root mean square of successive differences 
between N-N intervals (RMSSD), standard deviation 
of these differences (SDSD), number of pairs of 
successive N-N intervals that differ by more than 50 
ms and 20 ms (NN50 and NN20), total proportion of 
NN50 and NN20 in relation to the total number of N-
N intervals, standard deviation of all N-N intervals 
(calculated over each 30 second interval), mean and 
median of the N-N intervals (Mean_nni and 
Median_nni), coefficient of variation (SDNN divided 
by Mean_nni), coefficient of variation of successive 
differences (RMSSD divided by Mean_nni) and, 
finally, the difference between the longest and 
shortest N-N interval. 

As for the frequency-domain, seven features 
were used, including total power spectral density 
(Golgouneh and Tarvirdizadeh, 2020), power in the 
very low (vlf), low (lf), and high (hf) frequency 
bands (Salahuddin et al., 2007), normalised lf and hf 
power, and the ratio between these two powers. 

Two additional features related to the PPG 
signal’s entropy (more specifically fuzzy (Chen et 
al., 2007) and dispersion entropy (Rostaghi and 
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Azami, 2016)) were extracted after averaging its 
value in windows of 32 samples, to minimize time 
spent for this step and the information loss resulting 
from the averaging. 

Finally, despite only classifying sleep in 30 
second intervals, the two preceding stage 
classifications were also used as features, so as to 
take into account the continuity of sleep. 

3.2 Classification Models 

To classify the sleep stages, we used both machine 
learning models (such as Random Forest, Gradient 
Boosting, Gaussian Naïve-Bayes, K-Nearest 
Neighbours, and Support Vector Machine) and 
artificial neural networks (Multilayer Perceptrons). 

The choice of these algorithms was based on 
both literature reviews done for other sleep stage 
classification studies, and trial and error. 

3.2.1 Random Forest 

Random Forest is an ensemble learning method that 
constructs and uses numerous decision trees. Due to 
random variable selection and bootstrap aggregation 
leading to lower correlation across trees, the 
ensemble prediction is generally more accurate than 
any of its decision trees individual predictions. 

3.2.2 Gradient Boosting 

Gradient Boosting is an ensemble learning method 
of weak prediction models, usually decision trees. 
With careful tuning of its parameters, it may result 
in better performance than Random Forest models. 

3.2.3 Gaussian Naive-Bayes 

Gaussian Naive Bayes classifiers are based on 
applying Bayes’ theorem with a strong 
independence assumption to classify the data.  

3.2.4 K-Nearest Neighbours 

K-Nearest Neighbours (KNN) classifiers utilise 
proximity to make predictions. For classification 
problems, a class label is assigned to a data element 
based on the vote of the K number of its nearest 
neighbours. It is possible to construct a weighted 
version using the distance between data points. 

3.2.5 Support Vector Machine 

Support-Vector Machine (SVM) algorithms attribute 
classifications by finding a hyperplane in an N-

dimensional space that is able to separately classify 
the data points.  

3.2.6 Multilayer Perceptron 

Multilayer Perceptrons are a fully connected class of 
feedforward artificial NNs, consisting of at least 
three layers of nodes. With the exception of the 
nodes in the input layer, each node is a neuron that 
uses a nonlinear activation function. 

3.3 Model’s Hyperparameters 

The characteristics of machine learning algorithms 
are strongly tied to their hyperparameters, with their 
optimization and tuning being pivotal to a model’s 
performance (Feurer and Hutter, 2019). For the non-
neural network models, the chosen method to tune 
these hyperparameters was grid search, which is a 
tuning technique that computes their optimum 
values through an exhaustive search in a manually 
introduced subset of values. Scikit-learn library’s 
implementation of this function was used, with the 
hyperparameters’ values being presented in table 2.  

Table 2: Values for the different parameters to be 
optimized when utilizing scikit-learn’s grid search. 

 Parameters Values 

Random 
Forest 

n_estimators 10-100, 100-1000 (increasing 
by 10 and 100, respectively)

Criterion gini, entropy 

max_depth None, 10-100 (increasing by 
10) 

Gradient 
Boosting 

n_estimators 10-100, 100-1000 (increasing 
by 10 and 100, respectively)

Criterion friedman_mse, squared_error, 
mse 

max_depth 1,3,5, 10-100(increasing by 
10) 

KNN 

n_neighbours 1, 3, 5, 7, 9, 11 

Weights uniform, distance 

Metric manhattan, Euclidean 

SVM 

C 0.0001, 0.01, 0.05, 0.1, 0.5, 
1.0, 5, 10 

Kernel linear, poly, rbf 

Gamma scale, 0.0001, 0.01, 0.05, 0.1, 
0.5, 1.0, 5, 10 

For the neural network models, their 
hyperparameters were chosen to be tuned through 
trial and error due to their increased complexity. 
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3.4 Model Evaluation 

After training the algorithms, it is necessary to 
evaluate their performance. To do this, the MESA 
dataset was first split into testing and training sets, 
so as to permit an assessment and minimization of 
the impact of the model’s overfitting to the data, 
which would otherwise lead to an imprecise 
estimation of the model’s capabilities. Additionally, 
as sleep stages’ distribution is naturally unbalanced 
(Worley, 2018), to promote a more even learning 
process, these sets were balanced.  

Finally, some metrics were calculated to evaluate 
their performance. These metrics were accuracy, 
Cohen’s kappa and macro average F1-score. 

4 RESULTS 

For the non-neural network models, after optimizing 
their hyperparameters through grid search, the 
evaluated metrics for the best performing models of 
each type obtained are presented in Table 3. 

Table 3: Values of the chosen metrics for the highest 
performance non-neural network models of each type. 
 Accuracy (%) Cohen's kappa

Random Forest 79.30 0.7412 

Gradient Boosting 82.34 0.7792 

Gaussian Naive-
Bayes 68.41 0.6052 

KNN 21.99 0.0249 

SVM 25.03 0.0628 

As can be observed in Table 3, the best 
performing models are Random Forest and Gradient 
Boosting, with this last model presenting an overall 
more balanced performance for all of its 
classifications when compared to the other models 
and presenting the highest accuracy and Cohen’s 
kappa for the balanced test dataset. 

For the neural network models, the first step of 
tuning its architecture was selecting the number of 
layers and neurons per layer. Accordingly, starting 
by the hidden layer number, it was discovered that 
models with three layers are optimal (Figure 1). 

 
Figure 1: Model accuracy per number of layers. 

Following this, the optimal neuron count per 
layer for this 3-layered model was found (Figure 2). 

 
Figure 2: Model accuracy per number of neurons in each 
layer. 

Finally, to reduce overfitting the influence of 
several regularization methods such as L1, L2 and 
dropout were tested, with only L2 regularization 
having a positive influence in the performance of the 
developed models (Figure 3).  

 
Figure 3: Correlation between maximum model accuracy 
and L2 regularisation rate. 
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In this figure, it is possible to observe that the 
best result is achieved when a L2 regularisation rate 
of 0.4 is used, with this model presenting an 
accuracy of 80.50%, Cohen’s kappa of 0.7563 and 
F1 score of 77.38 % (in the unbalanced test set). An 
example of the resulting classification can be seen in 
figure 4, where the orange lines are the true sleep 
stages and the blue lines are the model’s predictions, 
with the blue lines disappearing when they match. 

 
Figure 4: Sleep stages for each interval of a randomly 
chosen MESA file, classified by the developed algorithm. 

Using this final model to classify the sleep night 
data that was recorded during this work, an 
agreement of 90.96%, Cohen’s kappa of 0.8663, and 
macro average F1-score of 90.52% was achieved 
when compared to the classifications attributed by 
the Android app, with these results being displayed 
in figure 5. 

 
Figure 5: Normalized confusion matrix of the results 
obtained from the classification of real-world data. 

5 DISCUSSION 

First it is important to notice that, usually, models 
are stochastically trained, meaning that two models 

with the matching architecture being trained with 
identical data in the same manner, might perform 
differently after training, which may further 
complicate the study and understanding of the 
training process. To solve this issue several identical 
models with the same characteristics were 
developed, at which point their average performance 
was evaluated, and then compared with the average 
performance of other models with different 
architectures. 

As mentioned previously, some commonly used 
regularisation methods, such as L1, L2, or dropout, 
were tested. In the case of the latter, despite usually 
being described as improving model performance 
(Baldi and Sadowski, 2014; Srivastava et al., 2014), 
it failed to do so in this case, instead leading to a 
decrease in performance (even only 5% dropout 
lowers average accuracy to 41.84%). This decrease 
seems tied to dropout probability, where the higher 
the probability, the worse the performance is, until a 
plateau is reached at approximately 37.35% 
accuracy. The addition of L1 regularisation also 
seems to be detrimental to model development, with 
the higher the rate, the worse its impact on the 
model’s accuracy. On the other hand, L2 
regularisation seems to improve the effectiveness of 
the models, and, while we found a regularisation rate 
of 0.4 to be optimal, there seems to be a wide range 
of values (from 0.1 to 2) where the model still 
benefits from its addition. 

With this said, for the NNs, the best performing 
model presented 80.50% accuracy, 0.7563 Cohen’s 
kappa on the balanced test set, and a macro average 
F1-Score of 77.38% on the complete, unbalanced 
test set. After an extensive search for the optimal 
configuration of hyperparameters, we found that the 
model consistently performed better in a 3 hidden 
layer, 32 neurons per layer, structure, with all hidden 
layers having a L2 regularisation rate of 0.4. Overall, 
we found that performance tends to be highest for 
models with 3 or 7 layers, with it dropping sharply 
outside these limits. Similarly for neuron count, 
accuracy dropped to around 20% for any number of 
neurons per layer outside of the interval between 16 
and 64, whereas it seems mostly stable at around 
80% accuracy and optimal at 32 neurons per layer. 

The results obtained are promising as, while 
some models are able to achieve higher accuracy 
(Tsinalis et al., 2016; Yildirim et al., 2019), they do 
so while using more signals (usually EEG, EOG, or 
ECG), which significantly restricts their usability for 
everyday applications. Conversely, we reached 
better performance than many other models, 
including recently published studies that make use of 
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more signals or features (Sun et al., 2020), or 
employ the same dataset (Kudo et al., 2022; Sridhar 
et al., 2020). 

For the classification of the real-world data that 
was acquired, a neural network was chosen over the 
other Gradient Boosting model, as even though its 
performance on the balanced test dataset was 
slightly inferior to the best performing non-neural 
network model, its performance on stage 2 
classification (one of the most common stages for 
naturally-occurring unbalanced sleep) is 
substantially improved, which leads to this model 
being superior for real-world stage classifications 
(0.7586 Cohen’s kappa in the complete, unbalanced 
test dataset, in contrast to 0.6967) without being as 
deleterious to lowest class accuracy (52.95% 
compared to 56.32% accuracy). Additionally, the 
increase in misclassifications by this model tends to 
be between physiologically similar stages (such as 
between stage 1 and stage 2, which are both usually 
considered light sleep, for example), which lowers 
the importance of such errors. This neural network 
being the most accurate algorithm developed is in 
line with the current state-of-the-art, as the model’s 
increased complexity theoretically allows it to more 
accurately classify the different sleep stages. 

After this selection, the device’s data was scored 
by our algorithm, and then compared with the 
classifications by the Android application, at which 
point a strong level of agreement (McHugh, 2012) 
(90.96% accuracy, 0.8663 Cohen’s kappa and a 
macro average F1-Score of 90.52%) was observed. 

6 CONCLUSION 

This work’s main objective was the development of 
a ML algorithm that detects and classifies sleep 
cycles. For this end, both NN and non-NN models 
were developed.  

The performance achieved for the final NN 
model was higher than many other studies, despite 
generally using a lesser amount of features or signals 
and the same or similar datasets. 

Another goal of this work was to test the 
developed model’s performance in a real-world 
scenario. To achieve this, we simultaneously 
recorded 14 nights of sleep using a biosignalsPlux 
device with PPG and accelerometer sensors and a 
widely used Android sleep scoring application 
paired with a commercially available wearable 
device. After comparing the resulting classifications 
we obtained a strong level of agreement. This leads 

us to believe in the potential of the developed 
algorithm to be used in real-world scenarios. 

While the main goals of this work were fulfilled, 
it still presents some limitations that could be 
improved, namely in terms of feature acquisition and 
extraction. 

Future studies should attempt to integrate these 
algorithms into devices. This way, not only is it 
possible to increase the similarity between the 
devices and algorithms being compared, but it 
should also be easier to acquire a larger amount of 
data, ideally, from a larger set of individuals as well. 

The recording of more data itself would also 
likely lead to improvements in the determination of 
the real-world performance of the models, besides 
the potential use of this data for model training. In 
this regard, the recording and comparison of results 
with a PSG study would be optimal. 

Additionally, during feature extraction, we chose 
to reduce the number and quality of the entropies 
used as features, due to time and computation 
constraints. As, even after this, these were some of 
the most relevant features, the extraction and use of 
them without averaging the signal beforehand could 
lead to some performance improvements. 

Finally, throughout this work several models 
were created, some of them having similar levels of 
accuracy and other selected metrics to the final 
model developed. Due to this, a complementary 
study that could be done is the creation of another 
ensemble model that utilises the output of these 
models as inputs, as these types of models tend to 
have a better performance than the sum of their parts 
(Zhang and Ma, 2012). 
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