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Abstract: When tracking multiple identical objects or animals in video, many erroneous results are implausible right

away, because they ignore a fundamental truth about the scene. Often the number of visible targets is bounded.

This work introduces a multiple object pose estimation solution for the case that this upper bound is known.

It dismisses all detections that would exceed the maximally permitted number and is able to re-identify an

individual after an extended period of occlusion including the re-appearance in a different place. An example

dataset with four freely interacting laboratory mice is additionally introduced and the tracker’s performance

demonstrated on it. The dataset contains various conditions ranging from almost no opportunity to hide for

the mice to a fairly cluttered environment. The approach is able to significantly reduce the occurrences of

identity switches - the error when a known individual is suddenly identified as a different one - compared to

other current solutions.

1 INTRODUCTION

Automatic video analysis often requires tracking of

specific objects in the scene. That means a computer

system has to be able to recognize and localize some-

thing, which it has been told to follow, in every frame

of a video. In the application to observing animals

there can be the additional requirement to track not

only one individual and its body parts, but multiple si-

multaneously. To the human observer individuals can

appear identical, while - through the utilization of vi-

sual appearance and the time component - the system

has to be able to distinguish and identify them.
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1.1 Multiple Object Tracking and Pose

Estimation

Multiple Object Tracking (MOT) is challenging and

solutions are often not good enough without human

correction of error. In this work, we consider the

case, where a number of nearly identical individ-

uals and their pre-defined (body) parts should be

tracked across all frames (Multi-Object Pose Estima-

tion). Our contribution is not limited to the task of

pose estimation, but can also be used for situations

where no keypoints play a role. Since it is most use-

ful in laboratory animal settings, in which pose is of-

ten necessary, we present it in the Multi-Object Pose

Estimation context.

1.2 Typical Frameworks

A typical Multi-Object Pose Estimation framework

performs three steps (top-down, Figure 1 (a)): 1) Ob-

ject Detection, 2) Body Part Detection and 3) Track-
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(a)

(b)

Figure 1: (a) Top-down processing: An object detector
finds the individuals. Another detector finds the body parts
around the location of the detected objects. (b) Bottom-up
processing: All body parts on the whole image are detected.
As a separate step they have to be assembled and thereby as-
signed to individuals.

ing. Object Detection finds the individuals, Body Part

Detection finds the body parts of each individual and

Tracking assigns every detection to an individual. In

contrast to detecting all occurring body parts on the

whole image (bottom-up, Figure 1 (b)), the top-down

structure allows a better resolution when detecting

body parts, because the detection is run on a crop of

the original image. On the other hand it necessitates

the training of two separate networks: the object de-

tector and the body part detector.

1.3 Other Tracking Solutions

There are two recent tracking solutions attacking the

problem from slightly different angles. DeepLabCut

(DLC) by Mathis et al. (Mathis et al., 2018) is an

accurate tracker being used in many applications on

animal videos. It is based on the first step of Deep-

erCut (Insafutdinov et al., 2016) - a model for hu-

man pose estimation. DLC uses a pre-trained ResNet

(He et al., 2016) architecture for feature extraction

followed by deconvolutions outputting a heatmap lo-

cating the specific body part. It is able to reliably

find arbitrary image features based on just a few hun-

dred training examples usually. With the recent re-

lease of version 2.2 it is also able to track multiple

individuals at a time (Lauer et al., 2021). Here the

authors use a different order of the steps sketched in

subsection 1.2. They first perform body part detection

and then assemble all the individuals (i.e. bottom-up)

claiming, that the object detection as the first step of-

ten fails, when multiple individuals interact. At the

end of tracking in DLC a stitching operation is per-

formed, that optimizes the tracks globally. Each pair

of consecutive tracklets gives an affinity value and the

merging of tracklets is chosen such that the total affin-

ity is minimal. Here the optimal choice is found by a

min-cost flow algorithm. In contrast to the proposed

method, DLC internally creates a model of how the

individual bodyparts compose the whole, such that

the detected part can be attributed to the right individ-

ual, even if other individuals are close by. The false

detection of only one body part can trigger the cre-

ation of a new individual track - an event the proposed

approach tries to prevent. SLEAP is another open-

source tracking framework (Pereira et al., 2022). It

includes both bottom-up and top-down approaches

also for multiple individuals and their body parts. It

relies on an interactive learning process with a human

in the loop. The user labels some data, lets the method

predict and then fixes erroneous detections, which are

then used for further training and so on. For step 3)

Tracking two options are offered: Optical Flow or

Kalman Filter. Both try to generate a prediction of

where a track will continue in a new frame. Those

predictions are then matched to the detections min-

imizing the matching cost. Both DLC and SLEAP

allow a manual repair of switched identities during

tracking. False detections have to be removed manu-

ally, since no fixed upper bound is employed.

1.4 Multitracker Features

The Multitracker framework introduced in this work

utilizes currently successful deep learning methods

for all steps and introduces a novel approach to step

3) Tracking, that leverages the knowledge of the max-

imum number of individuals present, which is avail-

able in many laboratory animal applications.

For Step 1) Object Detection. the here imple-

mented method is YOLOX (Ge et al., 2021). The

YOLO approach handles the detection and clas-

sification of objects in an image in one deep

network, while outperforming alternative meth-

ods (Redmon et al., 2016) such as Faster R-CNN

(Ren et al., 2016). We chose YOLOX, because it

combines high quality predictions with high effi-

ciency. It allows differently scaled models, which en-

ables users to tune the trade-off between speed and ac-

curacy themselves. SSD (Liu et al., 2016) is another

successful method, but it did not perform as well as

YOLOX on the mouse data while being comparable

in speed. SSD is thus not included in the Multitracker

framework.
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For Step 2) Keypoint Detection. the here imple-

mented especially successful and frequently used op-

tions are Efficient U-Net (Ronneberger et al., 2015),

Stacked Hourglass Network (Newell et al., 2016)

and Pyramid Scene Parsing Network (PSP)

(Zhao et al., 2017). These methods are available

in the provided framework, but are not elaborated or

evaluated in this work.

For Step 3) Tracking. four methods are of-

fered. The two widely adopted MOT algorithms

SORT (Bewley et al., 2016) and the V-IoU Tracker

(Bochinski et al., 2018), the current state-of-the-art

OC-SORT (Cao et al., 2022) as well as the novel Up-

per Bound Tracker introduced in this work. All four

perform track assignment, estimation, and manage-

ment based on bounding boxes created by an object

detector. A motion model or the current frame is

used to estimate the current location using the past

track data. These estimated tracks are then matched

with the new detections. Afterwards the creation and

deletion of tracks is managed based on simple rules.

The different approaches in each of these steps dis-

tinguish the methods. SORT (Bewley et al., 2016)

is a tracking method, that utilizes a Kalman Fil-

ter (Kalman, 1960) to estimate the next position in

a track. Afterwards it maximizes the intersection

over union (IoU) between tracks and detections with

the help of the Hungarian algorithm. SORT creates

new tracks after an unmatched detection and deletes

them if they could not be matched with a detection

too many time steps in a row. This sophisticated

method is able to cope with inconsistent detections

through the Kalman filter. Observaion-Centric SORT

(OC-SORT) (Cao et al., 2022) is based on SORT,

but introduces improvements to the Kalman Filter

step. There the predictions for the next step are not

assumed linear, which leads to large improvements

over SORT in situations of occlusions and non-linear

movement. The Visual-Intersection-over-Union (V-

IoU) tracker (Bochinski et al., 2018) relies on more

consistent detections. A new detection is matched to

a track by computing the IoU between it and the previ-

ous detections. If the intersection is high, the new de-

tection likely belongs to that track. Unmatched tracks

are continued with a visual tracker to fill detections

gaps at least for some number of time steps. The same

is done backwards in time with unmatched detections.

The fourth and final tracking method is designed for

a slightly less general setting, that is introduced in the

next section.

The code is publicly available on GitHub1.

1https://github.com/dolokov/upper bound tracking

2 UPPER BOUND TRACKING

Most MOT benchmarks (Dendorfer et al., 2020) track

objects in open world settings, e.g. public surveil-

lance cameras in public spaces. Video sequences and

their corresponding tracks are relatively short. No

prior information about the total number of individual

objects is known. In some behavioural observation

experiments however, cameras film animals within a

cage. In this closed world setting, a small number of

subjects is filmed for a long time. For each video, the

total number of participating animals is known. We

call this setting ”Upper Bound Tracking” as it con-

tains a strict upper bound for the number of visible

subjects at any time. Utilizing this knowledge can

improve tracking significantly and is at the center of

the proposed Upper Bound Tracker (UBT). By careful

design, tracking rules can be derived that guarantee to

never violate the upper bound while at the same time

increase global track consistency.

3 METHOD

The Upper Bound Tracker (UBT) is based on OC-

SORT (Cao et al., 2022) and contains adjustments to

the creation of new tracks and to the reconnection of

lost tracks. It is designed to reduce identity switches

compared to other trackers by preventing spurious

detections to create new tracks. Like SORT and

OC-SORT, the UBT is similar to the V-IoU Tracker

(Bochinski et al., 2018) by assigning a new detection

to a track if they have a large IoU. But it never cre-

ates new tracks if the upper bound for the number of

individuals is already reached. Additionally a novel

reidentification step is introduced, that connects a pre-

viously lost track to a new appearing one. In conjunc-

tion with the strict upper bound this reidentification

takes effect, when an animal was occluded for an ex-

tended period of time - leading to less than the maxi-

mum amount of individuals visible - and reappears at

a later point. This way the correct identity is assigned

again given that in the meantime the other individuals

were not also lost from sight.

The frame update step is presented in Algorithm

1. It describes the steps, that are performed after the

detections have been made on the new frame and the

Kalman Filter has predicted the next bounding boxes.

In the frame update step an unmatched track is set to

inactive after it has not been matched with a detection

for a set number of time steps (∗1 in Algorithm 1). An

unmatched detection is matched with the closest inac-

tive track, when it is stable (∗2). We call a detection

stable, when in each of the last three time steps there
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was a detection close by it (IoU >
1
2
) - i.e. it is stable,

when it did not appear far away from all other recent

tracks.

The described approach results in all additional

detections being discarded when the upper bound is

already reached. This is only correct if the exist-

ing tracks are all following the actual individuals and

are not due to some spurious detections. The chance

of such a fault happening are reduced by the need

for detections to be stable before being attached to a

track, as well as the required small distance to the last

known track position. Only close-by and very contin-

uous false detections could cause an issue, that - given

the current framework and data - is only prevented by

using a good object detector for step 1). When false

detection occur only briefly for a few frames, they

are unlikely to cause any problem for the proposed

method, while other methods will create new tracks

for them.

4 DATASET AND EVALUATION

We created videos to test the tracker’s performance in

a setting, where the Upper Bound Tracker approach

might be useful in the future: videos of a fixed number

of animals moving in a closed cage. In the videos four

mice are freely moving through a 425 x 276 mm (type

III) polycarbonate cage, that is filmed from above

such that the whole cage is in the frame. The filter

top as well as grid of the cage were removed and re-

placed by a custom-made transparent lid of the same

size, which prevented the mice from climbing onto

and walking along the edge of the cage walls. Dur-

ing video recording, food pellets normally supplied as

diet (LASvendi, LAS QCDiet, Rod 16, autoclavable)

were placed on the floor. Water was provided in a bot-

tle attached to the external wall of the cage; the drink-

ing nipple was put through a hole in the cage wall so

that the mice had free access to water during the video

recording. The video dataset is publicly available2.

The mice were video-recorded under ten different

environmental enrichment conditions; i.e., for each

video segment different enrichment items were pro-

vided to the mice - from here on called occlusion

conditions or just conditions (see Table 1). The more

objects were present, the more occlusions could oc-

cur. In all occlusion conditions, the cage floor was

covered with wooden bedding material (JRS Ligno-

cel FS14, spruce/ fir, 2,5-4 mm) and 5 g shredded cot-

ton cocoons (UNIGLOVES Dental Watterollen Gr.3).

In the most crowded occlusion condition, there are a

2https://www.scienceofintelligence.de/research/data/
four-mice-from-above-dataset/

Input: u, T , D, nia, dcl , dreid , nmisses

Result: new Tracks T ′

Match tracks T to detections D with Linear

Programming with IoU criterion;

/* Update tracks for good matches

*/

foreach matched pair of track and detection

(t,d) do

update track attributes t ′← 1
2
(t + d);

nt
misses← 0;

set t to active;

end

/* Set lost tracks to inactive */

foreach unmatched track t do

nt
misses← nt

misses + 1;

if nt
misses ≥ nia then Set t inactive; // ∗1

end

foreach unmatched stable detection d do

/* If there are too few tracks

add a new one */

if |T |< u then

dmin←mint∈T dist(d,t);

if dmin > dcl then
add new track at position d to T

end

end

/* Otherwise add detection to

closest inactive track */

else

tclosest← argmint∈Tinactive
dist(d,t);

if dist(tclosest,d)< dreid then
interpolate between the last

matched location of tclosest and

d; // ∗2

set tclosest to active;

end

end

end

Algorithm 1: The frame update step. Inputs are: u - the
upper bound, T - the current Kalman Filter predicted loca-
tions and sizes of the tracks, D - the new detections, nia -
the number of time steps after a lost track is set to inactive,
dcl - the minimum clearance distance, dreid - the maximum
reidentification distance. Detections d and tracks t consist
of location (x,y), width and height.

transparent tunnel, a house with a running plate, some

paper strips, and paper towel, which offered the mice

lots of options to hide from the camera and should

be challenging for any tracker. Sample frames from

those two most extreme conditions can be found in

Figure 2. For more information on the camera setup

see section 7. This kind of data can be found in ex-

periments observing the social life of mice. The in-

dividual has to be recognized in order to judge e.g.
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Figure 2: Example frames of the least and the most oc-
cluded conditions.

each mouse’s activity level or the number of interac-

tions with other mice. Tracking can help to do this

automatically, but a high number of identity switches

will dampen its usefulness. They have to be corrected

manually forcing a researcher to watch the whole se-

quence again. Thus the number of switches has to be

minimal in such an application.

For training the method the YOLOX-M

(Ge et al., 2021) object detection model was trained

on frames taken from four different occlusion con-

ditions including the least and the most occluded

conditions. 300 frames were taken from the be-

ginning of each of the four video segments with a

distance of 50 frames (or 1.67 seconds) between

each other. The resulting 1200 frames were labeled

with bounding boxes around the mice. 10% or 120

frames were taken as validation set. Training was

performed until convergence (about 300 epochs).

Afterwards the three tracking methods were run and

their performance evaluated. For evaluation a number

of video snippets were annotated manually. Every

50th frame was shown to the annotator, who then

drew bounding boxes around each visible mouse and

assigned the boxes to an individual. Individuals are

recognizable in the videos through the markings on

their tail. For the gaps of 49 frames (or 1.6 seconds)

between bounding-box annotated frames the bound-

ing boxes were interpolated. This was done for the

first minute of six videos with different occlusion

conditions. Note, that localization performance was

not evaluated here.

These obtained ground truth tracks were used

for evaluation with the HOTA metric (Higher Or-

der Tracking Accuracy) (Luiten et al., 2021). This

recently published metric balances the measure-

ment of performance of a tracker in correct de-

tection and correct association, while eliminating a

number of shortcomings, that common metrics like

MOTA (Bernardin and Stiefelhagen, 2008) and IDF1

(Ristani et al., 2016) have. For these metrics a higher

value is better.

Since a good tracker in applications to laboratory

animals science and elsewhere has to follow each in-

dividual reliably the number of identity switches were

separately counted. Here ’identity switch’ refers to

the event, that an animal is assigned to a track, that

was previously associated with a different animal.

A comparison is also made to the complete

multiple-object pose estimation solution DeepLabCut

(DLC) in version 2.2. DLC does not output bound-

ing boxes, but the metrics HOTA and MOTA are

(partially) computed with a similarity score between

bounding boxes. To be able to consider these met-

rics as well, we determined the bounding boxes of the

keypoints, that DLC outputs and increased their width

and height by 10%. On those metrics the comparison

is not fair, because the bounding boxes stem from an

approximate heuristic, so the values are not important

to consider. The other metrics are more meaningful

here. We used the same training data as for the other

methods and trained a multi-animal DLC model using

default parameters.

The final experiment presented here delivers evi-

dence that the introduction of the upper bound leads

to better results. To this end the method is applied

to the same data, but with an upper bound that is too

high.

5 RESULTS

In the following comparisons between the UBT and

the aforementioned approaches for step 3) Tracking

(V-IoU, SORT and OC-SORT trackers) are presented.

On all videos regardless of occluding objects in

the scene the UBT outperforms OC-SORT, SORT

and V-IoU on the metric counting the number of ID

switches (IDSW). Here the difference in performance

to the second best, OC-SORT, is rather small, while

the difference to the other methods is substantial, cut-

ting the number of switches in half at least.

On the other metrics it shows good performance

as well. Table 2 (upper panel) shows results for the

easiest condition, in which no obstacles obscure the

mice. UBT performs slightly better than OC-SORT in

all metrics. The HOTA, IDF1 and IDSW performance

sees a big gab between the two on one side and SORT

and V-IoU on the other. The MOTA score is similar

for all four.

Upper Bound Tracker: A Multi-Animal Tracking Solution for Closed Laboratory Settings

949



Table 1: Objects in the cage in each of the six occlusion conditions. An ’X’ marks the presence of the object. Each condition
has wooden bedding material and shredded cotton and can also have: tunnel (transparent, 11,5 cm x 3,5 cm, custom-made),
one or two grams of white paper strips (LILLICO, Biotechnology Paper Wool), thin paper towels (cellulose, unbleached,
layers, 20x20cm, Lohmann & Rauscher), Mouse igloo with or without running plate (ZOONLAB GmbH, Castrop-Rauxel,
Germany; round house: 105 mm in diameter, 55 mm in height; round plate: 150 mm in diameter).

Condition Tunnel Igloo Paper strips Running Plate Paper towels

1

2 X

3 X X

4 X X 1g

5 X X 2g X

6 X X 2g X X

Table 2: MOT performance of the five compared methods
on the easiest and on the most difficult occlusion condi-
tion. HOTA: area under the curve for HOTAα for α ranging
from 0.05 to 0.95 in steps of 0.05; IDSW: number of iden-
tity switches; bolt: best value for each column; *: DLC
could not be fairly evaluated with HOTA and MOTA (see
section 4).

Easiest Occlusion Condition
HOTA MOTA IDF1 IDSW

SORT 0.39 0.86 0.42 25
OC-SORT 0.56 0.85 0.74 5
V-IoU 0.33 0.84 0.33 42
UpperBound 0.58 0.88 0.77 4
DLC 0.54* 0.42* 0.71 0

Most Difficult Occlusion Condition
HOTA MOTA IDF1 IDSW

SORT 0.30 0.73 0.31 57
OC-SORT 0.34 0.69 0.41 25
V-IoU 0.30 0.71 0.30 71
UpperBound 0.33 0.54 0.48 22
DLC 0.19* -0.06* 0.27 66

The most difficult occlusion condition (Table 2

lower panel) sees OC-SORT slightly ahead of UBT

in the HOTA and SORT ahead in the MOTA score.

Here the OBT performs best only in IDF1 and IDSW.

Performance on the other conditions can be found

in section 7 in the appendix.

DLC performs as well as OC-SORT and UBT on

the least occluded condition3. On the most difficult

condition its performance falls off, however. Here it

is similar to SORT and V-IoU again.

When setting the upper bound too high perfor-

mance on all metrics drops (Table 3).

6 DISCUSSION

The HOTA and IDF1 metrics have a range between 0

(nothing was done right) to 1 (perfect performance).

MOTA is unbounded in the negative direction and

3Only considering IDF1 and IDSW - see section 4

Table 3: MOT performance of the UBT when setting the up-
per bound incorrectly. The correct upper bound for the data
is 4. Evaluation was done on the easiest occlusion condi-
tion. HOTA: area under the curve for HOTAα for α ranging
from 0.05 to 0.95 in steps of 0.05; IDSW: number of iden-
tity switches.

Upper Bound HOTA MOTA IDF1 IDSW

4 0.58 0.88 0.77 4

5 0.51 0.64 0.68 5

10 0.38 -0.41 0.46 9

also has an upper bound of 1. The number of ID

switches can of course be any non-negative integer.

This metric is dominated by the UBT with OC-SORT

closely following. The good performance of it in

the domain of getting the identity of the individu-

als right is still visible in the IDF1 metric, which

has a bias towards that component to MOT perfor-

mance (Luiten et al., 2021). Here the UBT again out-

performs other methods by a good margin. This in-

dicates, that the improvements, that OC-SORT and

UBT brought, were mainly to the consistency of indi-

vidual identification, and less to the localization accu-

racy. The poorer performance of UBT in the MOTA

metric on the most challenging condition points to-

wards a weakness in correctly drawing bounding

boxes around individuals, that are only partially vis-

ible. The other occlusion conditions paint a similar

picture. The effect of the introduction of the upper

bound on the number of spurious detections becomes

obvious in the ablation experiment. When setting the

upper bound to ten instead of the correct four, the

MOTA score even becomes negative, which happens,

when often more false positives occur than there are

ground truth tracks.

7 CONCLUSION

The UpperBound Tracker shows great improvements

on existing baseline methods for MOT. It is also able
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to out-perform the recent state-of-the-art tracker OC-

SORT by a small margin. The most balanced metric

HOTA, which gives appropriate weight to both sub-

tasks: finding the individuals and consistently identi-

fying them, still shows room for improvement under

challenging conditions. The other metrics give evi-

dence, in which sub-task the contribution of the UBT

idea lies. The number of identity switches is much

lower. This is indicating, that the correct and consis-

tent identification of tracked individuals benefits from

the re-connection to the closest inactive track, that is

introduces in the UBT in this work. Further research

should address the case when more than one indi-

vidual is gone from view. The reidentification could

take into account past trajectories and appearances of

missing tracks to connect them once they reappear.

In the MOT sub-task of following and re-identifying

individuals in videos, that fulfill the requirement of

a known maximum number of individuals, UBT is a

good choice.
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APPENDIX

Ethics Statement

Maintenance of mice and all animal experimentation

was approved by the Berlin State Authority and the

Ethics committee (“Landesamt für Gesundheit und

Soziales”, permit number: G0249/19). The study was

performed according to the German Animal Welfare

Act, and the Directive 2010/63/EU for the protection

of animals used for scientific purposes.

Animals

Four female C57BL/6J mice obtained from Charles

River Laboratories (Sulzfeld, Germany) were used at

an age of approximately 10 months. The animals

were group-housed in two polycarbonate type 3 cages

(425 x 276 mm each) with filter tops, which were con-

nected with each other via a tube. The cages con-

tained wooden bedding material (JRS Lignocel FS14,

spruce/ fir, 2,5-4 mm), a triangular plastic house (140

mm long side, 100 mm short sides, 50 mm in height;

Tecniplast, Italy), a transparent tunnel (11 mm x 40

mm , custom-made), and five pieces of paper towel (2

x Paper Towels 23x24,8cm folded, Essity ZZ Towel;

3 x cellulose, unbleached, layers, 20x20cm, Lohmann

& Rauscher). The animals were maintained under

standard conditions (room temperature: 22 ± 2 °C;

relative humidity: 55 ± 10 %) on a light:dark cycle

of 12:12 h of artificial light (lights on from 7AM to

7PM in the winter and 8AM to 8PM in the summer)

with a 30 min twilight transition phase. They had

free access to water and were fed pelleted mouse diet

ad libitum (LASvendi, LAS QCDiet, Rod 16, auto-

clavable). Cages were cleaned once a week and the

mice were handled using a tunnel. The experimenter

was female. The mice were free of all viral, bacterial,

and parasitic pathogens listed in the FELASA recom-

mendations (FELASA Working Group on Revision

of Guidelines for Health Monitoring of Rodents and

Rabbits).

Camera Setup

The video recording was done with a Basler acA1920-

40um camera (Lens LM25HC F1.4 f25mm, Kowa,

Nagoya, Japan) mounted on a tripod pointing down at

the type III cage (425 mm × 276 mm × 150 mm) with

transparent lid. The camera has a resolution of 1920

x 1200 pixels and was set to record 30 monochrome

frames per second with a pixel bit depth of 8 bit.

Performance on Other Occlusion

Conditions

Table 4: MOT performance of the five compared methods
on different occlusion conditions. HOTA: area under the
curve for HOTAα for α ranging from 0.05 to 0.95 in steps of
0.05; IDSW: number of identity switches; bolt: best value
for each column; *: DLC could not be fairly evaluated with
HOTA and MOTA (see section 4) and was not evaluated for
all conidtions.

Occlusion Condition Difficulty 2/6

HOTA MOTA IDF1 IDSW

SORT 0.43 0.77 0.52 15
OC-SORT 0.52 0.72 0.67 9
V-IoU 0.40 0.74 0.48 27
UpperBound 0.52 0.73 0.72 5
DLC 0.46* 0.41* 0.66 19

Occlusion Condition Difficulty 3/6

HOTA MOTA IDF1 IDSW

SORT 0.26 0.62 0.24 83
OC-SORT 0.25 0.46 0.27 55
V-IoU 0.22 0.57 0.21 118
UpperBound 0.38 0.53 0.54 30

Occlusion Condition Difficulty 4/6

HOTA MOTA IDF1 IDSW

SORT 0.45 0.84 0.49 23
OC-SORT 0.59 0.79 0.71 3
V-IoU 0.42 0.82 0.45 33
UpperBound 0.70 0.85 0.92 0

Occlusion Condition Difficulty 5/6

HOTA MOTA IDF1 IDSW

SORT 0.40 0.61 0.48 35
OC-SORT 0.43 0.52 0.56 36
V-IoU 0.38 0.57 0.45 53
UpperBound 0.54 0.57 0.78 17
DLC 0.37* 0.24* 0.51 20
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