
Unfolding Local Growth Rate Estimates
for (Almost) Perfect Adversarial Detection

Peter Lorenz1, Margret Keuper2,3 and Janis Keuper1,4

1ITWM Fraunhofer, Kaiserslautern, Germany
2University of Siegen, Germany

3Max Planck Institute for Informatics, Saarland Informatics Campus, Saarbrücken, Germany
4IMLA, Offenburg University, Germany

Keywords: Adversarial Examples, Detection.

Abstract: Convolutional neural networks (CNN) define the state-of-the-art solution on many perceptual tasks. However,
current CNN approaches largely remain vulnerable against adversarial perturbations of the input that have
been crafted specifically to fool the system while being quasi-imperceptible to the human eye. In recent years,
various approaches have been proposed to defend CNNs against such attacks, for example by model hardening
or by adding explicit defence mechanisms. Thereby, a small “detector” is included in the network and trained
on the binary classification task of distinguishing genuine data from data containing adversarial perturbations.
In this work, we propose a simple and light-weight detector, which leverages recent findings on the relation
between networks’ local intrinsic dimensionality (LID) and adversarial attacks. Based on a re-interpretation
of the LID measure and several simple adaptations, we surpass the state-of-the-art on adversarial detection by
a significant margin and reach almost perfect results in terms of F1-score for several networks and datasets.
Sources available at: https://github.com/adverML/multiLID

1 INTRODUCTION

Deep Neural Networks (DNNs) are highly expres-
sive models that have achieved state-of-the-art perfor-
mance on a wide range of complex problems, such
as in image classification. However, studies have
found that DNN’s can easily be compromised by ad-
versarial examples (Goodfellow et al., 2015; Madry
et al., 2018; Croce and Hein, 2020a; Croce and Hein,
2020b). Applying these intentional perturbations to
network inputs, chances of potential attackers to fool
target networks into making incorrect predictions at
test time are very high (Carlini and Wagner, 2017a).
Hence, this undesirable property of deep networks has
become a major security concern in real-world appli-
cations of DNNs, such as self-driving cars and iden-
tity recognition (Evtimov et al., 2017; Sharif et al.,
2019).

Recent research on adversarial counter measures
can be grouped into two main approach angles: ad-
versarial training and adversarial detection. While the
first group of methods aims to ”harden” the robustness
of networks by augmenting the training data with ad-

versarial examples, the later group tries to detect and
reject malignant inputs.

In this paper, we restrict our investigation to the
detection of adversarial images exposed to convolu-
tional neural networks (CNN). We introduce a novel
white-box detector, showing a close to perfect de-
tection performance on widely used benchmark set-
tings. Our method is built on the notion that adver-
sarial samples are forming distinct sub-spaces, not
only in the input domain but most dominantly in the
feature spaces of neural networks (Szegedy et al.,
2014). Hence, several prior works have attempted to
find quantitative measures for the characterization and
identification of such adversarial regions. We investi-
gate the properties of the commonly used local intrin-
sic dimensionality (LID) and show that a robust iden-
tification of adversarial sub-spaces requires (i) an un-
folded local representation and (ii) a non-linear sepa-
ration of these manifolds. We utilize these insights to
formulate our novel multiLID descriptor. Extensive
experimental evaluations of the proposed approach
show that multiLID allows a reliable identification of
adversarial samples generated by state-of-the art at-
tacks on CNNs. In summary, our contributions are:
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• an analysis of the widely used LID detector.

• novel re-formulation of an unfolded, non-linear
multiLID descriptor which allows a close to per-
fect detection of adversarial input images in CNN
architectures.

• in-depth evaluation of our approach on common
benchmark architectures and datasets, showing
the superior performance of the proposed method.

2 RELATED WORK

In the following, we first briefly review the related
work on adversarial attacks and provide details on the
established attack approaches that we base our evalu-
ation on. Then, we summarize approaches to network
hardening by adversarial training. Last, we revise the
literature on adversarial detection.

2.1 Adversarial Attacks

Convolutional neural networks are known to be
susceptible to adversarial attacks, i.e. to (usually
small) perturbation of the input images that are
optimized to flip the network’s decision. Several such
attacks have been proposed in the past and we base
our experimental evaluation on the following subset
of most widely used attacks.

Fast Gradient Method (FGSM) (Goodfellow et al.,
2015): uses the gradients of a given model to cre-
ate adversarial examples, i.e. it is a white-box attack
and needs full access to the model architecture and
weights. It maximizes the model’s loss J w.r.t. the in-
put image via gradient ascent to create an adversarial
image Xadv:

Xadv = X + ε · sign(∇X J(Xadv
N ,yt)) ,

where X is the benign input image, y is the image
label, and ε is a small scalar that ensures the pertur-
bations are small.

Basic Iterative Method (BIM) (Kurakin et al.,
2017): is an improved, iterative version of FGSM.
After each iteration the pixel values are clipped to the
ε ball around the input image (i.e. [x−ε,x+ε]) as well
as the input space (i.e. [0,255] for the pixel values):

Xadv
0 = X ,

Xadv
N+1 = CLIPX ,ε{Xadv

N +α · sign(∇X J(X ,yt))},

for iteration N with step size α.

Projected Gradient Descent (PGD) (Madry
et al., 2018): is similar to BIM and one of the
currently most popular attacks. PGD adds random
initializations of the perturbations for each iteration.
Optimized perturbations are again projected onto the
ε ball to ensure the similarity between original and
attacked image in terms of L2 or L∞ norm.

AutoAttack (AA) (Croce and Hein, 2020b): is an en-
semble of four parameter-free attacks: two parameter-
free variants of PGD (Madry et al., 2018) using cross-
entropy loss in APGD-CE and difference of logits
ratio loss (DLR) in APGD-t:

DLR(x,y) =
zy −maxx ̸=y zi

zπ1 − zπ3
. (1)

where π is the ordering of the components of z in
decreasing order. Further AA comprises a targeted
version of the FAB attack (Croce and Hein, 2020a),
and the Squares attack (Andriushchenko et al.,
2020) which is a black-box attack. In RobustBench,
models are evaluated using AA in the standard mode
where the four attacks are executed consecutively.
If a sample’s prediction can not be flipped by one
attack, it is handed over to the next attack method, to
maximize the overall attack success rate.

DeepFool (DF) : is a non-targeted attack that finds
the minimal amount of perturbation required to flip
the networks decision by an iterative linearization
approach (Moosavi-Dezfooli et al., 2016). It thus
estimates the distance from the input sample to the
model decision boundary.

Carlini&Wagner (CW) (Carlini and Wagner,
2017b): uses a direct numerical optimization of
inputs Xadv such as to flip the network’s prediction at
minimum required perturbation and provides results
optimized with respect to L2, L0 and L∞ distances. In
our evaluation, we use the L2 distance for CW.

Adversarial Training : denotes the concept of using
adversarial examples to augment the training data of
a neural network. Ideally, this procedure should lead
to a better and denser coverage of the latent space and
thus to in increased model robustness. FGSM (Good-
fellow et al., 2015) adversarial training offers the ad-
vantage of rather fast adversarial training data gener-
ation. Yet, models tend to overfit to the specific attack
such that additional tricks like early stopping (Rice
et al., 2020; Wong et al., 2020) have to be employed.
Training on multi-step adversaries generalizes more
easily, yet is hardly affordable for large-scale prob-
lems such as ImageNet due to its computation costs.
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2.2 Adversarial Detection

Adversarial Detection aims to distinguish adversarial
examples from benign examples and is thus a low
computational replacement to expensive adversarial
training strategy. In test scenarios, adversarial attacks
can be rejected and cause to faulty classifications.
Given a trained DNN on a clean dataset for the origin
task, many existing methods (Ma et al., 2018; Fein-
man et al., 2017; Lee et al., 2018; Harder et al., 2021;
Lorenz et al., 2021) train a binary classifier on top
of some hidden-layer embeddings of the given net-
work as the adversarial detector. The strategy is mo-
tivated by the observation that adversarial examples
have very different distribution from natural exam-
ples on intermediate-layer features. So a detector can
be built upon some statistics of the distribution, i.e.,
Kernel Density (KD) (Feinman et al., 2017), Maha-
lanobis Distance (MD) (Lee et al., 2018) distance,
or Local Intrinsic Dimensionality (LID) (Ma et al.,
2018). Spectral defense approaches (Harder et al.,
2021; Lorenz et al., 2021; Lorenz et al., 2022) aim
to detect adversarial images by their frequency spec-
tra in the input or feature map representation.
Complementary, (Yang et al., 2021) propose to train
a variational autoencoder following the principle of
the class distanglement. They argue that the recon-
structions of adversarial images are characteristically
different and can more easily be detected using for
example KD, MD and LID).

Local Intrinsic Dimensionality (LID): is a measure
that represents the average distance from a point to
its neighbors in a learned representation space (Am-
saleg et al., 2015; Houle, 2017a) and thereby approx-
imates the intrinsic dimensionality of the representa-
tion space via maximum likelihood estimation.
Let B be a mini-batch of N clean examples and Let
ri(x) = d(x,y) be the Euclidean distance between the
sample x and its i-th nearest neighbor in B . Then, the
LID can be approximated by

LID(x) =−

(
1
k

k

∑
i=1

log
di(x)
dk(x)

)−1

, (2)

where k is a hyper-parameter that controls the num-
ber of nearest neighbors to consider, and d is the em-
ployed distance metric. Ma et al.(Ma et al., 2018)
propose to use LID to characterize properties of ad-
versarial examples, i.e. they argue that the average
distance of samples to their neighbors in the learned
latent space of a classifier is characteristic for adver-
sarial and benign samples. Specifically, they evaluate
LID for the j-dimensional latent representations of a

neural network f (x) of a sample x use the L2 distance

dℓ(x,y) = ∥ f 1.. j
ℓ (x)− f 1.. j

ℓ (y)∥2 (3)

for all ℓ ∈ L feature maps. They compute a vector of
LID values for each sample:

−−→
LID(x) = {LIDdℓ(x)}

n
ℓ . (4)

Finally, they compute the
−−→
LID(x) over the training

data and adversarial examples generated on the train-
ing data, and train a logistic regression classifier to
detect adversarial1 samples.

3 REVISITING LOCAL
INTRINSIC DIMENSINALITY

The LID method for adversarial example detection as
proposed in (Ma et al., 2018) was motivated by the
MLE estimate for the intrinsic dimension as proposed
by (Amsaleg et al., 2015). We refer to this original
formulation to motivate our proposed multiLID.
Let us denote Rm,d a continuous domain with
non-negative distance function d. The continuous
intrinsic dimensionality aims to measure the local
intrinsic dimensionality of Rm in terms of the distri-
bution of inter point distances. Thus, we consider
for a fixed point x the distribution of distances as
a random variable D on [o,+∞) with probability
density function fD and cumulative density function
FD. For samples x drawn from continuous probability
distributions, the intrinsic dimensionality is then
defined as in (Amsaleg et al., 2015):

Definition 3.1. Instrinsic Dimensionality (ID). Given
a sample x ∈ Rm, let D be a random variable denot-
ing the distance from x to other data samples. If the
cumulative distribution F(d) of D is positive and con-
tinuously differentiable at distance d > 0, the ID of x
at distance d is given by:

IDD(d)
∆
= limε→0

logFD((1+ ε)d)− logFD(d)
log(1+ ε)

(5)

In practice, we are given a fixed number n of samples
of x such that we can compute their distances to x in
ascending order d1 ≤ d2 ≤ ·· · ≤ dn−1 with maximum
distance w between any two samples. As shown in
(Amsaleg et al., 2015), the log-likelihood of IDD(d)
for x is then given as

nlog
FD,w(w)

w
+nlogIDD +(IDD −1)

n−1

∑
i=1

log
di

w
. (6)

1We are grateful to the authors for releasing their
complete source code. https://github.com/xingjunm/lid
adversarial subspace detection.
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The maximum likelihood estimate is then given as

ÎDD =−

(
1
n

n−1

∑
i=0

log
di

w

)−1

with (7)

ÎDD ∼ N
(

IDD,
ID2

D
n

)
, (8)

i.e. the estimate is drawn from a normal distribu-
tion with mean IDD and its variance decreases linearly
with increasing number of samples while it increases
quadratically with IDD. The local ID is then an es-
timate of the ID based on the local neighborhood of
x, for example based on its k nearest neighbors. This
corresponds to equation (2). This local approximation
has the advantage of allowing for an efficient compu-
tation even on a per batch basis as done in (Ma et al.,
2018). It has the disadvantage that is does not con-
sider the strong variations in variances ID2

D/n, i.e. the
estimates might become arbitrarily poor for large ID
if the number of samples is limited. This becomes
even more severe as (Amsaleg et al., 2021) showed
that latent representations with large ID are particu-
larly vulnerable to adversarial attacks.

In fig. 1, we evaluate the distribution of LID esti-
mates computed for benign and adversarial examples
of different attacks on the latent feature representation
of a classifier network (see section 4). We make the
following two observations: (i) the distribution has a
rather long tail and is not uni-modal, i.e. we are likely
to face rather strong variations in the ID for differ-
ent latent sub-spaces, (ii) the LID estimates for adver-
sarial examples have the tendency to be higher than
the ones for benign examples, (iii) the LID is more
informative for some attacks and less informative on
others. As a first conclusion, we expect the discrimi-
nation between adversarial examples and benign ones
to be particularly hard when the tail of the distribution
is concerned, i.e. for those benign points with rather
large LID that can only be measured at very low confi-
dence according to equation (7). Secondly, we expect
linear separation methods based on LID such as sug-
gested by (Ma et al., 2018) to be unnecessarily weak
and third, we expect the choice of the considered lay-
ers to have a rather strong influence on the expressive-
ness of LID for adversarial detection.

As a remedy, we propose several rather simple im-
provements:

• We propose to unfold the aggregated LID esti-
mates in equation (2) and rather consider the nor-
malized log distances between a sample and its
neighbors separately in a feature vector, which we
denote multiLID.

• We argue that the deep network layers considered
to compute LID or multiLID have to be carefully

chosen. An arbitrary choice might yield poor re-
sults.

• Instead of using a logistic regression classifier,
highly non-linear classifiers such as a random for-
est should increase LID based discrimination be-
tween adversarial and benign samples.

Let us analyze the implications of the LID un-
folding in more detail. As argued for example in
(Ma et al., 2018) before, the empirically computed
LID can be interpreted as an estimate of the local
growth rate similarly to previous generalized expan-
sion models (Karger and Ruhl, 2002; Houle et al.,
2012). Thereby, the idea is to deduce the expansion
dimension from the volume growth around a sample
and the growth rate is estimated by considering prob-
ability mass in increasing distances from the sample.
Such expansion models, like the LID, are estimated
within a local neighborhood around each sample and
therefore provide a local view of the data dimension-
ality (Ma et al., 2018). The local ID estimation in
eq. (2) can be seen as a statistical interpretation of a
growth rate estimate. Please refer to (Houle, 2017a;
Houle, 2017b) for more details.

In practical settings, this statistical estimate not
only depends on the considered neighborhood size.
In fact, LID is usually evaluated on a mini-batch ba-
sis, i.e. the k nearest neighbors are determined within
a random sample of points in the latent space. While
this setting is necessarily relatively noisy, it offers a
larger coverage of the space while considering only
few neighbors in every LID evaluation. Specifically,
the relative growth rate is aggregated over potentially
large distances within the latent space, when execut-
ing the summation in eq. (2). We argue that this
summation step integrates over potentially very dis-
criminative information since it mixes local informa-
tion about the growth rate in the direct proximity with
more distantly computed growth rates. Therefore, we
propose to ”unfold” this growth rate estimation. In-
stead of the aggregated (semi) local ID, we propose to
compute for every sample x a feature vector, denoted
multiLID, with length k as

−−−−−−−−−→
multiLIDd(x)[i] =−

(
log

di(x)
dk(x)

)
. (9)

where d is measured using the Euclidean distance.
Figure 2 visualizes multiLID for 100 benign CI-
FAR10 samples and samples that have been perturbed
using FGSM. It can easily be seen that there are sev-
eral characteristic profiles in the multiLID that would
be integrated to very similar LID estimates while be-
ing discriminative when all k growth ratio samples are
considered as a vector. MultiLID facilitates to lever-
age the different characteristic growth rate profiles.
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Figure 1: Visualization of the LID features from the clean set of samples (black) and different adversarial attacks of 100
samples. The network is WRN 28-10 trained on CIFAR10and LID is evaluated on the feature map after the last ReLU
activation.

Figure 2: Visualization of the LID features from the clean and FGSM set of 100 samples over each k. The network is WRN
28-10 trained on CIFAR10. The feature values for the nearest neighbors (low values on the x-axis) are significantly higher
for the clean dataset. The plot on the right illustrates mean and standard deviation of the two sets of profiles.

4 EXPERIMENTS

To validate our proposed multiLID, we conduct
extensive experiments on CIFAR10, CIFAR100,
and ImageNet. We train two different models, a
wide-resnet (WRN 28-10) (Zagoruyko and Ko-
modakis, 2017; Wu et al., 2021) and a VGG-16
model (Simonyan and Zisserman, 2015) on the
different datasets. While we use test samples from
the original datasets as clean samples, we generate
adversarial samples using a variety of adversarial
attacks. From clean and adversarial data, we extract
the feature maps for different layers, at the output
of the ReLU activations. We use a random subset of
2000 samples of this data for each attack method and
extract the multiLID features from the feature maps.
From this random subset we take a train-test split of
80:20, i.e. we have a training set of 3200 samples
(1600 clean, 1600 attacked images) and a balanced
test set of 400 images for each attack. This setting
is common practice as used in (Ma et al., 2018; Lee
et al., 2018; Lorenz et al., 2022). All experiments
were conducted on 3 Nvidia A100 40GB GPUs
for ImageNet and 3 Nvidia Titan with 12GB for
CIFAR10 and CIFAR100.

Datasets. Many of the adversarial training methods
ranked on Robustbench2 are based on the WRN

2https://robustbench.github.io

28-10 (Zagoruyko and Komodakis, 2017; Wu et al.,
2021) architecture. Therefore, we also conduct our
evaluation on a baseline WRN 28-10 and train it with
clean examples.
CIFAR10: The CIFAR10 WRN 28-10 reaches a test
accuracy of 96% and the VGG-16 model reaches
72% top-1 accuracy (Lorenz et al., 2022) on the test
set. We then apply the different attacks on the test set.
CIFAR100: The procedure is equal to CI-
FAR10 dataset. We report a test-accuracy for
WRN 28-10 of 83% (VGG-16 reaches 81%) (Lorenz
et al., 2022) .
ImageNet: The PyTorch library provides a pre-trained
WRN 50-2 (Zagoruyko and Komodakis, 2017) for
ImageNet. As test set, we use the official validation
set from ImageNet and reach a validation accuracy of
80%.

Attack Methods. We generate test data from six
most commonly used adversarial attacks: FGSM,
BIM, PGD(-L∞), CW(-L2), DF(-L2) and AA, as
explained in section 2.1. For FGSM, BIM, PGD(-
L∞), and AA, we use the commonly employed
perturbation size of ε = 8/255, DF is limited to 20
iterations and CW to 1000 iterations.

Layer Feature Selection per Architecture. Fol-
lowing eq. (4), for the WRN 28-10 and WRN 50-2,
we focus on the ReLU activation layers, whereas
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in each residual block, we take the last one. This
results in 13 activations layer for WRN 28-10 and 17
for WRN 50-2 to compute multiLID representations.
This is different from the setting proposed in (Yang
et al., 2021), who propose to use the outputs of the
three convolutional blocks. In (Ma et al., 2018) only
simpler network architectures have been considered
and the feature maps at the output of every layer
are considered to compute LID. For the VGG-16
architecture, according to (Harder et al., 2021), we
take the features of all activation layers, which are
again 13 layers in total.

Minibatch Size in LID Estimation. As motivated
in (Ma et al., 2018), we estimate the multiLID values
using a default minibatch size |B| of 100 with k se-
lected as of 20% of mini batch size (Ma et al., 2018).
As discussed above and theoretically argued before
in (Amsaleg et al., 2015) the MLE estimator of LID
suffers on such small samples, yet, already provides
reasonable results when used for adversarial detec-
tion (Ma et al., 2018). Our proposed multiLID can
perform very well in this computationally affordable
setting across all datasets.

4.1 Results

In this section, we report our final results of our multi
LID method and compare it to competing methods.
In table 1, we compare the results of the original LID
(Ma et al., 2018) to the results of our proposed mul-
tiLID method for both model types, the wide-resnets
and VGG-16 models on the three datasets CIFAR10,
CIFAR100, and ImageNet. For LID and the proposed
multiLID, we extract features from exactly the same
layers in the network to facilitate direct comparison.
While LID already achieves overall good results the
proposed multiLID can even perfectly discriminate
between benign and adversarial images on these data
in terms of AUC as well as F1 score.

In table 2, we further compare the AUC and F1
score, for CIFAR10 trained on WRN 28-10 to a set of
most widely used adversarial defense methods. First,
we list the results from (Yang et al., 2021) for the de-
fenses kernel density (KD), LID and MD as baselines.
According to (Yang et al., 2021), KD does not show
strong results across the attacks, LID and MD yield a
better average performance in their setting. For com-
pleteness, we also report the results CD-VAE (Yang
et al., 2021) by showing R(x) (which is the recon-
struction of a sample x through a β variational auto en-
coder (β-VAE)). Encoding in such a well-conditioned
latent space can help adversarial detection, yet is also
time consuming and requires task specific training of

the β-VAE.
Our results, when reproducing LID on the same

network layers as (Yang et al., 2021), are reported in
the second block of table 2. While we can not exactly
reproduce the numbers from (Yang et al., 2021), the
resulting AUC and F1-scores are in the same order of
magnitude and slightly better in some cases. In this
setting, LID performs slightly worse than the compet-
ing methods MD and Spectral-BB and Spectral-WB
(Harder et al., 2021).

We ablate on our different changes towards the
full multiLID in the third block. When replacing
LID by the unfolded features as in eq. (9) we already
achieve results above 98% F1 score in all settings.
Defending against BIM is hardest. The next line ab-
lates on the employed feature maps. When replacing
the convolutional features used in (Yang et al., 2021)3

by the last ReLU outputs in every block, we observe a
boost in performance even on the plain LID features.
Combining these two lead to almost perfect results.
Results for other datasets are in table 3. F1-scores
and AUC scores of consistently 100% can be reached
when classifying, on this feature basis, using a ran-
dom forest classifier instead of the logistic regression.
We refer to this setting as multiLID in all other tables
including table 1.

5 ABLATION STUDY

In this section we give insights on the different fac-
tors affecting our approach. We investigate the impor-
tance of the activation maps the features are extracted
from as well as the number of multiLID features that
are needed to reach good classification performance.
An ablation on the number of considered neighbors as
well as on the attack strength in terms of ε is provided
in the Appendix.

5.1 Impact of Non-Linear Classification

In this section, we compare the methods from the last
two lines of table 2 in more detail and for all three
datasets. The results are reported in table 1. While
the simple logistic regression (LR) classifier already
achieves very high AUC and F1 scores on multiLID
for all attacks and datasets, random forest (RF) can
further push the performance to even 100%.

3Assumption of CD-VAE LID layers taken
from https://github.com/kai-wen-yang/CD-VAE/
blob/a33b5070d5d936396d51c8c2e7dedd62351ee5b2/
detection/models/wide resnet.py#L86.
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Table 1: Results. Comparison of the original LID method with our proposed multiLID on different datasets. We report the
AUC and F1 score as mean and variance over three evaluations with randomly drawn test samples.

Attacks
CIFAR10 CIFAR100 ImageNet

WRN 28-10 VGG16 WRN 28-10 VGG16 WRN 50-2

auc f1 auc f1 auc f1 auc f1 auc f1

original LID (Ma et al., 2018)

FGSM 99.5±0.2 97.3±7.0 90.1±13.4 83.2±13.9 100.0±0.0 99.6±0.0 83.6±11.7 75.1±21.3 89.1±4.4 81.6±7.8
BIM 96.9±1.5 90.5±4.2 92.8±2.1 86.5±3.3 98.2±0.0 92.2±0.0 84.8±10.0 75.6±11.1 100.0±0.0 98.9±1.0
PGD 99.1±0.3 95.3±1.8 97.5±0.0 94.6±0.5 98.0±0.0 93.5±0.0 91.8±0.8 83.9±0.4 100.0±0.0 100.0±0.0
AA 96.7±0.2 89.4±3.4 90.0±1.3 81.6±1.8 99.2±0.1 96.5±0.4 86.8±9.8 78.6±2.3 100.0±0.0 99.8±0.1
DF 94.7±31.9 88.7±55.4 87.3±4.2 77.2±4.6 60.7±0.0 56.4±0.0 60.5±2.8 56.1±1.8 60.3±2.2 56.5±2.9
CW 91.2±63.6 83.9±54.5 85.2±1.7 75.3±3.5 56.3±0.1 52.5±2.6 66.0±6.1 61.0±0.9 62.0±0.5 59.0±2.0

multiLID + improved layer setting + RF or short: multiLID (ours)

FGSM 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0
BIM 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0
PGD 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0
AA 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0
DF 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0
CW 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0

Table 2: Comparison of multiLID with the state-of-the-art on CIFAR10.

CIFAR10 on WRN 28-10

Defenses FGSM BIM PGD CW

TNR AUC TNR AUC TNR AUC TNR AUC

Results reported by (Yang et al., 2021)

KD 42.38 85.74 74.54 94.82 73.12 94.59 73.33 94.75
KD (R(x)) 57.10 89.69 96.79 99.27 96.56 99.30 94.67 98.73
LID 69.05 93.60 77.73 95.20 71.52 93.19 74.98 94.32
LID (R(x)) 92.60 98.59 86.42 97.29 87.54 97.57 76.42 95.10
MD 94.91 98.69 88.33 97.66 77.23 95.38 86.30 97.36
MD (R(x)) 99.68 99.36 98.92 99.74 99.13 99.79 98.94 99.68

Competing Methods

MD (Lee et al., 2018) 97.37 99.34 98.16 99.61 97.37 99.66 91.58 96.54
Spectral-BB (Harder et al., 2021) 95.79 99.87 92.63 99.83 92.11 99.29 53.68 63.23
Spectral-WB (Harder et al., 2021) 99.47 100.00 96.32 99.99 95.79 99.97 84.47 96.89
LID, settings from (Yang et al., 2021) 79.47 90.29 75.79 77.79 73.68 73.79 77.11 81.20

Ours

multiLID, settings from (Yang et al., 2021) 100.00 100.00 99.47 98.68 100.00 100.00 100.00 100.00
LID, improved layer setting 97.37 99.81 88.42 95.73 86.58 93.02 94.74 98.81
multiLID + improved layer setting 100.00 100.00 100.00 100.00 100.00 100.00 99.61 100.00
multiLID + improved layer setting + RF 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Table 3: Results of using multiLID. Comparison of Logistic Regression and Random Forest classifier on different datasets.
Comparison to table 1 which uses logistic regression (LR). The minibatch size is |B| = 100 and the number of neighbors
k = 20 according to section 4.

Attacks
CIFAR10 CIFAR100 ImageNet

WRN 28-10 VGG16 WRN 28-10 VGG16 WRN 50-2

auc f1 auc f1 auc f1 auc f1 auc f1

multiLID + LR

FGSM 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0
BIM 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0
PGD 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0
AA 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0
DF 100.0±0.0 99.9±0.0 100.0±0.0 99.9±0.0 100.0±0.0 98.5±0.0 100.0±0.0 99.9±0.0 99.8±0.0 98.3±0.6
CW 100.0±0.0 99.9±0.0 100.0±0.0 100.0±0.0 99.9±0.0 98.0±0.2 100.0±0.0 99.9±0.0 99.9±0.0 99.1±0.2

multiLID + RF (ours)

FGSM 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0
BIM 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0
PGD 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0
AA 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0
DF 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0
CW 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0
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Figure 3: Feature importance. Increasing order according
to the activation function layers (feature) from WRN 28-
10 trained on CIFAR10. The most relevant features are in
the last ReLU layers.

5.2 Feature Importance

The feature importance (variable importance) of the
random forest describes the relevant features for the
detection. In fig. 3, we plot the feature importance for
the aggregated LID features of WRN 28-10 trained
on a CIFAR10 dataset. The feature importance repre-
sents the importance of the selected ReLU layers (see
(Lee et al., 2018)) in increasing order. The last fea-
tures/layers shows higher importance. For the attack
FGSM the 3rd and last feature can be very relevant.

5.3 Investigation of the multiLID
Features

Following the eq. (2), all neighbors k are used for the
classification. This time, we investigate the perfor-
mance of the binary classifier logistic regression over
the full multiLID features. For example, in fig. 3 we
consider 13 layers and the aggregated ID features for
each. Thus, the number of multiLID features per sam-
ple can be calculated as #layers× k which yields 260
features for k = 20. In fig. 4, we visualize the AUC ac-
cording to the length of the LID feature vectors, when
successively more features are used according to their
random forest feature importance. On ImageNet, it
can be seen that DF and CW need the full length of
these LID feature vectors to achieve the highest AUC
scores. The observation, that the attacks DF and CW
are more effectively are also reported in (Lorenz et al.,
2022). Using a non-linear classifier on these very dis-
criminant features, we can even achieve perfect F1
scores (see section 5.1).

(a) Cummulative of all attacks on CIFAR10.

(b) Cummulative of all attacks on ImageNet.

Figure 4: Cummulative features used for the LR classifier.
The x-axis describes the length of the used feature vectors.
The y-axis reports the AUC reached by using the most im-
portant features out of the full vector, sorted by RF feature
importance.

5.4 Impact of the Number of Neighbors

We train the LID with the APGD-CE attack from the
AutoAttack benchmark with different epsilons (L∞

and L2). In fig. 5, we compare RF and LR on different
norms. Random Forest succeeds on all epsilons sizes4

on both norms. On smaller perturbation sizes the LR
classifier AUC score fall. On the optimal perturbation
size (L∞ : ε = 8/255 and L2 : ε = 0.5) the LR shows
its best AUC scores. The RF classifier gives us out-
standing results over the LR. Moreover, to save com-
putation time, k = 3 neighbors would be enough for
high accuracy.

4Perturbed images would round the adversarial changes
to the next of 256 available bins in commonly used 8-bit per
channel image encodings.
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6 CONCLUSION

In this paper, we revisit the MLE estimate of the
local intrinsic dimensionality which has been used in
previous works on adversarial detection. An analysis
of the extracted LID features and their theoretical
properties allows us to redefine an LID-based feature
using unfolded local growth rate estimates that are
significantly more discriminative than the aggregated
LID measure.

Limitations. While our method allows to achieve al-
most perfect to perfect results in the considered test
scenario and for the given datasets, we do not claim
to have solved the actual problem. We use the evalu-
ation setting as proposed in previous works (e.g.(Ma
et al., 2018)) where each attack method is evaluated
separately and with constant attack parameters. For a
deployment in real-world scenarios, the robustness of
a detector under potential disguise mechanisms needs
to be verified. An extended study on the transfer-
ability of our method from one attack to the other
can be found in the supplementary material. It shows
first promising resulting in this respect but also leaves
room for further improvement.
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APPENDIX

A. Impact of the Number of Neighbors
and Attack Strength ε

We train LID and multiLID with the APGD-CE attack
from the AutoAttack benchmark for different pertur-
bation magnitudes, i.e. using different epsilons (L∞

and L2). On smaller perturbation sizes the logistic
regression (LR) classifier AUC scores are dropping,
which is to be expected. On the most commonly used
perturbation sizes (L∞ : ε = 8/255 and L2 : ε = 0.5)
LID shows its best AUC scores. The multiLID classi-
fier provides superior results over LID in all cases.
Moreover, to save computation time for multiLID,
k = 10 neighbors would be enough for high accuracy
adversarial detection.

B. Attack Transferability

In this section, we evaluate the attack transferability
of our models, for LID in table 4 and multiLID in ta-
ble 4. In case of real world applications, the attack
methods might be unknown and thus it is a desired
feature that a detector trained on one attack method
performs well for a different attack. We evaluate in
both directions. The random forest (RF) classifier
shows significantly higher transferability on both LID
and multiLID. The attack tuples (pgd ↔ bim), (pgd
↔ aa), (aa ↔ bim), and (df ↔ cw) yield very high
bidirectional attack transferability. However, the ex-
periments also show that not all combinations can be

(a) The attack APGD-CE L∞ evaluated on different epsilons
and neighbors.

(b) The attack APGD-CE L2 evaluated on different epsilons
and neighbors.

Figure 5: Ablation study of LID and multiLID detection
rates by using different k on the APGD-CE (L2, L∞) attack
and different epsilon sizes.

transferred successfully, e.g. (fgsm ↔ cw) in Ima-
geNet. This leaves room for further research.
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Table 4: Attack transfer LID. Rows with the target µ give the average transfer rates from one attack to all others. RF shows
higher accuracy (acc) for the attack transfer.

LID

Attacks CIFAR10 CIFAR100 ImageNet
WRN 28-10 VGG16 WRN 28-10 VGG16 WRN 50-2

from to auc acc auc acc auc acc auc acc auc acc
logistic regression

fgsm bim 50.0±0.0 50.0±0.0 69.4±2.9 52.8±2.6 50.0±0.0 50.0±0.0 72.7±5.8 53.7±4.3 74.0±8.0 56.7±6.3
fgsm pgd 50.0±0.0 50.0±0.0 67.9±3.9 52.0±1.8 50.0±0.0 50.0±0.0 75.0±6.4 53.7±4.0 78.3±5.8 57.4±6.5
fgsm aa 50.1±0.1 50.0±0.0 70.4±10.6 52.0±1.8 50.0±0.0 50.0±0.0 67.2±3.7 50.2±1.1 72.6±11.7 60.9±9.1
fgsm df 50.0±0.0 50.0±0.0 58.0±0.9 51.9±1.7 50.0±0.0 50.0±0.0 53.0±1.0 51.5±1.4 49.6±0.9 50.5±0.5
fgsm cw 50.0±0.0 50.0±0.0 57.1±1.2 51.5±1.4 50.0±0.0 50.0±0.0 55.5±3.1 53.2±3.8 49.5±0.9 50.6±0.7
fgsm µ 50.0±0.0 50.0±0.0 64.5±7.5 52.0±1.7 50.0±0.0 50.0±0.0 64.7±10.0 52.4±3.1 64.8±14.3 55.2±6.4
bim fgsm 60.1±15.1 55.1±8.8 66.8±5.6 49.9±0.2 50.0±0.0 50.0±0.0 71.4±2.1 60.5±6.2 50.0±0.0 50.0±0.0
bim pgd 52.7±0.4 50.0±0.0 74.9±8.0 50.0±0.0 50.0±0.0 50.0±0.0 86.0±3.7 66.1±10.7 50.0±0.0 50.0±0.0
bim aa 51.4±1.2 50.0±0.0 76.1±9.8 50.0±0.0 50.0±0.0 50.0±0.0 77.5±1.6 59.7±9.7 50.5±0.8 50.0±0.0
bim df 52.6±0.4 50.0±0.0 55.0±3.2 50.0±0.0 50.0±0.0 50.0±0.0 52.1±0.8 50.4±0.8 50.0±0.0 50.0±0.0
bim cw 52.1±0.0 50.0±0.0 55.7±2.5 50.0±0.0 50.0±0.0 50.0±0.0 61.0±2.5 56.8±4.4 50.0±0.0 50.0±0.0
bim µ 53.8±6.6 51.0±3.9 65.7±10.8 50.0±0.1 50.0±0.0 50.0±0.0 69.6±12.5 58.7±8.2 50.1±0.4 50.0±0.0
pgd fgsm 57.6±10.6 52.8±4.8 71.4±6.6 50.4±0.7 50.0±0.0 50.0±0.0 71.2±1.3 62.3±2.9 50.0±0.0 50.0±0.0
pgd bim 53.3±2.0 50.0±0.0 78.2±7.7 50.5±0.8 50.0±0.0 50.0±0.0 82.7±2.9 72.2±4.6 50.0±0.0 50.0±0.0
pgd aa 53.0±3.4 50.0±0.0 76.8±6.2 49.7±0.5 50.8±1.3 50.1±0.1 77.6±1.3 72.5±1.8 50.0±0.0 50.0±0.0
pgd df 52.5±1.5 50.0±0.0 52.9±2.1 50.5±0.8 50.0±0.0 50.0±0.0 51.4±0.6 51.8±2.0 50.0±0.0 50.0±0.0
pgd cw 52.0±0.9 50.0±0.0 54.3±1.6 50.5±0.8 50.0±0.0 50.0±0.0 61.7±2.4 57.7±1.6 50.0±0.0 50.0±0.0
pgd µ 53.7±4.8 50.5±2.1 66.7±12.2 50.3±0.7 50.2±0.6 50.0±0.0 68.9±11.7 63.3±8.7 50.0±0.0 50.0±0.0
aa fgsm 51.0±0.9 50.1±0.2 59.6±3.3 49.0±1.0 53.5±2.3 50.4±0.4 52.4±2.8 50.0±0.0 50.0±0.0 50.0±0.0
aa bim 50.4±0.6 50.0±0.0 61.4±3.8 47.7±2.4 54.6±2.6 50.2±0.3 52.6±2.2 50.0±0.0 50.0±0.0 50.0±0.0
aa pgd 50.4±0.6 50.0±0.0 59.9±3.2 47.8±1.9 54.6±2.6 50.2±0.3 52.0±2.4 50.0±0.0 50.0±0.0 50.0±0.0
aa df 50.2±0.3 50.0±0.0 58.3±5.0 49.6±0.4 52.4±2.0 50.0±0.0 50.5±0.7 50.0±0.0 50.0±0.0 50.0±0.0
aa cw 50.2±0.3 50.0±0.0 56.8±3.4 49.6±0.4 52.0±1.4 49.9±0.2 50.5±0.8 50.0±0.0 50.0±0.0 50.0±0.0
aa µ 50.4±0.6 50.0±0.1 59.2±3.6 48.7±1.5 53.4±2.2 50.1±0.3 51.6±1.9 50.0±0.0 50.0±0.0 50.0±0.0
df fgsm 70.6±14.1 52.2±3.8 61.0±13.6 52.2±4.8 98.3±0.0 52.1±0.0 63.7±9.1 53.0±2.1 52.2±2.5 50.5±0.5
df bim 75.9±14.7 50.2±0.4 61.6±7.7 54.6±4.9 82.0±0.0 51.1±0.4 65.4±3.1 51.3±1.4 1.0±1.0 49.3±0.5
df pgd 75.3±14.1 50.2±0.4 58.2±6.6 54.9±4.7 73.6±3.2 50.4±0.2 69.4±5.2 53.3±4.1 0.3±0.4 49.3±0.5
df aa 71.4±22.9 50.2±0.4 69.3±12.9 56.6±5.7 81.6±3.5 58.5±4.4 59.1±1.0 45.7±0.2 0.0±0.0 48.0±1.5
df cw 68.3±1.0 50.2±0.4 68.7±6.2 57.9±7.0 55.0±0.2 50.8±0.4 57.6±2.1 51.6±0.9 61.6±2.0 50.5±1.0
df µ 72.3±13.1 50.6±1.7 63.8±9.6 55.2±5.1 78.1±14.7 52.6±3.5 63.0±6.1 51.0±3.4 23.0±28.8 49.5±1.2
cw fgsm 67.9±15.3 58.8±15.2 62.5±10.9 53.9±6.3 89.1±0.8 81.9±2.0 57.6±2.5 50.4±0.5 53.1±2.7 50.0±0.8
cw bim 74.5±15.3 53.6±6.3 69.0±3.2 59.3±8.1 89.7±0.9 78.8±1.9 74.1±5.6 54.9±6.8 1.2±1.2 48.7±0.7
cw pgd 74.3±15.7 53.5±6.1 64.1±2.7 57.8±6.8 93.6±3.1 84.1±3.7 81.0±2.9 56.3±8.7 0.3±0.6 48.7±0.7
cw aa 69.9±22.5 53.4±6.0 75.1±11.8 59.2±9.7 85.8±3.2 61.0±9.9 67.1±3.1 52.9±3.1 0.0±0.0 45.8±4.0
cw df 68.9±5.7 52.5±4.3 71.9±8.8 61.3±12.8 52.2±0.3 52.6±0.3 53.7±1.5 50.9±1.2 60.0±2.8 50.3±1.0
cw µ 71.1±13.7 54.4±7.5 68.5±8.6 58.3±8.1 82.1±15.8 71.7±13.6 66.7±10.9 53.1±4.9 22.9±28.6 48.7±2.3

random forest
fgsm bim 74.1±14.5 57.8±8.3 89.5±2.2 78.0±4.8 83.3±0.0 69.5±0.0 73.9±3.4 68.4±3.6 63.4±10.0 55.5±5.4
fgsm pgd 75.3±15.1 58.8±9.2 86.3±3.4 72.5±5.5 82.8±0.2 68.3±0.6 76.9±2.3 69.9±2.6 61.5±6.9 53.6±2.8
fgsm aa 83.5±4.5 62.0±9.5 84.4±1.0 74.4±0.9 83.4±7.6 71.5±5.8 73.5±3.0 66.5±4.9 35.0±11.5 38.1±5.6
fgsm df 77.6±17.9 59.1±8.7 83.1±1.3 71.5±5.0 53.9±0.0 53.0±0.0 56.8±3.2 54.6±1.6 51.9±1.2 49.8±1.0
fgsm cw 74.3±17.0 54.6±5.2 81.5±1.6 68.5±3.6 51.6±0.4 50.7±0.0 55.8±2.2 52.7±1.1 51.5±1.5 50.2±1.2
fgsm µ 77.0±12.9 58.5±7.5 85.0±3.4 73.0±4.9 71.0±15.7 62.6±9.4 67.4±9.8 62.4±8.0 52.6±12.2 49.4±7.0
bim fgsm 93.8±3.8 79.3±1.5 87.7±2.1 76.2±5.8 91.4±0.0 63.5±0.0 72.8±0.9 63.9±3.6 63.7±2.0 49.4±0.9
bim pgd 100.0±0.0 92.8±2.6 100.0±0.0 88.0±3.3 100.0±0.0 97.3±1.8 99.7±0.5 92.5±3.4 100.0±0.0 99.6±0.7
bim aa 92.3±6.7 87.0±10.4 94.0±1.2 89.1±4.5 88.8±4.9 74.5±2.6 85.5±5.9 76.9±7.8 99.0±1.5 97.9±1.5
bim df 99.9±0.2 79.5±10.3 99.4±0.6 72.8±3.4 98.4±0.0 51.6±0.0 88.0±20.1 57.1±0.5 78.4±21.2 51.5±2.5
bim cw 99.6±0.6 71.9±12.6 99.3±0.4 72.6±1.9 98.1±0.4 50.4±0.0 89.3±17.8 59.2±1.6 94.3±3.0 50.6±0.5
bim µ 97.1±4.6 82.1±10.5 95.3±4.9 67.4±18.0 96.1±5.0 79.7±8.3 87.1±13.7 69.9±14.1 87.1±16.6 69.8±24.5
pgd fgsm 92.4±4.2 77.3±1.9 88.3±1.0 77.7±1.8 92.8±2.4 63.6±1.8 72.2±3.3 59.9±2.0 60.2±5.3 50.1±0.4
pgd bim 100.0±0.0 94.0±2.2 100.0±0.0 95.2±3.0 99.8±0.4 92.4±0.4 98.8±2.0 87.7±1.6 100.0±0.0 97.7±0.9
pgd aa 90.0±8.7 84.4±13.6 92.4±2.5 85.4±3.1 87.1±3.2 71.6±1.4 84.8±2.8 76.7±3.1 99.8±0.2 99.4±0.7
pgd df 99.3±1.2 81.9±9.9 99.4±0.5 70.7±5.1 92.4±1.1 52.7±0.6 79.7±17.8 56.7±2.4 79.9±23.3 51.0±1.7
pgd cw 99.6±0.7 74.9±13.8 99.4±0.5 73.2±3.3 93.6±1.4 52.1±0.0 81.3±16.5 59.6±2.1 96.1±2.1 50.3±0.5
pgd µ 96.5±5.6 83.6±11.3 95.9±5.0 80.4±9.7 93.1±4.5 66.5±15.4 83.4±13.0 68.2±12.6 87.2±18.3 69.7±24.4
aa fgsm 91.0±0.8 80.6±3.9 81.4±5.7 70.2±6.7 90.5±6.3 76.7±5.7 66.7±0.7 56.7±0.3 51.1±6.5 50.0±0.0
aa bim 88.1±10.3 72.8±13.1 87.7±4.3 79.6±3.5 92.7±2.2 85.7±1.0 78.0±2.1 67.4±3.3 81.3±1.8 68.2±1.3
aa pgd 86.7±11.8 69.9±12.3 82.9±3.8 74.2±2.3 94.0±2.5 86.5±1.1 81.1±3.5 70.9±4.5 91.0±2.4 81.4±2.5
aa df 79.6±17.2 61.1±2.2 81.8±2.4 69.4±0.2 53.1±2.2 50.6±1.3 50.0±1.8 46.5±2.3 49.5±1.0 50.0±0.0
aa cw 73.8±20.2 52.9±0.7 79.9±2.3 67.9±1.1 52.4±0.4 50.5±0.8 51.5±0.9 47.6±1.7 50.4±1.5 50.0±0.0
aa µ 83.8±13.3 67.5±12.2 82.7±4.3 72.3±5.3 76.5±20.3 70.0±17.0 65.5±13.5 57.8±10.6 64.7±18.6 59.9±13.3
df fgsm 91.9±4.0 83.9±7.1 83.9±2.7 72.9±4.6 77.2±0.4 67.5±0.9 59.5±5.9 54.6±5.8 56.9±2.4 52.0±1.2
df bim 100.0±0.0 87.8±7.7 98.9±1.8 87.8±3.7 100.0±0.0 72.0±1.7 92.8±12.5 71.6±7.7 100.0±0.0 55.3±2.6
df pgd 100.0±0.0 88.7±7.5 99.4±1.1 81.1±5.1 100.0±0.0 65.8±1.6 89.2±10.7 72.8±8.0 100.0±0.0 54.4±2.9
df aa 85.2±13.2 74.9±23.0 84.7±7.4 78.5±5.8 46.2±1.7 45.1±2.1 48.4±8.4 50.2±6.8 38.4±28.2 41.8±26.0
df cw 100.0±0.0 91.6±4.8 100.0±0.0 95.5±2.0 100.0±0.0 89.5±1.4 100.0±0.0 87.5±2.4 100.0±0.0 89.7±0.6
df µ 95.4±8.1 85.4±11.8 93.4±8.3 83.2±8.9 84.7±21.9 68.0±14.7 78.0±22.2 67.3±15.0 79.1±29.3 58.6±19.5
cw fgsm 86.1±13.0 75.1±21.8 84.5±1.2 76.8±2.8 66.2±1.0 62.0±1.1 57.8±4.2 55.0±2.3 52.8±2.3 54.4±1.4
cw bim 100.0±0.0 90.2±4.4 99.1±1.5 91.4±3.2 100.0±0.0 62.5±1.3 94.7±9.2 75.6±1.3 100.0±0.0 57.8±3.1
cw pgd 100.0±0.0 89.2±5.7 98.6±2.0 84.9±4.0 100.0±0.0 59.9±4.0 91.7±7.5 77.9±4.6 100.0±0.0 55.1±3.9
cw aa 83.7±14.4 77.1±19.8 84.9±8.1 75.2±10.2 48.9±4.8 47.6±4.4 55.8±8.7 58.9±7.4 34.2±34.4 37.0±27.9
cw df 100.0±0.0 96.5±3.6 100.0±0.0 98.2±1.5 100.0±0.0 95.3±0.8 100.0±0.0 86.5±4.1 100.0±0.0 84.4±1.4
cw µ 94.0±10.6 85.6±14.3 93.4±8.1 85.3±10.0 83.0±22.4 65.5±16.6 80.0±20.6 70.8±12.9 77.4±32.1 57.7±19.1
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Table 5: Attack transfer multiLID. Rows with the target µ give the average transfer rates from one attack to all others. The
full multiLID with RF shows significantly better acccuracy (acc) for the attack transfer.

multiLID

Attacks CIFAR10 CIFAR100 ImageNet
WRN 28-10 VGG16 WRN 28-10 VGG16 WRN 50-2

from to auc acc auc acc auc acc auc acc auc acc
logistic regression

fgsm bim 92.8±0.6 50.0±0.0 82.4±5.8 50.0±0.0 90.9±0.5 50.0±0.0 79.3±0.7 50.0±0.0 70.1±8.3 50.0±0.0
fgsm pgd 96.1±0.4 50.0±0.0 76.8±7.0 50.0±0.0 94.5±1.4 50.0±0.0 78.9±4.4 50.0±0.0 63.6±13.0 50.0±0.0
fgsm aa 84.4±13.3 50.0±0.0 91.9±1.5 50.0±0.0 87.2±3.1 50.0±0.0 85.5±1.1 50.0±0.0 71.8±8.6 50.0±0.0
fgsm df 99.6±0.1 50.0±0.0 86.2±4.0 50.0±0.0 68.2±1.0 50.0±0.0 64.6±5.4 50.0±0.0 51.5±4.8 50.2±0.3
fgsm cw 99.8±0.1 50.0±0.0 85.0±4.4 50.0±0.0 62.9±0.6 50.0±0.0 63.2±5.3 50.0±0.0 52.5±5.1 50.0±0.0
fgsm µ 94.5±7.8 50.0±0.0 84.4±6.6 50.0±0.0 80.7±13.2 50.0±0.0 74.3±9.7 50.0±0.0 61.9±11.4 50.0±0.1
bim fgsm 96.7±1.5 50.0±0.0 84.9±2.4 50.0±0.0 87.1±1.0 50.0±0.0 76.0±1.5 50.0±0.0 50.7±4.2 50.0±0.0
bim pgd 97.0±0.1 50.0±0.0 82.7±7.1 50.0±0.0 95.3±0.3 50.0±0.0 87.1±1.6 50.9±1.6 99.9±0.1 50.0±0.0
bim aa 83.3±14.4 50.0±0.0 94.7±1.1 50.0±0.0 84.6±3.9 50.0±0.0 89.0±2.1 50.0±0.0 100.0±0.0 50.0±0.0
bim df 99.7±0.0 50.0±0.0 87.5±2.2 50.0±0.0 67.1±1.2 50.0±0.0 62.5±4.7 50.0±0.0 40.9±1.0 50.0±0.0
bim cw 99.8±0.0 50.0±0.0 86.2±2.7 50.0±0.0 63.9±1.0 50.0±0.0 63.1±5.7 50.0±0.0 40.7±0.9 50.0±0.0
bim µ 95.3±8.4 50.0±0.0 87.2±5.3 50.0±0.0 79.6±12.6 50.0±0.0 75.6±12.1 50.2±0.7 66.4±28.6 50.0±0.0
pgd fgsm 96.7±1.6 50.0±0.0 84.9±1.2 50.0±0.0 83.9±1.1 50.0±0.0 76.6±0.2 50.0±0.0 50.5±2.7 50.0±0.0
pgd bim 93.8±0.0 50.0±0.0 89.9±6.6 50.0±0.0 93.0±0.7 50.0±0.0 87.0±1.3 50.0±0.0 99.7±0.3 50.0±0.0
pgd aa 83.2±14.3 50.0±0.0 94.4±2.0 50.0±0.0 87.0±3.1 50.0±0.0 88.9±1.4 50.0±0.0 100.0±0.0 50.0±0.0
pgd df 99.7±0.0 50.0±0.0 86.5±3.2 50.0±0.0 63.4±2.1 50.0±0.0 62.0±4.0 50.0±0.0 40.8±1.0 50.0±0.0
pgd cw 99.8±0.0 50.0±0.0 85.0±3.3 50.0±0.0 61.1±1.9 50.0±0.0 64.8±1.3 50.0±0.0 40.5±1.3 50.0±0.0
pgd µ 94.7±8.4 50.0±0.0 88.1±4.9 50.0±0.0 77.7±13.5 50.0±0.0 75.8±11.5 50.0±0.0 66.3±28.6 50.0±0.0
aa fgsm 87.8±9.5 50.0±0.0 83.8±1.1 50.0±0.0 93.5±4.5 50.0±0.0 74.1±2.5 50.0±0.0 46.9±1.7 50.0±0.0
aa bim 88.0±3.8 50.0±0.0 81.9±6.4 50.0±0.0 90.2±2.4 50.0±0.0 84.3±2.2 50.0±0.0 98.9±0.3 50.0±0.0
aa pgd 88.7±6.6 50.0±0.0 75.3±7.3 50.0±0.0 93.6±2.3 50.0±0.0 85.0±1.4 50.0±0.0 99.0±0.5 50.0±0.0
aa df 87.9±15.2 50.0±0.0 88.3±2.2 50.0±0.0 65.1±5.4 50.0±0.0 58.4±3.6 50.0±0.0 43.2±0.3 50.0±0.0
aa cw 84.9±19.3 50.0±0.0 86.8±2.0 50.0±0.0 62.7±4.5 50.0±0.0 59.3±3.8 50.0±0.0 43.3±1.1 50.0±0.0
aa µ 87.4±10.4 50.0±0.0 83.2±6.1 50.0±0.0 81.0±14.9 50.0±0.0 72.2±12.2 50.0±0.0 66.3±27.7 50.0±0.0
df fgsm 96.9±0.6 50.0±0.0 83.5±2.3 50.0±0.0 83.9±1.4 50.1±0.2 74.4±6.0 54.9±8.3 56.6±5.7 50.0±0.0
df bim 91.6±0.0 50.0±0.0 81.2±6.2 50.0±0.0 79.5±0.5 52.6±0.6 77.6±2.4 55.2±5.9 0.6±0.6 46.7±5.7
df pgd 95.5±0.1 50.0±0.0 74.8±6.4 50.0±0.0 86.8±1.0 56.1±2.0 77.0±6.4 56.9±9.0 0.2±0.1 44.7±9.1
df aa 80.6±16.0 50.0±0.0 93.3±1.5 50.0±0.0 74.4±2.1 50.8±1.9 81.7±1.6 55.6±4.9 0.8±0.6 48.0±3.4
df cw 99.7±0.0 50.0±0.0 89.5±1.2 50.0±0.0 67.5±0.9 50.4±0.1 65.8±2.3 50.9±0.8 64.3±2.3 50.0±0.0
df µ 92.9±9.2 50.0±0.0 84.4±7.6 50.0±0.0 78.4±7.2 52.0±2.5 75.3±6.6 54.7±5.9 24.5±30.6 47.9±4.7
cw fgsm 96.1±1.7 50.0±0.0 83.2±2.2 50.0±0.0 85.0±0.6 63.9±6.9 74.6±5.6 65.1±9.4 59.9±7.5 50.0±0.0
cw bim 91.5±0.0 50.0±0.0 81.5±5.1 50.0±0.0 78.3±0.5 66.5±3.6 80.6±3.9 69.9±6.8 1.2±1.0 49.6±0.3
cw pgd 95.4±0.1 50.0±0.0 74.6±5.6 50.0±0.0 85.5±1.8 72.8±5.4 80.5±8.2 71.1±9.6 0.8±1.0 49.4±0.6
cw aa 80.6±15.9 50.0±0.0 93.3±1.6 50.0±0.0 74.7±2.3 55.4±6.2 81.6±2.1 71.0±1.3 1.1±0.8 46.3±6.4
cw df 99.5±0.0 50.0±0.0 91.2±1.0 50.0±0.0 72.7±1.2 54.3±2.8 72.5±1.9 58.9±2.8 62.9±2.6 50.0±0.0
cw µ 92.6±9.1 50.0±0.0 84.8±7.7 50.0±0.0 79.2±5.5 62.6±8.4 77.9±5.7 67.2±7.6 25.2±30.8 49.1±2.8

random forest
fgsm bim 91.0±1.7 71.0±5.4 91.4±3.9 77.4±4.9 86.6±0.6 69.9±0.4 80.0±4.3 72.4±4.1 69.9±15.7 57.9±11.4
fgsm pgd 93.3±1.6 72.9±7.4 88.9±5.3 72.5±6.8 84.3±1.5 68.9±0.9 82.0±4.2 72.9±5.4 66.9±10.2 58.7±4.7
fgsm aa 91.3±6.7 70.4±21.8 86.9±1.6 75.4±2.0 83.9±4.9 70.0±4.8 77.0±4.3 69.0±0.3 38.9±15.7 40.9±6.9
fgsm df 97.8±0.7 83.6±8.2 91.0±0.3 75.0±0.6 56.9±1.2 53.6±0.2 64.8±3.4 58.1±1.5 51.2±1.0 50.4±0.9
fgsm cw 97.9±0.9 81.1±10.7 90.4±1.8 72.5±1.2 53.8±0.4 50.7±0.4 65.5±3.8 58.9±1.4 52.0±1.8 50.5±1.2
fgsm µ 94.3±4.1 75.8±11.8 89.7±3.1 74.6±3.8 73.1±15.2 62.6±9.1 73.8±8.3 66.3±7.2 55.8±15.0 51.7±8.6
bim fgsm 97.7±1.7 89.6±4.7 85.8±5.1 61.7±3.3 92.8±0.7 57.5±1.5 70.0±4.1 62.6±2.7 51.9±7.0 49.6±0.6
bim pgd 100.0±0.0 97.6±0.1 100.0±0.0 89.9±2.3 100.0±0.0 98.8±0.5 99.6±0.7 94.5±1.4 100.0±0.0 99.6±0.7
bim aa 89.1±9.5 74.3±21.7 93.3±5.7 86.3±6.8 89.2±2.6 72.6±1.7 87.4±2.7 79.9±3.0 100.0±0.0 97.9±1.7
bim df 100.0±0.0 83.1±0.5 99.8±0.4 57.8±3.5 98.5±0.2 51.0±0.2 89.5±18.3 57.2±1.3 82.6±6.9 50.0±0.0
bim cw 100.0±0.0 77.6±1.5 99.8±0.4 56.4±3.7 94.7±1.0 50.4±0.1 92.5±12.9 63.2±3.0 86.1±6.6 50.0±0.0
bim µ 97.4±5.7 84.4±12.1 95.7±6.5 70.4±15.5 95.0±4.2 66.1±18.9 87.8±13.4 71.5±14.4 84.1±18.8 69.4±24.8
pgd fgsm 97.3±1.7 92.3±3.3 84.3±6.1 61.5±5.7 93.8±1.9 58.1±5.9 67.3±7.1 57.5±2.1 51.4±8.4 49.6±0.0
pgd bim 100.0±0.0 94.7±1.3 100.0±0.0 97.5±1.4 100.0±0.0 94.1±0.6 98.4±2.8 86.7±4.0 100.0±0.0 97.9±0.6
pgd aa 87.0±11.3 71.6±24.6 92.8±6.3 84.1±4.2 86.1±4.7 63.6±3.5 87.4±2.5 78.1±5.8 100.0±0.0 99.4±0.5
pgd df 100.0±0.0 88.7±1.5 99.8±0.4 56.8±3.1 94.5±2.8 50.2±0.1 78.2±19.8 57.9±1.7 73.6±8.2 50.0±0.0
pgd cw 100.0±0.0 82.6±1.5 99.8±0.4 55.1±3.1 94.9±2.1 50.6±0.2 82.6±15.7 60.7±2.1 75.9±7.1 50.0±0.0
pgd µ 96.9±6.8 86.0±12.7 95.3±7.2 71.0±17.7 93.8±5.2 63.3±17.0 82.8±14.6 68.2±12.7 80.2±19.6 69.4±24.7
aa fgsm 95.8±1.5 88.6±1.6 76.6±6.4 57.0±3.0 93.7±2.4 79.3±10.0 64.5±1.4 54.6±3.3 46.1±1.0 50.0±0.0
aa bim 90.2±9.4 67.5±12.0 90.9±1.7 81.5±1.9 95.4±0.5 88.0±2.4 81.0±2.8 68.8±5.8 95.9±0.8 85.7±2.1
aa pgd 89.6±9.7 73.6±15.4 86.5±2.3 78.1±2.9 95.7±0.8 88.4±1.6 85.2±2.0 72.8±6.6 99.0±1.0 95.4±2.0
aa df 79.5±17.8 69.7±19.0 75.4±5.1 53.7±2.1 49.4±2.1 48.2±0.1 49.5±0.5 48.1±3.0 48.6±2.1 50.0±0.0
aa cw 74.9±21.8 65.4±20.0 72.9±8.6 52.6±0.4 48.2±1.6 48.3±0.6 52.2±3.4 49.7±0.8 47.4±3.7 50.0±0.0
aa µ 86.0±14.2 73.0±15.4 80.5±8.6 64.6±13.1 76.5±23.4 70.4±19.4 66.5±15.2 58.8±11.1 67.4±25.5 66.2±20.8
df fgsm 95.6±2.0 89.3±2.5 87.2±2.0 80.1±3.3 78.4±1.3 72.2±1.6 68.3±5.4 63.0±4.8 56.4±4.3 55.8±3.5
df bim 100.0±0.0 53.6±0.7 99.4±1.1 77.8±3.9 100.0±0.0 52.2±0.1 96.3±6.4 69.6±3.1 100.0±0.0 51.9±1.1
df pgd 100.0±0.0 66.4±2.2 99.3±0.8 74.2±2.2 100.0±0.0 52.4±0.6 93.9±5.3 72.9±1.9 100.0±0.0 50.6±0.6
df aa 80.0±17.9 64.9±25.4 85.1±4.5 76.6±7.2 38.2±4.6 42.7±2.2 63.3±1.9 55.3±2.7 27.8±23.1 38.4±17.5
df cw 100.0±0.0 100.0±0.0 100.0±0.0 97.3±2.3 100.0±0.0 91.7±0.6 100.0±0.0 94.9±3.8 100.0±0.0 89.4±0.5
df µ 95.1±10.5 74.8±20.2 94.2±7.1 81.2±9.3 83.3±25.0 62.2±18.2 84.4±16.4 71.1±14.1 76.8±32.1 57.2±19.0
cw fgsm 93.5±2.5 88.3±1.4 87.9±0.8 78.9±2.6 75.8±0.1 69.1±1.6 68.3±4.3 63.9±3.7 56.8±8.1 55.8±4.3
cw bim 99.9±0.1 52.8±0.4 99.8±0.4 77.1±5.5 100.0±0.0 51.2±0.6 97.7±4.1 79.1±3.3 100.0±0.0 53.2±5.0
cw pgd 99.7±0.5 62.2±5.6 99.3±1.2 72.1±7.7 100.0±0.0 51.9±0.8 95.5±4.1 81.9±5.4 100.0±0.0 52.6±4.5
cw aa 78.8±19.2 64.7±25.1 83.1±5.4 74.9±11.5 41.4±5.1 43.6±1.6 62.3±2.4 62.2±5.5 33.4±42.0 35.8±35.7
cw df 100.0±0.0 98.3±0.5 100.0±0.0 98.0±1.3 100.0±0.0 95.5±0.9 100.0±0.0 90.0±3.4 100.0±0.0 86.4±1.8
cw µ 94.4±11.2 73.3±20.3 94.0±7.7 80.2±11.1 83.4±23.9 62.3±19.3 84.8±16.9 75.4±11.7 78.0±33.1 56.8±21.9
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