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Abstract: We present a multi-stage, multi-group classification framework that incorporates discriminant analysis via 
mixed integer programming (DAMIP) with an exact combinatorial branch-and-bound (BB) algorithm and a 
fast particle swarm optimization (PSO) for feature selection for classification. By utilizing a reserved 
judgment region, DAMIP allows the classifier to delay making decisions on ‘difficult-to-classify’ 
observations and develop new classification rules in a later stage. Such a design works well for mixed (poorly 
separated) data that are difficult to classify without committing a high percentage of misclassification errors. 
We also establish variant DAMIP models that enable problem-specific fine tuning to establish proper 
misclassification limits and reserved judgement levels that facilitate efficient management of imbalanced 
groups. This ensures that minority groups with relatively few entities are treated equally as the majority 
groups. We apply the framework to two real-life medical problems: (a) multi-site treatment outcome 
prediction for best practice discovery in cardiovascular disease, and (b) early disease diagnosis in predicting 
subjects into normal cognition, mild cognitive impairment, and Alzheimer’s disease groups using 
neuropsychological tests and blood plasma biomarkers. Both problems involve poorly separated data and 
imbalanced groups in which traditional classifiers yield low prediction accuracy. The multi-stage BB-
PSO/DAMIP manages the poorly separable imbalanced data well and returns interpretable predictive results 
with over 80% blind prediction accuracy. Mathematically, DAMIP is NP-complete with its classifier proven 
to be universally strongly consistent. Hence, DAMIP has desirable solution characteristics for machine 
learning purposes. Computationally, DAMIP is the first multi-group, multi-stage classification model that 
simultaneously includes a reserved judgment capability and the ability to constrain misclassification rates 
within a single model. The formulation includes constraints that transform the features from their original 
space to the group space, serving as a dimension reduction mechanism.  

1 INTRODUCTION 

Machine learning, using existing electronic medical 
records (EMRs) (Lee et al., 2016; Rose, 2018) and 
prospectively-collected population health data from 
research programs, can identify patterns that predict 
outcomes and potentially inform and improve clinical 
care. However, most of these strategies must 
compromise on data quality (e.g., the amount of 
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missing data from frontline workers and their 
imputation by analysts) or breadth (the number of 
examined parameters with acceptable missingness) 
(Marlin et al., 2011; McDermott et al., 2018; Mohan 
et al., 2013).  While practice variances may occur 
when and if tests are given to patients, missing data 
may also reflect access and societal bias (Rajkomar et 
al., 2018). Hence, understanding missingness and 
certain actions and decisions and their dependencies 
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are critical. Since outcome can be defined and 
interpreted differently among stakeholders, objective 
outcome discovery is essential. Advances must be 
made to accommodate heterogeneous data sources as 
it facilitates the creation of a reliable outcome profile 
(Lee et al., 2016, 2019; Lee, Yuan, et al., 2012; 
Suresh et al., 2017).  

Temporal data mining of longitudinal health data 
cannot currently be achieved through statistically and 
computationally efficient methodologies and is still 
under-explored (Lee et al., 2019, 2021). This is a 
particularly important issue when analyzing outcome, 
health equity, and health conditions for patients with 
chronic disease. To accommodate evolving data and 
outcome trends, models must also be dynamic and 
adaptable. Google Flu Trends’ overestimate 
demonstrates this key modeling weakness (Lazer et 
al., 2014). To ensure a model is robust, reliable, and 
generalizable, independent multiple data sources 
should be used to both train the model and to 
independently validate its results (Ghassemi et al., 
2020).  The model must also be able to be interpreted 
by a diverse group of stakeholders for feedback and 
refinement purposes. 

We present a multi-stage, multi-group 
classification framework that incorporates 
discriminant analysis via mixed integer programming 
(DAMIP) with an exact combinatorial branch-and-
bound (BB) algorithm and a fast particle swarm 
optimization (PSO) for feature selection for 
classification. By utilizing a reserved judgment 
region, DAMIP allows the classifier to delay making 
decisions on ‘difficult-to-classify’ observations and 
develop new classification rules in a later stage. Such 
a design works well for mixed (poorly separated) data 
that are difficult to classify without committing a high 
percentage of misclassification errors. We also 
establish variant DAMIP models that enable 
problem-specific fine tuning to establish proper 
misclassification limits and reserved judgement 
levels that facilitate efficient management of 
imbalanced groups. This ensures that minority groups 
with relatively few entities are treated equally as the 
majority groups. 

  We apply the framework to two real-life 
medical problems: (a) multi-site treatment outcome 
prediction for best practice discovery in 
cardiovascular disease and (b) early disease diagnosis 
in predicting subjects into normal cognition, mild 
cognitive impairment, and Alzheimer’s disease 
groups using neuropsychological tests and blood 
plasma biomarkers. Both medical problems involve 
poorly separated data and imbalanced groups in 
which traditional classifiers yield low prediction 
accuracy. The multi-stage, BB-PSO/DAMIP 

manages the poorly separable imbalanced data well 
and returns interpretable predictive results with over 
80% blind prediction accuracy.  

Mathematically, DAMIP is 𝒩𝒫 − 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 
with its classifier proven to be universally strongly 
consistent. Hence DAMIP has desirable solution 
characteristics for machine learning purposes. 
Computationally, DAMIP is the first multi-group 
multi-stage classification model that simultaneously 
includes a reserved judgment capability and the 
ability to constrain misclassification rates within a 
single model. The formulation includes constraints 
that transform the features from their original space 
to the group space, serving as a dimension reduction 
mechanism.  

2 DESIGN OF CLASSIFICATION 
MODELS 

Classification is a fundamental machine learning 
problem of identifying the group status of new 
observations, based on a set of observations of which 
the group memberships are known. This technology 
has wide-spread applications including marketing 
and consumer sectors, agriculture, energy, finance, 
psychology and behaviour science, social science, 
criminology, electronics, internet-of-things, biology, 
and healthcare, etc. (Cui et al., 2018; Dixon et al., 
2020; Hayward & Maas, 2021; Lei et al., 2020; 
Myszczynska et al., 2020; Narciso & Martins, 2020; 
Qu et al., 2019; Yarkoni & Westfall, 2017; Zhao et 
al., 2021). 

2.1 Multi-stage Multi-group 
Classification Model 

2.1.1 Discriminant Analysis via Mixed 
Integer Program (DAMIP) 

Let 𝜋௚ be the prior probability of group 𝑔 and 𝑓௚(𝒙) 
be the conditional probability density function of 
group 𝑔 , 𝑔 ∈  𝒢  for the data point 𝒙 ∈ ℝ௠ . Let 𝒪௚ 
denote the set of observations in group g, and 𝑛௚ 
denote the number of observations in group g ∈ 𝒢. 
Let 𝛼௛௚ ∈ (0, 1) , h, 𝑔 ∈ 𝒢 , ℎ ≠ 𝑔  be the 
predetermined limit on the misclassifications where 
the observations of group 𝑔 are classified to group h. 
The group assignment decisions of observations that 
are classified into a reserved judgment region are 
denoted by group g = 0. Let 𝑢௛௚௜ represent the binary 
variable that indicates whether observation i in group 
g is classified to group h, ℎ ∈ ሼ0ሽ ∪ 𝒢. Thus, 𝑢௚௚௜ =
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1 denotes a correct classification for observation i in 
group g.  The multi-group model with a reserved 
judgement region is formulated as: 
 

max    ෍ ෍ 𝑢௚௚௝௝∈𝒪೒௚ ∈ 𝒢  

subject to  𝐿௛௚௝ =  𝜋௚𝑓௚൫𝒙௝൯ −  ∑ 𝜆௛௚𝑓௛൫𝒙௝൯௛∈𝒢,௛ஷ௚ , ∀ ℎ, 𝑔 ∈ 𝒢, 𝑗 ∈ 𝒪௚    (1) 𝑦௚௝ − 𝐿௛௚௝  ≤ 𝑀൫1 − 𝑢௛௚௝൯,                      ∀ ℎ, 𝑔 ∈ 𝒢,   𝑗 ∈ 𝒪௚    (2) 𝑦௚௝ ≤ 𝑀൫1 − 𝑢଴௚௝൯,                                     ∀ 𝑔 ∈ 𝒢,   𝑗 ∈ 𝒪௚        (3) 𝑦௚௝ − 𝐿௛௚௝ ≥ 𝜀൫1 − 𝑢௛௚௝൯,                         ∀ ℎ, 𝑔 ∈ 𝒢,   𝑗 ∈ 𝒪௚   (4) 𝑦௚௝ ≥ 𝜀 𝑢௛௚௝,                                                  ∀ ℎ, 𝑔 ∈ 𝒢,   𝑗 ∈ 𝒪௚   (5) ∑ 𝑢௛௚௝௛∈ሼ଴ሽ∪𝒢 = 1,                                         ∀ 𝑔 ∈ 𝒢,   𝑗 ∈ 𝒪௚      (6) ∑ 𝑢௛௚௝௝∈𝒪೒ ≤ උ𝛼௛௚𝑛௚ඏ,                                 ∀ ℎ, 𝑔 ∈ 𝒢, 𝑔 ≠ ℎ     (7) 𝑢௛௚௝ ∈ ሼ0,1ሽ                             ∀ ℎ ∈ ሼ0ሽ ∪ 𝒢, 𝑔 ∈ 𝒢, 𝑗 ∈ 𝒪௚       (8) 𝑦௚௝  ≥ 0,                                         ∀ ℎ, 𝑔 ∈ 𝒢,   𝑗 ∈ 𝒪௚                   (9) 𝜆௛௚ ≥ 0                                          ∀ ℎ, 𝑔 ∈ 𝒢, 𝑔 ≠ ℎ                    (10) 
 

Constraints (1) define the loss functions, 
constraints (2)-(6) guarantee an observation is 
uniquely assigned to the group with the maximum 
value of 𝐿௚(𝒙) among all groups, and constraints (7) 
set the misclassification limits. With the reserved 
judgment region in place, the mathematical system 
ensures that a solution that satisfies the preset errors 
always exists. 

2.1.2 Feature Selection via Particle Swarm 
Optimization 

Feature selection removes redundancy and selects 
discriminatory features that can predict group status. 
It can (a) improve the prediction performance, (b) 
reduce over-fitting, (c) provide a faster predictor, and 
(d) improve model interpretability.  

There are three main categories of feature 
selection algorithms: wrappers, filters, and embedded 
methods. Wrapper methods use a search algorithm to 
search through the space of features and evaluate the 
subsets by running the classification models on them. 
Filter methods are similar to wrapper methods, but 
instead of evaluating by the classification models, a 
simple filter that is independent of the classification 
models is evaluated. Many filter methods provide a 
feature ranking rather than the best subsets, where top 
ranking features can be used in classification models. 
Embedded feature selection algorithms (e.g., Lasso 
and LAR (Efron et al., 2004; Tibshirani, 2011)) are 
built in the classifier during the model construction.  

Combinatorically, feature selection is intrinsically 𝒩𝒫 − ℎ𝑎𝑟𝑑  as there are exponential choices to 
select among a given set of features. Numerous 
algorithms and some of the earliest work including 
branch-and-bound (Hocking & Leslie, 1967; 
Tibshirani, 2011), greedy procedure and sequential 

search (Pudil et al., 1994; Silva & Stam, 1994), and 
random search (Siedlecki & Sklansky, 1989) have 
been widely studied. 

PSO (both continuous and binary) was originally 
proposed by Kennedy and Eberhart (Kennedy & 
Eberhart, 1997). Because of its computational speed, 
numerous variant PSO-based algorithms have been 
proposed for feature selection (Agrafiotis & Cedeño, 
2002; Correa et al., 2006; Y. Hu et al., 2021; Jain et 
al., 2018; Monteiro & Kosugi, 2007).  

A Fast Modified PSO: We design a modified 
PSO algorithm to solve the feature selection 
algorithm where the number of selected features is 
determined. We implement a PSO/DAMIP 
framework that uses the modified PSO algorithm for 
feature selection and the DAMIP model for 
classification. For particle i, let 𝒗௜ denote the velocity 
and 𝒙௜ represent a binary vector of length m, where m 
is the number of features. Let 𝑥௜௝ denote whether the 
jth feature is selected in particle i. In each iteration of 
the modified PSO algorithm, a DAMIP model is 
solved using the selected features in each particle. 
Particle i records the current selected features 𝒙௜ and 
the best achieved objective function value of DAMIP 
thus far is denoted by 𝑦௜. Then 𝒗௜and 𝒙௜ in the next 
iteration is determined by a random combination of 𝒗௜,  𝒙௜ , 𝒑௜ , and 𝒑௡(௜)  in the current iteration where 𝑛(𝑖) is the set of particles in the neighbourhood of 
particle i and 𝒑௜ is the best position of particle i thus 
far. The von Neumann neighbourhood topology was 
adopted to construct the particles.  

A Combinatorial Exact BB Algorithm: To 
compare the performance of the feature selection 
heuristics, we also implemented the state-of-the-art 
BB solver within DAMIP with an additional 
constraint to limit the number of features that will be 
selected during the solution process. We use this to 
contrast the performance of the modified PSO 
heuristics. 

2.1.3 The Multi-Stage Classification Model 

The multi-stage classification model aims to improve 
the performance of the BB-PSO/DAMIP framework 
by utilizing the reserved judgment region in DAMIP. 
A DAMIP model bisects the data set into an ‘easy–
to-classify’ subset that it classifies to specific groups, 
and a ‘difficult-to-classify’ subset that it classifies to 
a reserved judgment region. It delays making a group 
assignment decision to subjects that are difficult to 
classify by the DAMIP with the selected features. In 
the multi-stage model we propose, those subjects are 
moved to the next stage where a new feature set is 
selected and a new DAMIP classifier is developed. In 
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this way, the multi-stage framework constructs a 
chain of successive classifiers using different subsets 
of features. The classifier at the ith stage, denoted by 𝑓௜ , can be represented by a discriminant function 𝑓(𝒙௜, 𝝀𝒊), which is determined by the feature subset 𝒙௜ , and the decision variables 𝝀𝒊  in DAMIP. More 
stages do not necessarily produce a better model. At 
each stage, the framework selects the better of two 
models: a single-stage model that solves a DAMIP 
model without a reserved judgment region and a 
multi-stage model that solves a DAMIP model with a 
reserved judgment region. The algorithm naturally 
terminates when there are no observations in the 
reserved judgment region. As more stages are 
processed, fewer observations remain for DAMIP, 
and the constructed model consists of too many 
successive classifiers. This may result in over-fitting. 
Hence, we propose two additional stopping criteria to 
terminate the process: (a) the number of observations 
is less than a pre-set minimum number, denoted by n, 
and (b) the maximum allowed depth, denoted by d is 
reached. The parameters n and d are pre-determined 
according to the number of observations and the 
number of input features in the given data. 

2.2 Modified DAMIP Models  

The size of the reserved judgment region is bounded 
by the misclassification rates specified in constraints 
(7). DAMIP is able to return good classification 
results through problem-specific fine tuning of the 
misclassification rates, especially when the groups 
are unbalanced. To ease this fine-tuning process, we 
envision that the classifiers in our multi-stage model 
have the ability of balancing misclassifications and 
‘difficult to classify’ observations in order to 
maximize the prediction accuracy through a multi-
stage structure. For group g, let 𝛼௚  be the 
misclassification rate, 𝛽௚  be the proper/correct 
classification rate, and 𝛾௚ be the ‘difficult to classify’ 
rate, i.e., the percentage of observations placed in the 
reserved judgment region. These three parameters can 
be defined in DAMIP as follows: 𝛼௚ = ଵ௡೒  ∑ ∑ 𝑢௛௚௝௝ఢ𝒪೒௛ఢ𝒢,௛ஷ௚                           (11) 𝛽௚ = ଵ௡೒  ∑ 𝑢௚௚௝௝ఢ𝒪೒                             (12) 𝛾௚ = ଵ௡೒  ∑ 𝑢଴௚௝௝ఢ𝒪೒                                           (13) 

Recall 𝒪௚is the set of observations of group g and ng 
is the size of group g (i.e., ng = | 𝒪௚  |). The three 
parameters satisfy that 𝛼௚ + 𝛽௚ + 𝛾௚  = 1  for each 
group g. We propose three modified DAMIP models 

to (a) better utilize the reserved judgment region and 
(b) handle imbalanced groups more efficiently.  

2.2.1 Variant 1: The Base Model 

V1:  𝑚𝑎𝑥 min ୥ ∈ 𝒢  𝛽௚, subject to constraints (1) - (6), (8) 

- (10), and (12). This base model aims to generate an 
optimal classification rule without using 
misclassification limits and reserved judgment. The 
objective is to maximize the minimum value of 
correct classification rates 𝛽௚  among all groups. It 
ensures that the minority groups are treated equally as 
the majority groups, and hence it can perfectly deal 
with imbalanced groups. It produces a lower bound of 
the prediction accuracy of each group, and the 
optimal values 𝛽௚ and the associated 𝛼௚ can be used 
in the misclassification limits in DAMIP. 

2.2.2 Variant 2: The β - α Model  𝑽𝟐:  𝑚𝑎𝑥 min ୥ ∈ 𝒢  ൫𝛽௚ − 𝛼௚൯  subject to constraints (1) 

– (6), and (8) – (12). The 𝛽 − 𝛼 model maximizes the 
minimum difference between 𝛽௚ and 𝛼௚ by moving a 
small proportion of observations into the reserved 
judgment region. Instead of using the 
misclassification constraints, it incorporates both 𝛼 
and 𝛽 into the objective function to keep the reserved 
judgment region from getting too large that it 
weakens the performance of the model. 

2.2.3 Variant 3: The γ Model 𝑽𝟑: 𝑚𝑎𝑥  ∑   𝛽௚୥ ∈ 𝒢   subject to constraints (1) – (6), 
(8) – (10), (12), and (13), plus the new constraint ∑ 𝑢଴௚௝௝∈𝒪೒ ≤ උ𝛾௚𝑛௚ඏ, ∀𝑔 ∈ 𝒢. 
 
The 𝛾  model maximizes the prediction accuracy 
while limiting the size of the reserved judgment 
region by adding constraints on the percentage of 
reserved judgment 𝛾௚  for each group g. It provides 
accurate control of the reserved judgment region to 
avoid too many stages in the model. The maximum 
percentage 𝛾௚ഥ  for each group g is predetermined 
according to the size of the problem. Thus the  𝛾 
model resembles the original DAMIP model except it 
constrains the reserved judgment region instead of 
constraining the misclassification rates for each 
group. 
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2.2.4 Special Case: Solutions for 2 Groups 

For two groups, the modified DAMIP models can be 
solved in polynomial time. The constraints that define 𝐿(𝑥) can be written as: 𝐿ଵ௜ = 𝜋ଵ𝑓ଵ(𝑥௜) − 𝜆ଶଵ𝑓ଶ(𝑥௜)        ∀  𝑖 ∈   𝒪 𝐿ଶ௜ = 𝜋ଶ𝑓ଶ(𝑥௜) − 𝜆ଵଶ𝑓ଵ(𝑥௜)        ∀  𝑖 ∈   𝒪, 
where optimal 𝜆ଵଶ  and 𝜆ଶଵ  are determined in 
DAMIP. We prove that the optimal 𝜆ଵଶ and 𝜆ଶଵ in a 
two group DAMIP model that maximizes the total 
correct classifications can be found by searching on 
the sorted array  𝑓ଶ/𝑓ଵ where 𝑓ଵ and 𝑓ଶ are the density 
functions in constraint (1) of group 1 and 2 
respectively.   

Briefly, when no reserved judgment region is used 
in the modified DAMIP model, we define a partition 
p on the sorted array 𝑓ଶ/𝑓ଵ  such that observations 
having 𝑓ଶ(𝑥)/𝑓ଵ(𝑥)  ≤  𝑝  are classified to group 1, 
and observations having 𝑓ଶ(𝑥)/𝑓ଵ(𝑥) > 𝑝  are 
classified to group 2. By searching on the sorted array 𝑓ଶ/𝑓ଵ , p* can be found such that the objective 
function which is the minimum of the correct 
classifications of the two groups in the base model is 
maximized. An optimal solution of (𝜆ଵଶ, 𝜆ଶଵ)  then 
can be determined by  గభାఒభమగమାఒమభ = 𝑝∗.  

When a reserved judgment region is used in the 
DAMIP models, we define two partitions 𝑝ଵ and 𝑝ଶ 
of the sorted array 𝑓ଶ/𝑓ଵ : observations having 𝑓ଶ(𝑥)/𝑓ଵ(𝑥)  ≤  𝑝ଵ  are classified to group 1, 
observations having 𝑝ଵ < 𝑓ଶ(𝑥)/𝑓ଵ(𝑥) ≤ 𝑝ଶ  are 
classified to the reserved judgment region, and 
observations having 𝑓ଶ(𝑥)/𝑓ଵ(𝑥)  >  𝑝ଶ  are 
classified to group 2. By searching on the sorted array  𝑓ଶ/𝑓ଵ , (𝑝ଵ∗,  𝑝ଶ∗) can be found such that the objective 
function is optimized. An optimal solution of (𝜆ଵଶ, 𝜆ଶଵ)  then can be determined by గభఒమభ = 𝑝ଵ∗  and ఒభమగభ = 𝑝ଶ∗.  

The optimal partition may not be unique: any 
partition 𝑝 ∈ [𝑙ଵ, 𝑙ଶ)  results in the same objective 
function value as 𝑝∗ ∈ [𝑙ଵ, 𝑙ଶ)  where 𝑙ଵ  is the 
maximum value of  𝑓ଶ/𝑓ଵ of observations that is less 
than or equal to 𝑝∗ and  𝑙ଶ is the minimum value of 𝑓ଶ/𝑓ଵ of observations that is greater than 𝑝∗. A proper 
way of determining 𝑝∗ when searching on the sorted 
array is to choose the mid-point 𝑝∗ =  ௟భା ௟మଶ . The 
complexity of this algorithm is O(nlogn): it takes 
O(nlogn) to sort the array 𝑓ଶ/𝑓ଵ, and O(n) to search 
through the array to find the partition that reaches the 
optimal objective. 

2.3 Running Multi-Stage  
BB-PSO/DAMIP on Real-world 
Problems  

We apply the classification framework to real-world 
problems, focusing on instances that challenge 
existing classifiers where they perform poorly due to 
imbalanced data and the very mixed nature of the 
groups. By design, the DAMIP classifier partitions 
the group space in a non-linear and segmented 
manner, where observations belonging to the same 
group could be classified under different conditions. 
This is useful in medical applications. For example, 
patients with the same outcome could have very 
diverse sets of lab or treatment results. It is the entire 
system that one must examine to classify properly. 
Figure 1 shows the multi-stage DAMIP approach. 

 
Figure 1: The algorithm selects the better of the two at each 
stage to continue. Termination can be triggered by the 
number of stages reached or the size of unclassified entities.  

3 RESULTS FOR DISEASE 
DIAGNOSIS AND TREATMENT 
OUTCOME PREDICTION 

For brevity, we discuss two applications: 
cardiovascular disease and Alzheimer’s disease. The 
cardiovascular disease analyses involve over 737 
clinical sites of -patient data. They showcase the need 
for unsupervised learning to uncover the group status 
prior to machine learning, since the data were 
originated from diverse sites with a heterogeneous 
interpretation of outcome status. The Alzheimer’s 
disease study distinguishes itself from other work as 
our analyses involve raw neuro-psychological data 
instead of the overall clinical scores. Furthermore, we 
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couple these low-cost non-invasive exams/tests with 
the blood plasma biomarkers for comprehensive 
analyses.  

3.1 Cardiovascular Disease 

“Cardiovascular diseases (CVD) are the leading 
cause of death globally, taking an estimated 17.9 
million lives each year. CVDs are a group 
of disorders of the heart and blood vessels and include 
coronary heart disease, cerebrovascular disease, 
rheumatic heart disease and other conditions.”(World 
Health Organization, 2022a) In the United States, 
coronary heart disease is the leading cause of death 
for men, women, and people of most racial and ethnic 
groups, and affects about 20.1 million adults aged 20 
and older (Tsao et al., 2022). Statistics show that 
CVD affects nearly half of American adults 
(American Heart Association News, 2019). 

In our previous work, we have developed a 
comprehensive, efficient “pipeline” for extracting, 
de-identifying, and standardizing EMR data. The 
system established interoperability for over 2.7 
million patient data from the Care Coordination 
Institute (CCI) covering = 737 clinical sites (Lee et 
al., 2016, 2019, 2021).  That prior work also 
addressed challenges associated with temporal 
laboratory time series data and unstructured text data 
and described a novel approach for clustering 
irregular Multivariate Time Series (MTS).  

The CCI-health database contains 37,742 
patients with CVD. Through our mapping, each 
patient is eventually characterized by 11 raw features 
including demographics, treatment duration, and co-
existing conditions, and 1,757 standardized features 
described in Systematized Nomenclature of 
Medicine-Clinical Terms (SNOMED-CT), including 
laboratory tests, diagnosed problems, and 
medications. These 1,757 standardized features were 
mapped from 19,800 raw features from the database. 
For each patient, treatment duration was determined 
by calculating the elapsed time between diagnosis 
(indicated by the first prescription of a medication) 
and the last recorded activity (i.e., procedure, lab, 
etc.).  

Measurements of lipids and lipoproteins were 
processed into time series since these are closely 
related to cardiovascular conditions and can 
potentially be used to characterize the severity of 
CVD (Gordon et al., 1977). A low level of high-
density lipoproteins (HDL) is significantly associated 
with the development of heart disease. A high level 
of low-density lipoprotein (LDL) increases the risk of 
heart disease. A high level of Triglycerides is also 

associated with the incidence of heart disease but has 
a less significant effect.  

We used HDL, LDL, and Triglyceride 
measurements to form an MTS containing three time 
series for each patient. Each of these time series was 
resampled to quarterly frequency. Gaps in the data 
were filled by propagating the non-NaN  values 
forward first, and then backward, along each time 
series. For each of the three types of laboratory 
measurements, we removed patients with fewer than 
three measurements after resampling from the 
dataset. This produces a data set containing 450 
patients. The global alignment kernel (GAK) distance 
between each pair of corresponding time series was 
calculated (Lee et al., 2021; Nwegbu et al., 2022). 
The pairwise distance between each pair of MTS was 
then obtained by averaging the three distances for 
each pair of corresponding univariate time series. 
Specifically, given two patients, P1 and P2, each with 
m lab measurement time series, their pairwise 
distance was calculated using the following equation: 

Distance (P1, P2)= ଵ௠(∑ 𝐷ீ஺௄(𝑃௧ଵ𝑃௧ଶ)௠௧ୀଵ ). 

3.1.1 Clustering to Establish Treatment 
Outcome Groups 

K-medoids clustering performed on the CVD 
distance matrix partitioned the patients into three 
groups. The clinical experts examined the raw 
laboratory records for each group and associated the 
cluster characteristics as “Good,” “Medium,” or 
“Poor” outcomes (blue, red, or green). We caution 
that such interpretation by clinical experts is of 
paramount importance. Figure 2 show the raw HDL, 
LDL, and Triglyceride laboratory records by cluster. 
The “Poor Outcome” group is well-segregated from 
the other two groups, showing high variability in 
HDL and LDL levels, which is a high-risk factor for 
myocardial infarction. Although the ”Good” and 
“Medium” outcome groups have similar trajectories 
of cholesterol levels, the “Good” outcome group has 
slightly higher HDL levels, lower LDL and 
Triglyceride levels, and shows more consistency in 
all three types of cholesterol levels. Table 1 shows the 
patient partition for machine learning training and 
blind prediction. 
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Figure 2: HDL, LDL, and Triglyceride laboratory records 
for each patient cluster.  

Table 1: Partition of CVD patients for machine learning 
training and blind prediction. 

Total Good  Medium  Poor 
Training 314 60 158 96
Blind set 136 19 75 42

Total 450 79 233 138

3.1.2 Predicting Treatment Outcome Across 
Multiple Sites 

The goal of machine learning is to uncover 
discriminatory features that can predict good 
outcomes. This is critical for evidence-based, best 
practice discovery and for the dissemination of good 
clinical practice evidence across different sites. For 
classification, we considered the “Good Outcome” 
group versus the other two groups, the “Medium” and 
“Poor” outcome clusters. 

Table 2 summarizes the machine learning results 
for the CVD patients using DAMIP, coupled with 
either an exact combinatorial (BB) feature-selection 
algorithm or the PSO feature-selection heuristic 
described herein. We contrasted the accuracy of 10-
fold cross-validation and DAMIP blind prediction.  

Table 2: BB-PSO/DAMIP classification rules in predicting CVD Treatment outcome. 

Discriminatory feature (chosen from 1,768 features) 
Exact combinatorial branch-

and-bound search BB/DAMIP 
Heuristics particle swarm 
optimization PSO/DAMIP 

Treatment Length X X X X X X X X X X 
Glucose measurement, urine (procedure) X X X X X X X X 
Synthetic steroid (substance) X X X X X X 
Acute digestive system disorder (disorder) X 

 
X 

 

Inflammatory disorder of upper respiratory tract (disorder) X X X X X X 
Calcium channel blocking agent (product) X X X 
Neoplasm by body site (disorder) X X 
Diabetic - poor control (finding) X X 
Implantation (procedure) X X 
Investigations (procedure) X X 
Acute disorder of ear (disorder) X 
Disorder of immune system (navigational concept) X 
Allergen or pseudo allergen (substance) X 
Oral form naproxen (product) X 
Electrocardiogram finding (finding) X X 
Disinfectants and cleansers (product) X X 
Imaging (procedure) X X 
Accuracy of 10-fold cross validation (%), Good Outcome 85.3 87.6 87.6 89.9 87.6 90.3 90.3 90.3 90.3 89.4 
Accuracy of 10-fold cross validation (%), Medium Outcome 91.6 86.4 85.4 86.4 85.4 86.4 86.4 86.4 86.4 86.4 
Accuracy of 10-fold cross validation (%), Poor Outcome 89.3 84.2 85.3 84.6 86.1 86.0 88.3 85.7 85.3 87.2 
Accuracy of blind prediction (%), Good Outcome 89.3 91.4 91.4 93.6 91.4 91.9 93.6 92.5 92.5 92.5 
Accuracy of blind prediction (%), Medium Outcome 97.6 92.8 92.8 90.4 92.8 92.5 90.4 90.4 95.2 97.6 
Accuracy of blind prediction (%), Poor Outcome 91.2 88.3 90.6 89.7 90.8 91.0 92.1 89.7 94.9 92.5 
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DAMIP classified patients into “Good Outcome” 
vs. “Medium” and “Poor” Outcomes by uncovering a 
set of discriminatory features that yields a blind 
prediction accuracy of 88.3% to 97.6%. Each rule (a 
column) consists of 3-7 discriminatory features. The 
multiple rules with relatively small subsets of 
discriminatory features afford flexibility for different 
sites (and different patient populations) to adopt 
different policies for implementing the best practice. 
BB/DAMIP and PSO/DAMIP produce similar 
results, although results from BB/DAMIP tend to 
have fewer features than those from PSO/DAMIP. 

We contrasted the BB-PSO/DAMIP results with 
eight commonly used classifiers: Logistic 
Regression, SVM, K-nearest neighbours, Random 
Forest, Decision Tree, Neural Network, Gradient 
Boosting, and Bernoulli Naïve Bayes. Table 3 shows 
the best two results among these eight classifiers. 
Specifically, Decision Tree and Random Forest 
yielded 10-fold cross-validation unbiased estimates 
of 65% and 63% for the “Good Outcome” and 80%-
90% for the “Medium” and “Poor” outcome groups 
respectively. The blind prediction fared worse, with a 
roughly 50% predictive accuracy for the “Good 
Outcome” group.  The remaining six classifiers 
suffered similarly from imbalanced data, and the 
accuracy for “Good Outcome” was uniformly below 
40%. In all cases, Randomized Lasso was used for 
feature selection, and it selected twenty-five 
discriminatory features. In contrast, the BB-
PSO/DAMIP results offer higher accuracy using 
fewer discriminatory features. 

Table 3: Performance of the top two classifiers among the 
eight. All analyses used Randomized Lasso for feature 
selection with 25 features selected. 

10-fold Cross-Validation Blind Prediction 
Good Medium Poor Good Medium Poor

Extraclass results 
65.1% 88.7% 82.9% 56.3% 91.5% 88.9%

Random Forest results 
63.5% 90.3% 84.7% 50.0% 89.4% 81.5%

3.2 Alzheimer’s Disease 

In 2019, Alzheimer's disease (AD) and other forms of 
dementia ranked as the 7th leading cause of death, 
affecting over 55 million people worldwide. 
Globally, 65% of deaths from Alzheimer’s and other 
forms of dementia are among women (World Health 
Organization, 2022b). AD is a progressive and 
irreversible brain disease which causes memory loss 
and other cognitive problems severe enough to affect 
daily life. Dementia is a collection of symptoms of 

cognitive function problems, such as thinking, 
remembering, or reasoning problems, and AD is the 
most common cause of dementia. Mostly AD occurs 
in people over 65, although familial AD has an earlier 
onset. Currently, AD is incurable; drugs are used to 
manage the symptoms or to prevent or slow the 
progress of the disease. 

Mild cognitive impairment (MCI) is a condition 
that has clear evidence of cognitive problems, most 
often involving short term memory, but normal day-
to-day functioning is preserved. MCI is a situation 
between normal aging and dementia. People with 
MCI may or may not develop dementia in the future, 
but people with MCI are at higher risk of developing 
dementia than those without.  

The evaluation of AD or MCI is based on patient 
information including a complete medical history, 
neuropsychological exam, laboratory tests, 
neuropsychological tests, brain scans (CT or MRI), 
and information from close family members. 
Neuropsychological changes in the expression of 
cognitive declines are important to the diagnosis of 
AD and MCI. Statistical analyses as predictive 
analysis tools have been applied to 
neuropsychological data to understand MCI patients 
(Kluger et al., 1999; Lopez et al., 2006). In addition 
to statistical analyses, classification models have been 
applied to neuropsychological data for predicting 
brain damage (Lee, Wu, et al., 2012; Lee & Wu, 
2009; Stuss & Trites, 1977; Tabert et al., 2006) and 
whether nondemented elderly patients declined to a 
diagnosis of dementia or Alzheimer’s disease. 

In addition to the traditional diagnosis, the clinical 
diagnosis of MCI and AD is increasingly aided by 
biomarkers predictive of underlying pathology. 
Several recent studies generated additional 
enthusiasm for a blood-based test to predict 
nondemented controls and those with AD (W. T. Hu 
et al., 2016; Palmqvist et al., 2020; Ray et al., 2007; 
Reddy et al., 2011; Rocha de Paula et al., 2011; 
Schindler & Bateman, 2021). However, identifying 
MCI and AD remains challenging. Hu (W. T. Hu et 
al., 2012) measured levels of 190 plasma proteins and 
identified 17 analytes associated with the diagnosis of 
MCI or AD. 

We apply the multi-stage classification model to 
predict the control, MCI, and AD groups, using two 
data sets: The first one is de-identified 
neuropsychological test data conducted by Emory 
Alzheimer's Disease Research Center. The second 
one is plasma biomarkers information collected by 
two independent centers (University of Pennsylvania, 
Philadelphia; Washington University, St. Louis, 
MO).  
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3.2.1 Predictive Analysis using  
Neuro-psychological Data 

The neuropsychological tests conducted in this data 
set include the Mini Mental State Examination 
(MMSE), clock-drawing test, Word List Memory 
tasks by the Consortium to Establish a Registry for 
Alzheimer's Disease (CERAD), and Geriatric 
Depression Scale (GDS). The MMSE is a screening 
tool for cognitive impairment. It is brief, but covers 
five areas of cognitive function, including orientation, 
registration, attention and calculation, recall, and 
language. The clock drawing test assesses cognitive 
functions, particularly visuospatial abilities, and 
executive control functions. The CERAD Word List 
Memory tasks assess learning ability for new verbal 
information. The tasks focus on repetition, word list 
recall, and word list recognition. The GDS is a 
screening tool to assess depression in the older 
population. 

Data of 267 subjects with known groups were 
collected as shown in Table 4. Among the 267 
subjects, two-thirds of the subjects in each group are 
randomly selected as the training set for 10-fold 
cross-validation, while the remaining subjects are 
used for blind prediction. 107 features are included 
for feature selection and classification. Among the 
107 features are 3 features representing age, gender, 
years of education, 15 features from the Clock 
drawing test, 11 features from the GDS, 13 features 
from the MMSE, and 65 features from the Word List 
Memory tasks. 

Table 4: Group information of 267 subjects in the 
neuropsychological data set. 

 Total Control MCI AD MCI or 
AD

Training 178 72 51 55 106
Blind set 89 36 26 27 53

Total 267 108 77 82 159

Table 5: Prediction accuracy of the best feature sets via 
PSO/DAMIP. 

10-fold Cross-Validation Blind Prediction
Ctrl MCI AD Ctrl MCI AD

87.8% 80.0% 88.3% 88.2% 80.6% 90.9%
89.2% 80.0% 86.7% 85.3% 80.6% 90.9%

 
464 discriminatory feature sets, each with no more 

than 10 features that can correctly predict over 80% 
of the subjects in both 10-fold cross-validation and 
blind prediction, are found by the PSO/DAMIP 
framework. We highlight two Pareto best prediction 
accuracy results in Table 5. They are associated with 
multiple feature sets. We list two sets here for the 

purpose of explanation: “cClockNumbers4, 
cClockCenter, GDS6, ‘Score for What is the year?’, 
MMSE Total, cWL1Ar, cWL1Ticket, cWL2Ticket, 
cWLrTotal. cWRyCabin”, and “cClockNumbers4, 
cClockHands4, cClockCenter, ‘Score for What is the 
month?’, ‘Score for Where are we?’, MMSE Total, 
cWL1Ticket, cWLrTotal, cWRyButter, 
cWRnVillage”.  

The overall prediction accuracy of 10-fold cross- 
validation and blind prediction are over 85%, with the 
blind prediction accuracy of each group ranging from 
80.6% to 90.9%. The prediction accuracy no 
longer improves when more features are used in the 
classification model. In Table 6, we highlight the 
features that most frequently occur in the 464 feature 
sets. 

Table 6: Features with the highest occurrences in the 464 
discriminatory feature sets. 

Feature Test Occurrences 
MMSE Total MMSE 100.0% 
cWLrTotal Word List 94.4% 

cWL1Ticket Word List 94.2% 
cClockCenter Clock 76.1% 

Score for What is the year? MMSE 59.5% 
Score for What is the month? MMSE 53.4% 

The features selected highlight the test modules or 
specific questions/tasks that are most predictive. One 
advantage in our findings is that they are easily 
interpreted and understood by clinicians as well as 
patients. Thus, these discriminatory features can 
serve as an early detection tool that family members 
and providers can use to monitor for disease in 
patients. 

3.2.2 Predictive Analysis using Plasma 
Biomarkers 

Data of 352 subjects with complete information are 
collected as shown in Table 7. We use the same 
partition strategy to establish the training set and the 
blind prediction set. Thirty-one features for feature 
selection are included: gender, age, education years, 
MMSE, and 10 indicators and 17 analytes that were 
identified by Hu (W. T. Hu et al., 2012). 

Table 7: Group information of 352 subjects in plasma 
biomarkers data set. 

 Total Control MCI AD MCI 
or AD

Training 250 35 133 82 215
Blind set 102 21 62 19 81

Total 352 56 195 101 296
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92 discriminatory feature sets, each with no more 
than 10 features that can correctly predict with 
accuracy ranging from 82.9% - 91.5% in 10-fold 
cross-validation and 81% to 94.7% in blind 
prediction, are found by the PSO/DAMIP framework.  

Table 8 presents the best prediction accuracy, 
which associates with 3 feature sets: “MMSE, 
ApoE_1, tTau, Ab42, BNP, Resistin, IGFBP2, 
tTauG91, LoAbHiTau, SAP3”, “MMSE, ApoE_1, 
tTau, Ab42, BNP, SAP, IGFBP2, TauG91, 
LoAbHiTau”, and “MMSE, ApoE_1, tTau, Ab42, 
IGFBP2, tTauG91, LoAbHiTau, BNP3, Resistin3, 
SAP3.” Note that the 3 sets share 80% of the selected 
features. 

Table 9 highlights the features that most 
frequently occur in the 92 feature sets. 

Table 8: Prediction accuracy of the best feature sets via 
PSO/DAMIP. 

10-fold Cross-Validation Blind Prediction
Ctrl MCI AD Ctrl MCI AD

91.4% 82.9% 91.5% 81.0% 85.8% 94.7%

Table 9: Features with the highest occurrences in the 92 
discriminatory feature sets. 

Feature Occurrences 
ApoE_1 100.0% 

tTau 100.0% 
Ab42 100.0% 

IGFBP2 100.0% 
tTauG91 100.0% 

LoAbHiTau 100.0% 
MMSE 100.0% 

BNP 59.8% 
Resistin 52.2% 
SAP3 52.2% 

 
The analyses using two independent patient sets 

of data illustrate that MMSE can act as a low-cost 
procedure to be added to annual physical exams for 
the aged population. It offers good predictive power 
for the brain’s cognition status. Early detection of 
MCI offers the opportunity for treatment to slow 
down the onset of AD.   

4 CONCLUSIONS 

Technological advances in prevention, diagnosis, and 
treatment of diseases help predict disease, prolong 
life, and promote health. However, with an increase 
in the volume and complexity of data and evidence, 
medical decision making can be a complex process. 
Many decisions involve uncertainties and trade-offs 

and can have profound consequences to patients and 
the clinical practice. To make such complex 
decisions, providers must balance the potential harm 
and benefit of medical interventions. Computational 
methods such as mathematical programming, 
simulation, and classification have found broad 
applications in these areas. 

In this paper, we present a multi-stage, multi-
group classification framework that incorporates 
particle swarm optimization (PSO) for feature 
selection and discriminant analysis via mixed integer 
programming (DAMIP) for classification. By 
utilizing a reserved judgment region, it allows the 
classifier to delay making decisions on ‘difficult-to-
classify’ observations and develop new classification 
rules in a later stage. Such a design works well for 
mixed (poorly separated) data that are difficult to 
classify without committing a high percentage of 
misclassification errors. We also establish variant 
DAMIP models that enable problem-specific fine-
tuning to establish proper misclassification limits and 
reserved judgement levels that facilitate efficient 
management of imbalanced groups. By design, 
DAMIP ensures that minority groups with relatively 
few entities are treated equally as the majority groups. 

We apply the framework to two real-life medical 
problems: (a) multi-site treatment outcome prediction 
for best practice discovery in cardiovascular disease, 
and (b) early disease diagnosis in predicting subjects 
into normal, mild cognitive impairment, and 
Alzheimer’s disease groups using 
neuropsychological tests and blood plasma 
biomarkers. Both problems involve poorly separated 
data and imbalanced groups in which traditional 
classifiers yield low prediction accuracy. The multi-
stage PSO/DAMIP manages the poorly separable 
imbalanced data well and returns interpretable 
predictive results with over 80% blind prediction 
accuracy. A note of comparison, the frequently used 
Pap Smear test has an accuracy of roughly 70%.  

Gallagher, Lee, and Patterson first established the 
original DAMIP multi-group model (Gallagher et al., 
1997). They introduced a linear-programming 
approximation to provide a rapid solution capability 
(Lee et al., 2003). This study materializes the multi-
stage construct and integrates both an exact 
combinatorial branch-and-bound algorithm and a fast 
feature selection heuristic along with a systematic 
multi-stage schema, with a set of problem-specific, 
fine-tuning models to guide its practical usage. 
Mathematically, DAMIP is  𝒩𝒫 − 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒  with 
its classifier proven to be universally strongly 
consistent. Hence DAMIP has desirable solution 
characteristics for machine learning purposes. 
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Computationally, DAMIP is the first multi-
group, multi-stage classification model that 
simultaneously includes a reserved judgment 
capability and the ability to constrain 
misclassification rates within a single model. Further, 
Constraint (1) serves to transform the features from 
their original space to the group space, serving as a 
dimension reduction mechanism.  

Nevertheless, the problem remains 
computationally intractable. Although each iteration 
of feature selection can be achieved rapidly when 
heuristics are employed, the wrapper design 
evaluation via DAMIP is computationally intensive. 
For both the cardiovascular and Alzheimer’s disease 
problems, the solution time to establish final 
classification rules can take days of CPU time in a 
cloud environment. Nonetheless, the high quality of 
the blind predictive results is promising and usable 
for clinical stakeholders who must carefully make 
critical decisions.  

For the multi-site cardiovascular study, the 
ability to uncover a best practice that pinpoints a 
specific clinical process, treatment regimen and 
duration, and drug types helps to establish improved 
clinical practice guidelines for adoption by other 
sites. This accelerates patient-centered, evidence-
based care. For Alzheimer’s disease, an early 
diagnosis of MCI can lead to proactive treatment that 
can slow down or prevent the onset of Alzheimer’s. 
The neuropsychological data features selected can 
serve as an early detection tool for family members 
and providers to monitor as they care for the elderly 
population. All of which can have significant impact 
on quality of life and medical outcome. 

We remark that although balancing class size via 
majority under-sampling, minority oversampling, and 
synthetic minority oversampling techniques 
(SMOTE) are commonly employed (Basha et al., 
2022; Fujiwara et al., 2020; Yi et al., 2022), these 
approaches pose serious weaknesses (Gao et al., 
2020). Under-sampling of the majority class may 
discard useful information about the data itself, which 
could be necessary and important to establish an 
unbiased classifier. It is also possible that the chosen 
sample (after under-sampling) could be biased. 
Oversampling may increase the likelihood of 
overfitting, while synthetic patient data alters the 
actual practice patterns, skews the classifiers, and 
impedes implementation potential (Gao et al., 2020). 
IBM Watson’s failure reinforces the premise that real 
data and interoperability is of paramount importance 
in driving machine learning technology (O’Leary, 
2022; Sweeney, 2017). 

In our two applications, the imbalanced data is 
compounded further by the fact that they are poorly 

separable. After the first stage classification, about 
46% of “Good” outcome from the cardiovascular 
disease were placed in the reserved judgement region. 
And for the Alzheimer’s disease, about 54% MCI and 
37% of AD were mixed together. We note that the 
hardest and most critical knowledge is the earliest 
diagnosis of mild cognitive impairment as it affords 
early intervention to lower the risk of manifestation 
to AD. These data underscore the poorly separable 
concept and the advantage of a multi-stage approach, 

In comparison, SMOTE approaches did not 
yield improved predictive results on these 
applications. There is no good way to generate 
artificial patients that are representative of real 
diseased patients. While we appreciate other 
investigators’ efforts in creating data sets to mimic 
real patients (for imbalanced data, or for increasing 
the sample size), we cannot afford to do so since there 
is a very serious danger of creating artificial patients 
for actual clinical decision support. Our goal is to find 
meaningful results that can be used in actual clinical 
settings using real patient data that represent the 
population. The multi-stage multi-group DAMIP 
offers promising results.  

Once the DAMIP classification rules are 
established, the blind prediction process takes only 
nanoseconds, making usage practical in real-time. In 
our experience where we implemented the machine 
learning toolkit for day-to-day use, many of the 
predictive rules developed do not require constant 
refinement or re-runs, rather they only need periodic 
updates. Our goal is a high-quality robust 
interpretable solution that can predict with 
confidence. We are currently developing new 
hypergraphic theoretical and computational results to 
efficiently solve these intractable instances (Shapoval 
& Lee, 2021). 
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