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Abstract: Data-oriented approaches enable new opportunities to analyze processes and support managers in decision-
making during planning and control tasks. In particular, the application of simulations has been a widely used 
tool for many years to evaluate alternative system configurations or to predict future process outcome. Due 
to a rapidly changing environment in a cross-linked domain such as production and logistics systems, more 
and more decisions have to be made in a shorter time under consideration of multi-factorial influences. 
Simulation based approaches often reach limits regarding time constraints assuming limited computing power. 
The article describes how data, generated by production and logistics simulation can be used to train a machine 
learning model. Thus, the generalized framework presented can be utilized to support decision-making during 
planning and control tasks. By applying the framework to a case study on order sequence optimization, it was 
possible to verify its feasibility and potential to improve the operational performance of a manufacturing 
system.

1 INTRODUCTION AND 
PROBLEM STATEMENT 

The ongoing technological progress enables new 
potentials regarding planning and control of 
production and logistics systems (Windt et al., 2008). 
One fundamental aim of computational applications 
in this field is to support managers in time-consuming 
activities or activities with a high degree of 
complexity regarding decision-making. In particular, 
potential through data-oriented approaches (e.g., 
simulation or machine learning) can be leveraged in 
areas where enormous amount of data and its 
situational dependency has to be considered. (Hasan 
et al., 2016; Koot et al., 2021) 

Simulations have been used for many years to 
support decision-making during planning of 
production and logistics systems (Pfeiffer et al., 
2016). The use of simulations in production control 
will also become more important due to the further 
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implementation of digital twins. A digital twin is a 
virtual representation of a physical object or process 
(Kauke et al., 2021). It should help to understand the 
behavior of an object by a dynamic prediction based 
on diverse data (Qi and Tao, 2018). Simulations are 
often an essential part of digital twins (Kritzinger et 
al., 2018).  

The rising complexity of production and logistics 
systems also leads to increasingly demanding 
requirements for simulation models and necessitate 
an growing amount of simulation runs in order to 
better represent the reality (Rose, 2007). In particular, 
executing different scenarios can make simulation 
runs computing and time intensive. Despite increased 
computing power, simulating various problems can 
take more time than is available (Rose, 2007). In case 
of time-critical decisions, this might imply that not all 
alternative scenarios can be simulated in time. Thus, 
only an insufficiently evaluated decision can be 
made. Machine learning (ML) can provide a solution 
to this problem. Based on a trained ML model 
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enormous amounts of data can be processed and 
evaluated faster and, thus, time-critical decisions can 
be made on time.  

This article presents a framework for application 
of simulation models of manufacturing and logistics 
processes to generate data in order to train an ML 
model. Based on an ML model that has been trained 
in advance, the objective is to support decision-
making through predictive analytics for planning and 
control tasks in manufacturing and logistics systems. 
The approach describes important information flows 
and process steps required. The framework is 
designed to tackle two challenges. On the one hand, 
the approach can help to cope with the issue that 
simulating different scenarios takes more time than is 
available for time-critical decisions. On the other 
hand, it enables the training of ML models in 
processes with a quantitatively or qualitatively 
limited data basis. Additional simulation-generated 
data can be provided as training data, thus, enabling 
better control decision. This can increase the 
performance of a production and logistics system 
significantly. With regard to the current performance 
and applicability of ML, as well as the extensive 
availability of simulation tools for production and 
logistics systems, this article aims to answer the 
following research question (RQ): 

RQ: How can a generalized framework for machine-
learning-application based on discrete-event 
simulation be described in order to be implemented 
for decision-support in production and logistics 
control system with insufficient data quality and 
quantity? 

2 RESEARCH ADVANCES 

In following section, current research advances in 
simulation and ML as well as applications within 
manufacturing and logistics systems are described.  

2.1 Simulation of Production and 
Logistics Processes 

A simulation is a method of reproducing a system in 
an experimentable model, which can be used to 
observe and analyze the temporal behavior of 
complex systems (VDI 3633, 2018). Simulations can 
help companies develop, implement, and execute 
plans and strategies, giving them a significant 
competitive advantage. They have proven their 
potential by predicting performance, utilization, 
bottlenecks, as well as analyzing interactions of 

different components of a system. Results of 
simulations can significantly improve decisions in 
terms of planning and control. A key advantage 
compared to other operations research approaches is 
the ability to perform experiments with different 
elements of a business system (Agalianos et al., 
2020). Fowler and Rose mention further advantages 
such as time compression, component integration, 
and risk avoidance. Simulation models are already 
often used for applications in high-tech production 
systems such as semiconductor or automotive 
industries (Fowler and Rose, 2004).  

Application scenarios of simulation models 
regarding short-term decision-making within 
production and logistics systems are described below. 
Korth et al. developed a simulation model within a 
digital twin for a critical real-time use case in logistics. 
Objective of the application is to support shift planning 
of employees and time window planning within a 
warehouse (Korth et al., 2018). Kauke et al. describe a 
digital twin for order picking systems by using a 
simulation. It is emphasized that due to a high system 
complexity, simulation is often the only way to check 
different parameters of a picking system. Simulations 
should help to support decisions like the size of picking 
orders, use of employees, or order-release strategies 
(Kauke et al., 2021).  Further applications of 
discrete-event simulation within production and 
logistics systems are shown by Agalianos et al. in their 
literature review. 

However, the literature indicates that in particular 
real-time simulations are still in early development 
phase. According to the current state, the application 
of simulation for time-critical decisions is only 
possible with: (1) use of a simulation model that runs 
continuously and is synchronized with the factory, (2) 
automated modeling of a simulation models based on 
the factory data basis, or (3) by simplifying the 
simulation (Fowler and Rose, 2004; Rose, 2007). 

2.2 Simulation-based Machine 
Learning in Production and 
Logistics Systems 

In literature the combination of ML and simulation 
models are described in different applications. 
Vernickel et al. introduce a ML approach for 
parameterizing and synchronizing a material flow 
simulation model. This approach shows how ML can 
be used to identify relevant process information from 
a dataset and integrate this information into a 
simulation model. This enables a better determination 
of resource processing time compared to a normal 
simulation model (Vernickel et al., 2020). Nagahara 
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et al. pursue a job sequencing rule identification 
method by using ML to generate an automatic 
modeling of operational control rules for a 
simulation. Another approach is presented by Müller 
et al. using a material flow simulation to control 
automated guided vehicles which communicates with 
other digital twins, e.g., in manufacturing cells. Other 
author attempts to validate an ML model for 
predicting disruptive effects in production logistics 
by simulation models (Vojdani and Erichsen, 2018). 
The generated data of a simulation model represent 
real production data. This could be important as some 
companies do not have the necessary data basis to use 
ML. Data from simulation models are often the only 
way to test an algorithm's applicability in advance and 
to transfer them to a real production or logistics 
system. Pfeiffer et al. describe an approach for multi-
model-based prediction of lead times within a 
manufacturing system. The method is tested on data 
generated by a simulation model.  

The literature analysis shows that the application 
of simulation in combination with ML in production 
and logistics systems increases. The lack of sufficient 
real production and logistics data encourages the 
usage of simulation models to generate data for ML. 
In summary, three possible applications for the 
collaborative use of ML and simulations can be 
identified. First, ML can support simulation runs by 
optimizing the parameterization of simulation 
models. Secondly, ML could make complete 
predictions on its own and replace the entire 
simulation model (also called surrogate modelling) 
(Bárkányi et al., 2021). The third application is to use 
simulations to generate data of production and 
logistics systems for training and validating ML 
models.  

3 MACHINE LEARNING 
FRAMEWORK BASED ON 
SIMULATION DATA  

Section 3.1 describes the developed framework with 
all components required for the implementation and 
section 3.2 presents an application example by a 
specific case study. 

3.1 Components of the Framework 

The framework consists of different components 
which are shown in Figure 1. The following 
components are required: (1) problem statement 
level, (2) input data to perform a simulation run, (3) a 

validated simulation model, (4) output data of a 
simulation run, (5) a data preparation utility, and (6) 
a selected ML model.  

 Based on a key performance indicator (KPI) 
system and the deviation between target and actual 
values, an identified potential for optimization in the 
respective production and logistics system serves as 
the starting point for the application. Consequently, a 
target can be determined. This target has to be 
reflected in the real system by one or more KPIs (e.g., 
lead time, throughput, failures). The factors that 
influence the target (process parameters and process 
constants) or other causes have to be determined from 
the real production and logistics systems. Due to the 
fact that not all influencing factors can be adjusted, 
control variables have to be defined. Various process 
analysis methods as well as expert knowledge have to 
be used for this. This can be done manually (e.g., by 
Value Stream Mapping) or with data-oriented 
approaches (e.g., by rule-based or ML approaches). 
The identified control variables as well as the target 
KPIs will be used for the ML model. 

After the problem statement and the analysis of 
the process, simulation input data has to be prepared 
in order to generate sufficient simulation output data. 
Also, different control variables have to be defined, 
so that the simulation model can be parameterized 
depending on the application. This simulation input is 
used for a validated simulation model of the 
production and logistics system. The model should 
reflect the real process in as much detail as is 
reasonable based on the defined target KPIs and 
influencing factors. It is necessary to ensure that 
results of this model have been checked in advance 
and produce comparable results to the real process. 
For this purpose, it is important to use the same data 
structure between input data of the simulation and the 
real system. This is critical to validate the results of 
the simulation. It has to be mentioned that by using 
simulations as well as simulations in combination 
with ML multiple factors for inaccuracies can exist. 
Further research is required on this issue. These 
effects are not considered in this article.  

The simulation input (e.g., production or transport 
orders, resources, etc.) required for implementing a 
simulation model can be taken from different systems 
such as Enterprise Resource Planning (ERP), 
Manufacturing Execution System (MES), or 
Warehouse Management System (WMS). The 
aforementioned input should be used for the 
simulation model as well as the ML model. Based on 
the defined simulation input (2) and a validated 
simulation model (3), the required output data (4) for 
determining the target KPIs can be generated.  
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Through the use of a simulation model it is 
possible to generate multiple years’ worth of data 
where only the input variables of the system have 
changed. Thus, the configuration as well as the 
restrictions of the production and logistics systems 
are the same. This allows occurrences that happen 
very rarely to be reflected in the data and provide 
comprehensive data for training an ML model. 
Furthermore, existing datasets or datasets with 
insufficient quality and quantity can be enriched with 
additional data. For determining the number of entries 
in the dataset required, it has to be considered that the 
duration of a single simulation run can be a regulating 
variable. It is not possible to specify the quantity of 
required entries in a dataset. This is due to different 
factors such as the complexity of the simulation as 
well as the number of process parameters. The 
complexity of the problem to be solved or the ML task 
can also influence the number of entries.   

Furthermore, the input and generated output data 
of each simulation run (=simulation results) must be 
stored together. This can be done using a database 
system e.g., SQLite, etc. Next, the dataset can be split 
by a random training and test splitting function for 
cross validation. The training is performed with the 
available features (=simulation input) and labels 
(=simulation output). Once the generated data has 
been splitted, it is analyzed in the next step using 
various data preparation methods. Where, incorrect or 
missing data are sorted out. By using a simulation 
model only failed simulation runs or incorrect models 
can create erroneous data. In case of using a validated 
simulation model, no erroneous simulation runs 
should occur at this step. Nevertheless, the results 
should be checked as failed simulation runs can create 
incorrect or incomplete data. Furthermore, data 
argumentation as well as techniques for 
dimensionality reduction can applied. 

In complex problems, ML clustering (e.g., K-
Means, etc.) may be used to automatically find 
patterns or correlations in the data. This allows to 
create classes, which substitute the original label. 
Techniques such as scaling and principal component 
analysis (PCA) can used to improve model 
performance. This may help to cope with imbalanced 
data and improve the ML result. Subsequently, it 
must be decided which ML learning type, ML class, 
and finally ML model are roughly suitable. As labels 
are available, supervised learning is selected. 
Supervised learning, involves learning with different 
features of a dataset, annotated with a label. The goal 
is to map input to output values by minimizing the 
discrepancy between real and predicted values within 
the dataset (Goodfellow et al., 2016). Through the 

description of the application scenario, an ML class 
can be specified e.g., classification or regression. 
Thus, possible models can be delimited. A regression 
model attempts to predict continuous values based on 
given data (Han et al., 2012). On the other hand, a 
classification model aims to predict a correct class 
from several classes of data (Han et al., 2012). 

As shown in Figure 1, it is important to define the 
output requirements in order to be able to evaluate the 
final ML results. Nevertheless, a specific requirement 
cannot be described due to the different application 
scenarios within production and logistics systems. 
However, the proposed solution must be better than 
the current approach. Thus, the performance or 
reliability of the system should be increased, such as 
lower throughput times, better adherence to 
schedules, or an increased throughput. These KPIs 
can be specified in percentages or absolute numbers. 

After training, the model is validated with a 
comparison between a prediction of previously 
unknown data against the labeled data. Thus, the ML-
based results are referred to as predicted, while the 
simulation-based results are referred to as real. It is 
analyzed whether the prediction accuracy achieved 
by the ML model is sufficient to meet the defined 
output (performance) requirements. Based on the 
chosen ML model, metrics are used to quantify the 
ML results. For regression tasks ‘mean absolute 
error’ and ‘root mean squared error’ can be applied. 
In classification, ‘accuracy’, ‘recall’, ‘precision’, and 
‘f1-score’ can be used.  

Depending on the complexity and quality of the 
ML results, this step leads to further iteration loops as 
shown in Figure 1. If further data generation is 
chosen, the amount of data is increased step by step. 
In performance enhancement the settings of the ML 
model (e.g., further data preparation) or the complete 
ML model itself (e.g., other algorithm classes or 
algorithm) is adjusted. If the results of the ML model 
correspond to the previously defined requirements, 
the model can then be tested with real (historical) 
data. However, it should be mentioned that this step 
can only be performed if data of the real system is 
available. Otherwise, this step must be performed 
with the future real system data. Depending on the 
result, this step leads to the execution of the 
corresponding feedback loop. If these results match 
the test data results in terms of accuracy, the ML 
model can be used in the real system as a decision 
support tool. Here, the ML model helps to decide 
whether a replanning is necessary or only a few 
adjustments (control variables) are required. In the 
following, the key applications of the framework are 
demonstrated by means of a case study.  
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Figure 1: Framework for training an ML model with simulation-generated data of a production and logistics system. 
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3.2 Case Study 

The case study represents a U-cell assembly line of a 
medium-sized company and is exemplarily set up in 
the Technology Center for Production and Logistics 
Systems (TZ PULS) of the University of Applied 
Science Landshut (Blöchl and Schneider, 2016). A 
simulation model was built up in Plant Simulation 
based on the real system and validated against 
multiple KPIs (e.g., throughput in units, cycle time 
etc.). As the U-cell assembly line is used for 
educational purposes, the data from the educational 
production runs were used for validation. As 
displayed in Figure 2 the whole value stream from 
goods reception over storage to assembly and finally 
goods issue is simulated. In the considered system, 
floor rollers in six different variants are assembled in 
seven steps. The input data are the production orders 
of the assembly line. Goods reception, storage, and 
goods issue are only influenced indirectly through 
requests within the U-cell.  

 
Figure 2: Representation of the real system and simulation 
model in the TZ PULS. 

The identified potential for optimization is that the 
assembly line in question has a fluctuating throughput 
per working day, resulting in a lower average 
throughput than planned. Hence, the considered 
target KPI is throughput in units. Since this KPI 
depends on many different influencing factors, it was 
necessary to narrow down the scope with regard to 
the problem to be solved. The following restrictions 
have been placed on this: the feasibility of the 
solution should not involve any physical changes to 
the material flow and should be implementable in a 
short time without additional costs. Consequently, the 
adjustment of the production order sequence was 
identified as a changeable and monitorable control 
variable. Thus, the goal was to predict the throughput 
in units based on the production order sequence using 
ML. The production orders as well as the throughputs 
generated by the simulation model are combined to 
form the input data for the ML model.  

To verify the functionality of the ML model, a set 
with 1,000 random production orders sequences 
(numpys.random.choice), are prepared. The 
distribution of variants within a production order is 
60 % for high-runner, 30 % for middle, and 10 % for 
least demanded variants. Considering their 
distribution within the production orders, the six 
different variants were sequenced randomly. The 
number of items per production order has been 
limited to 751 units, since this number is the 
maximum output quantity of the assembly line for 
one working day. Each simulation run corresponds to 
the processing of a production order per working day 
with two shifts and sixteen hours of working time. 
The output data of the simulation (=throughput in 
units) is used as label. 

The first approach was to predict the throughput 
in units without clustering. Classic non-linear 
regression algorithms (logistic regression, elastic net) 
struggle to identify patterns in the data probably 
because of the large number of features (751 
features). A production order consists of 751 different 
products that can be distinctly sequenced according to 
its distribution (60 % - 30 % - 10 %). This results in 
an extremely large amount of possible production 
order sequences (≈10289). Hence, regression models 
seemed to predict only floating averages. These 
predictions showed a ‘mean absolute error’ of 162 
units. Consequently, the approach was discarded and 
following classification model was selected. 

To increase the prediction accuracy the simulation 
model results are first clustered into five classes.  
K-Means (sklearn.cluster.KMeans) was used to 
identify five different clusters. The result of the 
clustering replaces the label throughput in units for 
the upcoming classification task. Furthermore, the 
four clusters with lower yields are grouped together. 
Further data preparation contains scaling 
(sklearn.preprocessing.StandardScaler) and finally a 
PCA (sklearn.decomposition.PCA) step keeping  
96 % of the components. 

Hence, the class of the ML model is defined as 
classification of the KPI throughput in units 
represented by previously mentioned clusters (high 
and low yield). The objective is to classify whether a 
given production order sequence will produce a high 
yield or not. Due to the fact that input data can be 
categorized as features and output data of the 
simulation model as labels, supervised learning can 
be applied as ML type. Since this is a classification, 
regression algorithms can be named for delimitation 
of the algorithm class. For the case study a multilayer 
perceptron (MLP) model (sklearn.neural_network. 
MLPClassifier) is used for classification. MLP is one 
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of a widely used algorithm which consists of a fully 
connected input and output layer with multiple hidden 
layers and is only feedforward (Goodfellow et al., 
2016).  They form the basis of all ANN and are 
suitable for unknown structures in the data.  

Hence, the classification task has to separate 
between the two classes high and low yield. High 
yield should contain production order sequences with 
a high throughput in units and vice versa. In Figure 3 
training and test data as well as the mean (=708 units) 
of the throughput in units - before applying the ML 
model - are displayed.  

 
Figure 3: 200 production orders with random sequences 
with corresponding throughput in units. 

The requirements for the validation of the ML 
result were defined as an increase of the average 
throughput in units by 1% (≈7 units) of each working 
day. To split the dataset into training and test data a 
random data split function (sklearn.model_selection. 
train_test_split) is used. The results of the 
classification are presented below. 

4 RESULTS 

In order to verify the approach, the predicted results 
are compared with the simulated throughputs in units. 
The maximum accuracy reached is 68 % with an f1-
score of 73 % for the high yield class (Table 1). In 
addition, 60 % of the given production orders are 
correctly classified into low yield class.  

Table 1: Results of the ML model (MLP). 

 

The precision value shows the true and false 
positive rate of all positive values. As seen in Table 1 
a majority of prediction is correct. Through recall the 
true positive and false negative ratio is described. F1-
score is defined as the harmonic mean of the precision 
and recall. Last but not least the accuracy of both 
classes shows the correct prediction of the total 
number of predictions for the two classes high and 
low yield. 

The results prove that the approach is able to 
identify the high yield class with a high probability. 
The classification of the low yield classes is not as 
good as that of the high yield classes, i.e., it is harder 
to classify production order sequences with lower 
throughput in units than vice versa. By applying the 
approach presented in this paper, with a 68 % 
accuracy of the trained ML model, the mean value of 
the throughput in units can be increased by 10 units 
from a mean value of 708 units (Figure 3) to 718 units 
(Figure 4). Further, the variability of the throughput 
has also been reduced. This fulfilled the target of 
increasing the average throughput in units by 1 %. 
These results confirm the successful application of 
the framework by using a simulation model to 
generate input data for a ML model in this specific 
case study.  

 
Figure 4: Throughput in units of the 127 pre-validated 
production orders. 

5 DISCUSSON 

In the following section the results are discussed. The 
implementation of the framework within a case study 
shows exemplarily that simulation models can be 
used to generate data to train ML models. The results 
of classifying the throughput in units based on 
production order sequences, shows an accuracy of  
68 %. If the accuracy satisfies the requirements of the 
process, the ML model can be used as a decision 
support tool for planning and control task in 

precision recall f1-score

high yield (1) 0.69 0.78 0.73

low yield (2) 0.67 0.55 0.60

accuracy - - 0.68
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production and logistics systems. Furthermore, it is 
possible to classify the production order sequence 
faster than with a simulation model. For the case 
study a complete simulation run took 20 seconds 
while a single classification required 0.01 seconds. 
Although these figures only apply in this specific case 
study. Further research on time-savings is required. 
This enables faster decision-making as compared to a 
simulation model in the presented case study. Also, it 
is shown that the framework applied is suitable for 
extend an insufficient data basis (quantity and 
quality) of processes from production and logistics 
systems with additional data in order to train an ML 
model. With these results and the provided 
limitations, the RQ can be answered: Key elements of 
the framework are a well described problem 
statement based on target KPIs and control variables, 
generated simulation input data based on the 
identified control variables, a validated simulation 
model for data generation as well as suitable data 
preparation step for an appropriate ML model.  

The framework can also be applied to other 
control processes within production and logistics 
systems. Nevertheless, there are still some 
limitations. First of all, it should be mentioned that, 
there is still room for improvement regarding the ML 
model. The determination of suitable AI models with 
regard to this specific problem of production order 
sequencing has already been studied by (Rissmann et 
al., 2022). It can be stated that the application of more 
specific ML models, such as deep neural networks, 
could provide even better results. Further 
investigation is expected to demonstrate how the 
application works on other random problems (e.g., 
failures, downtimes etc.) within production and 
logistics systems. Furthermore, only the classification 
of throughput in units was tested. For other KPIs, 
such as the prediction of the production time of 
individual units or lead time, the simulation-based 
data may have to be enriched.  

6 SUMMARY AND OUTLOOK 

In this paper, we present a framework that supports 
the implementation and training of ML models based 
on generated datasets from production and logistics 
simulations. To achieve this, the input and output data 
of a simulation model are used for training. Thus, ML 
models can be developed even in processes with 
limited data or insufficient data quality, which can 
then be used for decision support. By applying the 
approach within an exemplary case study, the ML 
model was able to increase the average throughput.  

In future research activities, the existing 
simulation model is to be supplemented by further 
influencing factors such as downtimes and failures. 
This will allow the simulation model to reflect a real 
production and logistics system even more 
accurately. The next research steps will be the 
implementation of a data-oriented problem 
identification and optimization approach based on 
KPIs as well as another verification of the approach 
in a real production and logistics system.  
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