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Piping and Instrumentation Diagrams (P&ID) are detailed representations of engineering schematics with
piping, instrumentation and other related equipment and their physical process flow. They are critical in en-
gineering projects to convey the physical sequence of systems, allowing engineers to understand the process
flow, safety and regulatory requirements, and operational details. P&IDs may be provided in several formats,
including scanned paper, CAD files, PDF, images, but these documents are frequently searched manually to
identify all the equipment and their inter-connectivity. Furthermore, engineers must search the related tech-
nical specifications in separate technical documents, as P&ID usually don’t include technical specifications.
This paper presents Gutenbrain, an architecture to extract equipment technical attributes from piping & in-
strumentation diagrams and technical documentation, which relies in textual information only. It first extracts
equipment from P&IDs, using meta-data to understand the equipment type, and text coordinates to detect the
equipment even when it is represented in multiple lines of text. After detecting the equipment and storing it in
a database, it allows retrieving and inferring technical attributes from the related technical documentation us-
ing two question answering models based on BERT-like contextual embeddings, depending on the equipment
type meta-data. One question answering model works with free questions of continuous text, while the other
uses tabular data. This ensemble approach allows us to extract technical attributes from documents where
information is unstructured and scattered. The performance results for the equipment extraction stage achieve
about 97,2% precision and 71,2% recall. The stored information can be later accessed using Elasticsearch,
allowing engineers to save thousands of hours in maintenance engineering tasks.

dures, and manuals, and link them to the asset regis-
ter. The asset register is created based in the infor-

In the Oil & Gas Upstream industry, the life cycle of
any new asset (offshore or onshore) starts with the En-
gineering, Procurement & Construction phase (EPC).
The first activity of a Maintenance & Inspection En-
gineering Contract (also called a MIEC) is to create
the asset register, which is the hierarchy of all the
equipment. This is the very first mandatory mile-
stone of a MIEC to be able to move on to other activ-
ities such as criticality studies (to define the critical-
ity of each equipment), or the definition of the spare
parts to be procured and put in stock for later use.
And finally, definition of maintenance plans, proce-
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mation provided in Piping and Instrumentation Dia-
grams (P&ID). P&IDs are detailed representations of
engineering schematics with piping, instrumentation
and other related equipment and their physical pro-
cess flow. P&IDs are critical in engineering projects
to convey the physical sequence of systems, allow-
ing engineers to understand the process flow, safety
and regulatory requirements, and operational details.
P&IDs are provided in several formats: scanned pa-
per, CAD files, PDF, images. Usually, these docu-
ments are searched manually to identify all the equip-
ment and their inter connectivity. Furthermore, en-
gineers must search technical specifications in sepa-
rate technical documents, as P&ID usually don’t in-
clude technical specifications. The process consists in
gathering all documentation coming from EPC con-
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tractor, manufacturers, and suppliers. Each of these
thousands of documents must be searched manually
to identify all the tags of the equipment, group them
by system and sort them as per their parent/child re-
lationship. When a new revision of such a document
appears, it must be processed again to make sure there
is no impact on the asset register. So, this documenta-
tion searching activity is heavy, time consuming and
with low value for the project. The information is hard
to find, and the manual processing and the redundancy
of the activity sometimes leads to human error.

This paper presents Gutenbrain, an architecture to
extract equipment technical attributes from piping &
instrumentation diagrams and technical documenta-
tion, which relies in textual information only. It first
extracts equipment from P&IDs, using meta-data to
understand the equipment type, and text coordinates
to detect the equipment even when it is represented
in multiple lines of text. After detecting the equip-
ment and storing it in a database, it allows retriev-
ing and inferring technical attributes from the related
technical documentation using two question answer-
ing models based on BERT-like contextual embed-
dings, depending on the equipment type meta-data.
One question answering model works with free ques-
tions of continuous text, while the other uses tabu-
lar data. This ensemble approach allows us to extract
technical attributes from documents where informa-
tion is unstructured and scattered. The stored infor-
mation can be later accessed using Elasticsearch, al-
lowing engineers to save thousands of hours in main-
tenance engineering tasks.

This document is organised as follows: Section 2
presents an overview of the related literature. Section
3 describes the proposed architecture. Section 4 re-
ports the achieved evaluation results. Finally, Section
5 presents the main conclusions, and pinpoints future
working directions.

2 RELATED WORK

This section presents an overview of the existing liter-
ature. It starts by focusing on the literature concern-
ing information extraction from diagrams, and then
focuses on the retrieval and inference of technical at-
tributes from additional data.

2.1 Information Extraction from P&IDs

Literature on data extraction for piping & instrumen-
tation diagrams of for engineering drawings is scarce.
Most of the current techniques are based on Com-
puter Vision algorithms and machine learning models.

Nonetheless, there is a gap between this specific do-
main and state-of-the-art techniques and algorithms.
(Moreno-Garcia et al., 2019) presents a comprehen-
sive study on the techniques used in the piping & in-
strumentation diagrams domain, referring that most
work that has been done in this field focus on using
computer vision models and algorithms to extract at-
tributes based on the shapes present in the documents.

The early work reported by (Yu et al., 1997) uses
a set of rules applied to the lines of a symbol to clas-
sify it on generic engineering drawings, and not only
P&IDs, and each symbol has a set of rules. (Wenyin
et al., 2007) proposes a similar method by creating
a database of symbols which were described by four
geometric constrains extracted by an algorithm. Al-
though generic and good performance, this approach
requires a pre-processing of all symbols to be de-
tected. More recently, (Fu and Kara, 2011) proposes
the use of a multi-scale sliding window and Con-
nected Component Analysis to locate the symbols and
a Convolutional Neural Network (CNN) to classify
them. This model requires labelled data to learn, and
therefore a large sample of data has to be labelled in
order to apply this method.

In the last few years, researchers applied several
Computer Vision techniques in the P&ID domain.
(Elyan et al., 2018) proposed a heuristic to locate
symbols and random forest combined with clustering
for the classification. Research also focused on ex-
tracting the relationships between the symbols. (Kang
et al., 2019) proposed not only a method to extract
symbols (with contour algorithms) but also extract-
ing the text with OCR and establishing relationships
between symbols by extracting connection lines. A
more robust and modern methodology was proposed
by (Rahul et al., 2019). They use a Fully Convolu-
tional Network (FCN) and can do all the segmenta-
tion (detection and classification) with a single model.
It also uses rules to detect connections and relation-
ships. Finally, (Gao et al., 2020) uses the ResNet-
50 (He et al., 2015), a Faster Regional Convolutional
Neural Network (Faster RCNN), backbone with data
augmentation techniques to detect and classify sym-
bols. Once again, rules are applied to infer connec-
tions and relationships.

2.2 Retrieval of Technical Attributes

Pre-trained transformer models are the state-of-the-art
for question-answering (Q&A) tasks. One of them is
DistilBERT (Sanh et al., 2019), a distilled version of
BERT (Devlin et al., 2018) that leverages the complex
architecture that BERT was trained on but is faster,
smaller and lighter. To further improve the perfor-
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mance of the model in a question-answering task, usu-
ally, it is fined-tuned using the (Rajpurkar et al., 2016)
dataset. It has more than 100,000 question-answers
pairs from Wikipedia.

The models described before don’t work well with
tabular data. Therefore, (Herzig et al., 2020) intro-
duces TAPAS, an extension to BERT to encode tables
as input, to do question-answering over tables without
using logical forms as previous literature suggested.
Recently, (Chen et al., 2020) proposed a method to
apply Q&A to both textual and tabular data. “Early
fusion” " is used to fuse tabular and textual units into
a block and a cross-block reader to capture the depen-
dency between multiple evidence.

These techniques have been applied in the instruc-
tion manuals domain to extract technical attributes.
(Abinaya Govindan and Verma, ) proposed a pipeline
for dealing with image, text and tabular data using
pre-trained Q&A models. (Nandy et al., 2021) also
proposed a pipeline, for text only, using a model built
on RoBERTa (Liu et al., 2019).

3 PROPOSED ARCHITECTURE

This section describes the proposed two-steps
methodology for extracting technical attributes from
P&ID and technical documentation in detail.

3.1 P&ID Information Extraction

To be able to detect equipment in P&IDs, we first in-
gest all documentation into a database. Then, we use
this information and meta-data to detect equipment.
Figure 1 shows the pipeline for this initial process.

3.1.1 Extract Text and Coordinates from P&IDs

The first step consists in ingesting all P&IDs of a
project to extract the embedded data. We start by
extracting all the text and text coordinates into a
database. Documents can contain text, raster images,
vectors and text without Unicode mapping (usually
it happens in documents exported from CAD to PDF
without the font used). We start by extracting na-
tive text, and bounding boxes. The bounding boxes
are useful information, containing the coordinates of
the text. When we detect characters without Uni-
code mapping, we send the bounding box of this piece
of undetectable text to Optical Character Recognition
(OCR), using Google OCR API. After extracting all
the native text, we remove all text from the PDF and
if the pages still have information, we send the pages
stripped of native text to OCR and store the received
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Figure 1: P&IDs information extraction pipeline.

text and coordinates into our database. An example
of the extracted text and bounding boxes can be seen
in Figure 2. All information extracted is stored in the
database.

3.1.2 Detect Equipment in Extracted Text

In the industry, equipment and piping numbering are
structured according to rules with meaningful infor-
mation. The numbering of a piping or a equipment
will provide, at least, its equipment type, system, sub-
system and sequential number. Using regular expres-
sions, we detect the equipment present in each P&ID.
Having the equipment tag, we can infer its equipment
type (e.g.: water pump), system (e.g.: Water Process-
ing) and subsystem (e.g.: Filtration). The challenge
with this simple approach is that sometimes equip-
ment tags are multi-line, as we can see in Figure 3.
We developed a function to detect the nearest text
boxes of a determined text, using the coordinates of
the bounding boxes. If a text is composed of the
beginning of a pattern, we validate if the surround-
ing bounding boxes are the missing parts. After ex-
tracting all the equipment, equipment type, system
and subsystem, we store all this information in the
database.

3.2 Retrieving and Inferring the
Technical Attributes

To make informed decisions, engineers still need
technical information regarding each equipment. For
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Figure 2: Extracted text.
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Figure 3: Multi-line equipment tags.

this, we developed a pipeline to extract relevant infor-
mation regarding each equipment.

3.2.1 Preprocess Technical Documentation

We ingest all technical documentation of a project
to extract the embedded data. We start by process-
ing data from thousands of unstructured files into a
database. These files are comprised by textual, tab-
ular and technical drawing data, sometimes stored in
legacy data formats. For each document we store the
type of equipment they refer to, and we store the ex-
tracted text in two formats: continuous text and tabu-
lar data. This distinction will be useful to later steps,
when deciding what model to use to extract technical
attributes. The ingestion of technical documentation
is fully automatized. Figure 4 shows the preprocess-
ing of technical documentation.

End

Figure 4: Technical documentation preprocessing pipeline.

3.2.2 Retrieval Technical Attributes

To be able to extract technical information for each
equipment type, we have created a database of 693
types of equipment, and for each equipment we filled
their attributes. Each equipment can have from 1 to
20 technical attributes, as illustrated in the examples
presented in Figure 1.

Table 1: Examples of equipment and its corresponding at-
tributes.

Equipment Attribute 1 | Attribute 2
Amplifier Input Output
Air Conditioner Type Power

Centrifugal Pump Model Flow Rate
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Having this information loaded, we run a search
for each equipment. First, we read its equipment
type. Second, we search in the technical documen-
tation for documents classified as having information
regarding that type of equipment. Third, we divide
the information of these documents in two separate
contexts, namely: continuous text information, and
tabular information. Forth, we generate questions for
each technical attribute. For the question construc-
tion, we send a full text question. e.g.: what is the
power of the air conditioner. Finally, we send the
questions and the context information to two sepa-
rate question answering models. The continuous text
information is used as context to the question an-
swering model DistilBERT (Sanh et al., 2019). The
model used is a fine-tune checkpoint of DistilBERT-
base-uncased, fine-tuned using knowledge distillation
on SQuAD vl1.1. The tabular information is sent to
the question answering model TAPAS (Herzig et al.,
2020). TAPAS is a BERT-like transformers model,
pretrained on raw tables and associated texts, allow-
ing to query tabular information. Finally, we compare
the best result of each model and save in the database
the one with higher score. Figure 5 shows the extrac-
tion of technical attributes.

End

Figure 5: Retrieval of technical attributes.

3.3 Supporting Architecture
To provide Gutenbrain functionalities to users, we

rely on a cloud-based architecture. The user interface
is built in React, a JavaScript library. It allows users to
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visualise and edit extracted information from P&IDs.
All the back-end functionalities are available through
REST APIs developed with fast-API and deployed in
Uvicorn, an ASGI server. Information extracted is
stored in MongoDB. MongoDB allows queries with
regular expressions, critical to equipment detection
in the P&IDs. To allow users to query semantically
in the information of all equipment, we use Elastic-
search, a search engine based on the Lucene library.
Documents are stored in a persistent storage account,
enabling the usage of containers for all other build-
ing blocks of the architecture. Finally, Google OCR
is used to extract text from images. An overview can
be seen in Figure 6.

Container Registry

AZURE ﬁ.

)

—
= Storage Account

% elastic

% "
S5 —® &
Users  Active Directory React Python mongoDB.
Authentication Front-End Back-End
- Linux App Service Plan %GOOQ'G ClDud
Vision API

Figure 6: Reference Architecture.

4 EXPERIMENTS AND RESULTS

This section describes the results obtained for the pro-
posed Gutenbrain architecture, also reporting on the
faced challenges. It starts by focusing on the stage
of extracting information from P&ID, and then on the
stage of retrieving technical attributes from the stored
data.

4.1 P&ID Information Extraction
4.1.1 OCR

Most of the P&IDs are scanned, have images, or are
exported from CAD files into vectors. The use of
OCR is essential to extract that text information. To
be able to extract equipment from diagrams using
OCR, three main challenges arise.

First, in the context of diagrams, text is some-
times overlapped with symbols, as shown in Figure
7. This causes two types of error: 1) only part
of the text is extracted, ignoring the characters
overlapped with symbols, or 2) overlapped shape
and characters are merged and the retrieved text is
incorrect. In both cases, the equipment tag is unre-
coverable, as we have partial or incorrect information.
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Figure 7: Text overlapped with symbol.

Second, multiple lines are hard to detect when
there is little space between, as we see in Figure 8.
This means that relevant information is lost, either by
removing full equipment or part of multi-line equip-
ment.

ALBIAN SECOND STAGE 14",
SEPARATOR 12 VZ 2004
CG-MHN-12-2200-339012

Figure 8: Multi-line text.

And finally, sometimes OCR adds spaces where
there are none. With these nonexistent spaces, two
things can occur: 1) the equipment pattern is not de-
tected, as it contains spaces, or 2) the OCR detects
the text as separate words or separate text blocs. An
example can be seen in Figure 9.

2"-CW-1276-311-B01 () 2"-Ccw-1276|-]311|-|B 01

2"-CW-1276-308-B01 (D) 2"-CW-1276-308-B01

Figure 9: Nonexistent spaces added by OCR capture.

To tackle these challenges, we performed an OCR
benchmark between Tesseract, Azure and Google
OCR. Tesseract is convenient, as it works on-
premises, but its performance is sub-par when com-
paring with both Azure and Google. When compar-
ing Azure and Google OCR regarding how they tackle
the three above mentioned challenges, Google outper-
formed Azure in all of them. Figure 10 shows how
Google was able to detect text even with overlapped
symbols.

We are currently using Google OCR to extract text
from all diagrams and technical documentation.

Figure 10: Azure results above. Google results bellow.

4.1.2 Equipment Sanitisation

When extracting equipment, their codes can have dif-
ferent separation of components, as they are usually
not normalised. Sometimes they have hyphen sepa-
rating attributes (equipment type, system, subsystem),
other times they have space, and others they are in
multiple lines, having only the break of line to sepa-
rate them, as shown in Figure 11. To ensure the same
equipment is considered as such if it appears in sev-
eral documents, we sanitise the equipment. We add
hyphen where a space or line break is found when
storing in the database.

. W72 AB
T -O—BOSH
. CB

-1

) 4

Figure 11: Several equipment patterns.

4.1.3 Equipment Extraction Results

To be able to validate the equipment extraction pro-
cess, we have annotated manually a dataset of P&IDs
containing 607 equipment records. These documents
are very big, but unlike the computer vision ap-
proaches where documents are split and shrinked, we
enlarged them in order to improve the OCR results.
The dataset is composed of a mix of documents with
native text, images, vectors and some text without
Unicode mapping.

. TP
Precision = ——— @)
TP+FP
TP
Recall = ——— 2)
TP+ FN

The performance of the system was evaluated us-
ing Precision and Recall, two metrics commonly used
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in the literature and defined in equations 1 and 2,
where TP represents true positives, FP represents
false positives, and FN represents false negatives. We
also present the FI-measure, a metric that combines
precision and recall. Table 2 shows the achieved re-
sults, revealing that our system is able to achieve an
impressive performance, specially in terms of Preci-
sion. We can see that the recall is highly affected
when the document must be processed with OCR in
order to retrieve the text, since it introduces errors.

Table 2: Performance results for the equipment extraction
stage.

Results | Precision | Recall | F1-measure
Text 0,984 0,824 0,897
OCR 0,960 0,600 0,738

Average 0,972 0,712 0,822

Current studies of P&ID information extraction
use image-based techniques, recognising symbols
through template matching. When compared with the
approach of previous works, our architecture achieves
better results. Comparison is shown in Table 3.

Table 3: Performance results comparison.

Method
Symbol detection
Symbol detection

Text detection

Authors Precision
(Rahul et al., 2019) 0,799
(Kang et al., 2019) 0,90

Gutenbrain 0,972

4.2 Retrieval and Inference of Technical
Attributes

4.2.1 Preprocessing of Technical Documentation

To be able to use technical documents’ information
in the question answering models, data was extracted
to the database in two different stacks: 1) continu-
ous text, and 2) tabular data. This will be important
when extracting technical attributes, as it is different
to search in continuous text or in tabular data. Be-
sides extracting this information, each document was
also classified with the equipment type it contained
information.

4.2.2 Retrieval of Technical Attributes

The goal of retrieving technical attributes is to find
all the characteristics for each equipment, according
to its type. e.g.: for a centrifugal pump, we want to
know its model, use, flow rate, output, pressure, in-
take temperature, viscosity and input connection.
The first step is to find the documents that have
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information regarding the identified equipment type.
After finding the subset of relevant documents, we
create a set of questions to be used in both ques-
tion answering models. We use questions in full sen-
tences: “what is the <attribute> of the <equipment
type>". e.g.: what is the flow rate of the centrifu-
gal pump? The next step is to send the question and
all continuous text as context to our DistilBert model.
The model gives us the best answer and their score.
Afterwards, we send the same question to our TAPAS
base model, but using as context all tabular informa-
tion found in the selected documentation. Again, it
will give us the best answer and their score. To extract
answers from tabular data, our approach is similar to
the one proposed by (Chen et al., 2020). We compare
the score of each model and store the best result in
our database. Our suggestion to the technical attribute
will be the result with best confidence among both
models. As opposed to directional models, which
read the text input sequentially (left-to-right or right-
to-left), the Masked Language Model (MLM) objec-
tive enables the representation to use both the left and
the right context, which allows to pre-train a deep
bidirectional Transformer. Since maintenance engi-
neering has special jargon, BERT’s sub-word repre-
sentations and word-piece tokenization are useful for
the out-of-vocabulary words that often appear in the
corpus. This only mitigates the special jargon issue to
fully solve it the models should be fine-tuned to our
specific domain. BERT’s architecture works well for
this task-specific finetuning, since it was trained on a
large corpus

Table 4 shows some examples of questions, and
the corresponding answer with the associated score.

Table 4: Some examples of questions.

Question Answer Score
What is the wattage of 26W 79,30%
the lamp?

What are the dimensions | 40 x 119 x 54,10%
of the Converter? 115 mm

What is the manufacturer | SCHNEIDER | 82,89%
of the light? ELECTRIC

We were able to find a great part of the technical
attributes from equipment, and, when the confidence
was low, we were still able to show engineers the right
documents for them to extract manually. As we are
using extractive question and answering models, we
can show the documents in the right pages for engi-
neers to validate the extracted attributes.
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S CONCLUSIONS AND FUTURE
WORK

We have proposed an approach to extract equipment
and technical attributes from P&IDs and retrieve tech-
nical documentation from technical sheets, and de-
scribed an architecture to support this approach. We
have performed experiments on a manually labelled
dataset of P&IDs, containing 607 equipment, and
the performance results for the equipment extraction
stage achieve about 97,2% precision and 71,2% re-
call.

In the Oil & Gas Upstream industry, EPC projects
take in average 90k hours of technical engineers to
create the asset register, to do criticality studies (to
define the criticality of each equipment), the defini-
tion of the spare parts to be procured and put in stock
for later use, and the definition of maintenance plans,
procedures, and manuals. The proposed architecture,
Gutenbrain, allows the saving of 16k per project, ei-
ther by extraction automatically the equipment infor-
mation or by allowing to search in the technical in-
formation using semantic search in content otherwise
unsearchable. The experimental validation presents
an average reduction of approximately the 60% of
engineers’ effort in cumbersome tasks of extracting
equipment information allowing the saved hours to be
spent by engineers on tasks with higher value. This
approach still requires users to validate the extracted
information and extract the undetected information,
but we provide a user interface for engineers to have
the autonomy to do so.

In the future we would like to fine-tune the
question-answering models with closed-context data
from past projects to improve the results. We would
also like to complement the equipment extraction
with the computer vision approach of detecting sym-
bols within diagrams. The hypothesis being that an
ensemble method using text and symbols might out-
perform our current approach.
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