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Abstract: In many real-life classification tasks, the issue of imbalanced data is commonly observed. The workings of 
mainstream machine learning algorithms typically assume the classes amongst underlying datasets are 
relatively well-balanced. The failure of this assumption can lead to a biased representation of the models’ 
performance. This has encouraged the incorporation of re-sampling techniques to generate more balanced 
datasets. However, mainstream re-sampling methods fail to account for the distribution of minority data and 
the diversity within generated instances. Therefore, in this paper, we propose a data-generation algorithm, 
Cluster-based Diversity Over-sampling (CDO), to consider minority instance distribution during the process 
of data generation. Diversity optimisation is utilised to promote diversity within the generated data. We have 
conducted extensive experiments on synthetic and real-world datasets   to evaluate the performance of CDO 
in comparison with SMOTE-based and diversity-based methods (DADO, DIWO, BL-SMOTE, DB-SMOTE, 
and MAHAKIL). The experiments show the superiority of CDO.

1 INTRODUCTION 

Imbalanced data refers to a scenario whereby there is 
a large proportion of instances which are labelled as 
“Negative” (majority class) to the number of 
instances labelled as “Positive” (minority class). 
Performance of subsequent learning classifiers may 
be negatively impacted without further treatment of 
imbalanced labels. Specifically, the processing of 
minority instances would most likely be regarded as 
an outlier or anomaly within the dataset (Ali et al., 
2013). The objective for most of the mainstream 
classification algorithms is either to minimise 
misclassification error or to maximise predictive 
accuracy. However, it is often overlooked that these 
classification algorithms are constructed on the basis 
that the distribution of instances within each class is 
relatively balanced. As such, when classifiers are 
built on imbalanced datasets, the accuracy of these 
algorithms is often biased or have an overwhelming 
tendency to predict the majority class, resulting in 
high False Negative Rates (FNR) (Sasaki, 2007; 
Thabtah et al., 2020). 
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In the current literature, there are 3 main concepts 
used to treat and address imbalanced data, which are 
cost-sensitive learning, ensemble-based method, and 
re-sampling techniques. The purpose of “re-sampling 
techniques” is to create, either randomly or 
synthetically, a more balanced representation of the 
underlying dataset used for learning. One form of re-
sampling techniques is Over-sampling, where in its 
most basic form, involves random sampling. There 
are also synthetic ways used to over-sample data 
based on many years of research. Synthetic instances 
generated are not exact replicas of the original 
instances. They broaden the decision region 
compared to random over-sampling. As a result, 
synthetic methods minimise the likelihood of 
overfitting, and reduce False Negative Rate and 
stabilise the performance of classifiers (Japkowicz & 
Stephen, 2002). However, for most of the synthetic 
methods, the generated instances lies along a linear 
path between minority data points, and the creation of 
synthetic minority data points takes place in the 
“feature level” and not on the “data level” (Chawla et 
al., 2002). It implies the decision region of minority 
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class does not consider a holistic view of the entire 
minority data space (Bennin et al., 2017). 

In this paper, we designed an algorithm to address 
the above issue. The proposed algorithm generates 
diversified synthetic instances within the minority 
class while considering the distribution of the 
minority data space. It is done via optimising both 
similarity to minority instances and diversity in 
synthetic instances. The optimisation process is 
conducted based on genetic algorithm. Our proposed 
method guarantees proximity of the generated 
synthetic instances to the actual instances in the 
minority class. In addition to preserving the 
advantage of over-sampling, the proposed algorithm 
enables the optimal spread of generated instances in 
the data space and help to broaden the decision region 
as a result of diversity optimisation. 

2 RELATED WORK 

SMOTE is a well-known synthetic over-sampling 
technique in the literature (Chawla et al., 2002). The 
process of generating synthetic minority class 
instances is via a random selection of specified k-
nearest neighbours of a minority sample, and 
applying a multiplier derived from a uniform random 
distribution (0,1). This creates an “synthetic” instance 
which will be located between the 2 minority points. 
SMOTE has improved the performance of classifiers 
trained on imbalance dataset through the process of 
expanding decision regions housing nearby minority 
instances as compared to basic random over-sampling 
which enhanced and narrowed decision regions with 
contrasting effects (Chawla et al., 2002) 

Recent studies have flagged a limitation of 
traditional over-sampling methods (i.e. SMOTE) to 
its casual tendency to generate synthetic instances 
which extends into the input region of the majority 
class instances, thereby negatively impacting the 
performance of the subsequent learning classifier 
built (Bennin et al., 2017; Sharma et al., 2018). These 
studies have identified the dual importance of 
maintaining the integrity of the minority sample 
region, in addition to enhancing the diversity of 
minority class data. Subsequent studies has aimed to 
address the above challenge.  

ECO-ensemble is an Cluster-based synthetic 
oversampling ensemble method (Lim et al., 2016). Its 
idea originates on identifying suitable oversampling 
cluster regions with Evolutionary Algorithm (EA) to 
derive at the optimised ensemble. The SMOTE-
Simple Genetic Algorithm (SMOTE-SGA) method is 
proposed to enhance the diversity within the 

generated dataset (Tallo & Musdholifah, 2018). The 
algorithm determines instances to be generated and 
the number of synthetic instances created from the 
selected instance (sampling rate) to overcome the 
overgeneralization problem in SMOTE.  

MAHAKIL is created with the purpose of 
generating more diverse synthetic instances (Bennin 
et al., 2017). It works by pairing minority instances 
with previously generated synthetic instances to 
generate instances inspired by the Chromosomal 
Theory of Inheritance. It utilised the core concept of 
Mahalanobis Distance as the measure for diversity, in 
conjunction with inheritance and genetic algorithm. 
The fundamental idea is to create synthetic minority 
instances which are unique using 2 relatively distant 
parent instances which are different to their parents 
(i.e. existing minority class). In 2018, SWIM 
(Sampling WIth the Majority) was proposed  (Sharma 
et al., 2018). Synthetic minority instances are 
generated based on the distribution of majority class 
instances which are effective against extremely 
imbalanced data. In 2021, a diversity-based sampling 
method with a drop-in functionality was proposed to 
evaluate diversity. It is achieved via a greedy 
algorithm that is used to identify and discard subsets 
that share the most similarity (Yang et al., 2021).  

Most recently, Diversity-based Average Distance 
Over-sampling (DADO) and Diversity-based 
Instance-Wise Over-sampling (DIWO)  are proposed 
to promote diversity (Khorshidi & Aickelin, 2021). 
The objective of the 2 techniques is to generate well-
diverse synthetic instances close to minority class 
instances. DADO aims to ensure diversity in the 
region among minority class instances. Whereas in 
the case of DIWO, the contrasting approach is taken 
to ensure synthetic instances are clustered as closely 
to the actual minority class instances. DADO 
performs better when minority instances are compact, 
and immediate surrounding area is located within 
minority space. DIWO performs better when minority 
instances are widely distributed, and the surrounding 
area does not sit within the minority space. 

In this paper, we propose a new synthetic 
sampling method, namely Cluster-based diversity 
oversampling (CDO). Our proposed method 
combines the advantage of both DADO and DIWO 
by analysing the density distribution of the minority 
instances via diversity optimisation. 

ECTA 2022 - 14th International Conference on Evolutionary Computation Theory and Applications

18



3 METHODOLOGY 

3.1 Cluster based Diversified  
Over-sampling (CDO) 

In this section, we aim to describe our new proposed, 
Cluster-based Diversity Over-sampling (CDO). The 
new proposed method aims to provide a more robust 
algorithm compared to DADO and DIWO by 
combining the strengths of both approaches. A 
clustering algorithm is used to analyse and learn the 
density distribution of minority instances. For 
instances that are compact and similar to each other 
using density clustering method, DADO is applied. 
For instances that are widely distributed, DIWO is 
applied.  

Our preferred choice of clustering method is 
DBSCAN as it is more efficient in comparison to 
partition-based or hierarchical-based clustering 
methods when the problem requires us to determine 
the arbitrary shaped clusters (Ester et al., 1996). 
DBSCAN was first introduced in 1996 (Ester et al., 
1996). It is a non-parametric density-based clustering 
algorithm and it works by enhancing the grouping of 
instances which are closely located to each other and 
simultaneously identifying points which are placed in 
low-density areas (points whose nearest neighbours 
are relatively far away). Additionally, we choose 
DBSCAN over all other clustering methods due to the 
reason that unlike our typical clustering problem, our 
objective is to identify instances which are close 
together and not clustering all the data points. We also 
note the advantage of DBSCAN which allows the 
user to select the desired level of similarity required.  

The algorithm of CDO is shown in Algorithm 1. 
It requires the following Epsilon (𝑒𝑝𝑠), and Border 
Point (𝑝) parameters for clustering. As 𝑝 is a binary 
pair of parameter values, if it is true, border points are 
assigned to clusters. 

3.2 Diversity Optimisation 

The choice of the proposed CDO algorithm for 
diversity optimisation is the extended form of 
NOAH’s algorithm (Ulrich & Thiele, 2011), as 
shown in Algorithm 2. 

Algorithm 2 contains 3 stages and requires the 
following input parameters:  population size (n), 
number of generations to optimise objective function 
(g), number of instances remaining in the population 
after bound adaptation (r), percentage improvement 
of bound (v) and finally, the stopping criterion 
diversity maximisation (c). The above implies that if 
the population diversity does not improve for c 

generations, convergence of the diversity 
maximisation is achieved. The whole algorithm 
terminates if the bound does not improve for c 
generation, To further optimise the objective 
function, Algorithm 2 has also incorporated the usage 
of Genetic Algorithm (GA), as it is the most popular 
evolutionary algorithm. Mutation and crossover 
concepts are utilised to create new instances.  
Instances which objective functions are better than 
bound value (b) are kept (Algorithm 2, lines 5 and 
14). For DADO, the objective function (f) is the 
average of distance from all instances in the minority 
class. For DIWO, the objective function (f) is the 
distance to each instance. 

3.3 Diversity-based Selection 

The preferred measure of diversity is Solow-Polasky 
measure. There are 3 main properties which are 
required of a diversity measure, which are namely 1) 
monotonicity in variety, 2) monotonicity in distance 
and 3) twinning. The first property implies that the 
diversity measure will increase or at least be non-
decreasing when an individual element currently not 
present in the dataset is added. The second property 
requires that the diversity between a particular set S 
(i.e. instances) should not be smaller to another set S’, 
if all pairings within S are of the distance of all the 
pairings within S’. The third property ensures the 
diversity measure remains the same when additional 
element, already in the set, is added.  Solow-Polasky 
measure can be expressed in the following equation 
(1), where M represents the distance matrix. The 
Euclidean distance between elements of set S are 
denoted as 𝑑(𝑠 , 𝑠) . Thereafter, our diversity 
measure is derived and computed by the summation 
of all inverse matrix of (𝑀ିଵ = ൣ𝑚൧ିଵ).   𝐷(𝑆) = 𝑀ିଵ = 𝑒ିௗ(௦,௦ೕ)  (1)

To obtain the best diversity amongst all the 
instances, the ideal scenario would be to generate all 
possible permutation of subsets. However, this cannot 
be achieved as it would be computationally infeasible 
and expensive. As an alternative methodology, we 
propose the use of a greedy approach which would 
filter out instances which have the least contribution 
to the diversity of our dataset. Our definition of 
contribution is defined as the difference in diversity 
for our dataset with and without the instance. As 
proven in this study (Ulrich & Thiele, 2011), the 
difference can be expressed in the following formula: 

 𝑀ିଵ −𝐴ିଵ = 1𝑐̅ (𝑏ത + 𝑐̅) (2)
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Algorithm 1: Cluster-based diversity over-sampling algorithm (CDO). 

 /* Step 1: Clustering minority instances */ 
1 𝐶 = 0 
2 for each point 𝑀 in minority class do: 
3     if 𝑀 is labelled then next 
4     if 𝑀 is not labelled then 
5         NeighborPts  ←  return all points within 𝑒𝑝𝑠 neighbourhood of 𝑀 (incl. 𝑀) 
6     if size of NeighborPts = 1 then label(𝑀)= NOISE next 
7      𝐶 = 𝐶 + 1 
8     label(𝑀)= 𝐶    
9     for each 𝑀’ in NeighborPts do: 
10         if label(𝑀′)= NOISE and 𝑝 =  𝑇𝑟𝑢𝑒 then label(𝑀’) =  𝐶  next  
11         if 𝑀’ is labelled: next 
12               label(𝑀’) =  𝐶 
13         NeighborPts’ ←  return all points within eps neighbourhood of 𝑀’ (incl. 𝑀’) 
14         if size(NeighborPts’) > 1 then NeighborPts ← NeighborPts U NeighborPts’ 
15     end for 
16 end for 
 /* Step 2: Perform diversity algorithm for each cluster and NOISE points */ 
17 for each 𝐶 do: 
18       𝑃ை ← NOAH(n, g, r, c, v, f) 
19 end for 
20 for each minority instances 𝑀 marked as NOISE do: 
21     𝑃ூௐைெ  ←  NOAH(n, g, r, c, v, f) 
22 end for 
 /* Step 3: Combine generated datasets */ 
23 𝑃 =   𝑃ை  𝑈 𝑃ூௐைெ  

Algorithm 2: Diversity optimisation algorithm (NOAH). 
 

 Input: 𝑛,𝑔, 𝑟, 𝑐, 𝑣 
Output: a diverse set of instances 𝑆 

1 S = Null; b = ∞; i = 0 
2 while 𝑖 < 𝑐 do 
 /* Step 1: Optimising the objective function */ 
3   𝑃 ←  Generate a population with n instances 
4   for g generations do 
5      𝑃ᇱ  ←  Generate new n instances via mutation and crossover from P with objective values better than b  
6      𝑃 ←  Select n best instances from 𝑃 ∪  𝑃ᇱ 
7   end for 
 /* Step 2: Bound adaptation */ 
8   𝑃 ←  Select r best instances from 𝑃 ∪  𝑆 
9   𝑏ᇱ  ←  Put the objective value of rth best instance in 𝑃 ∪  𝑆 
10   if DIWO and 𝑏 − 𝑏ᇱ < 𝑣 × 𝑏 then 𝑖 ← 𝑖 + 1 else 𝑖 ← 0 
11   𝑏 ← 𝑏ᇱ 
 /* Step 3: Diversity maximisation */ 
12   j = 0 
13   while 𝑗 < 𝑐 do 
14      𝑃"  ←  Generate new r instances via mutation and crossover from P with objective values better than b  
15      𝑃∴  ← Select r best diverse instances from 𝑃"  ∪  𝑆 
16   end while 
17   if diversity of 𝑃∴ is more than S then 𝑆 ← 𝑃∴ else 𝑗 ← 𝑗 + 1 
18 end while 
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where A is the distance matrix of the set without that 
particular instance, 𝑀 = ቂ 𝐴 𝑏𝑏் 𝑐ቃ, 𝑀ିଵ =  �̅� 𝑏ത𝑏ത் 𝑐̅൨, c 

and 𝑐̅ are single elements, b and 𝑏ത are vectors and 𝑏் 
and 𝑏ത்are their transpose. 

4 VALIDATION OF SYNTHETIC 
DATASET 

4.1 Evaluation Method 

The learning classifiers used to evaluate the generated 
data are Naïve Bays (NB), Decision Tree (DT), k-
Nearest Neighbour (KNN), and Support Vector 
Machine (SVM), and Random Forest (RF). We 
choose KNN and RF as they are sensitive to 
imbalanced data based on their model assumptions 
(Muñoz et al., 2018). DT works based on developing 
decision regions which are influenced by re-sampling 
methods (Chawla, 2010). SVM with radial kernel is 
effective to classify classes which are not separable 
linearly.  

We measure the performance of the classifiers on 
test data using F1-score, G-means, and PR-AUC as 
classification accuracy is not an appropriate measure 
for imbalanced data.  

To calculate F1-score (5), we need to measure 
recall and precision shown as (3) and (4). Recall is the 
proportion of correctly predicted positive instances to 
all instances in the positive class. Precision is the 
proportion of correctly predicted positive instances to 
all predicted positive instances.  

R𝑒𝑐𝑎𝑙𝑙 = ்்ାிே (3)

P𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = ்்ାி (4)

F1 = ଶ×ோ×௦ோା௦  (5)

PR-AUC denotes the area under the Precision 
Recall curve, is a suitable measure for classifiers’ 
performance especially in the situation of imbalanced 
data and is independent of the decision boundary. 

The G-means (7) is the geometric mean of true 
positive rate (TPR), as (6) and true negative rate 
(TNR), which is 1 − 𝐹𝑃𝑅. 𝑇𝑃𝑅 = 𝑇𝑃𝐹𝑁 + 𝑇𝑃 (6) 𝐺 −𝑚𝑒𝑎𝑛𝑠 = √𝑇𝑃𝑅 × 𝑇𝑁𝑅 (7) 

4.2 Synthetic Dataset 

To examine our proposed methods under different 
scenario, 4 2-dimensional datasets are created. There 

is an equal split (2) of datasets with an imbalanced 
ratio (IR) of 10% and IR of 5%. These datasets are 
used in our initial experiments to assist in hyper-
parameter selections. Table 1 provides a summary of 
these datasets (DS1-4). There is a varying amount of 
cluster within each DS, ranging from 0 (randomly 
distributed data points) in DS3 to 5 in DS1. For each 
of the 4 synthetic datasets, instances are randomly 
divided into training and test datasets with a 75:25 
split. DADO, DIWO and our proposed method CDO 
are utilised to balance our training datasets. Learning 
classifiers are applied onto the balanced training 
datasets. Performance of these constructed learning 
classifiers is then assessed using the test datasets. 
Performance measures (F1, G-Means, and PR-AUC) 
are computed for the best performing classifier. The 
above process is repeated 30 times. 

Table 1: Synthetic datasets characteristics. 

Dataset Number of 
Clusters 

Data 
Points 

Imbalance 
Ratio 

DS1 5 200 10% 
DS2 2 300 10% 
DS3 0 300 5% 
DS4 1 300 5% 

4.3 Parameter Selection 

The distance measures chosen for both objective 
function and diversity measure are the optimal 
distance measure based on experimental results 
(Khorshidi & Aickelin, 2021). Euclidean distance 
measure (𝐷ா௨) is chosen for DADO, and Canberra 
(𝐷) is chosen for DIWO. 
 

 𝐷ா௨(𝑥, 𝑦) = ඥ∑ (𝑥 − 𝑦)ଶ  (8)

 𝐷(𝑥,𝑦) = ∑ |௫ି௬||௫|ା|௬|  (9)

 
Next, we aim to determine the optimal values for 2 
hyper-parameters for DBSCAN, Epsilon (eps) and 
Border Point (p). We examine the eps using 10 
different parameter values, ranging from 0.05 to 50. 
A binary pair (“T”, “F”) of p is also examined. Based 
on parameter testing result on datasets (DS1, DS2, 
DS3, DS4), eps = 0.05 and p = “T” are selected. 

4.4 Synthetic Experiment Results 

CDO is compared alongside DADO and DIWO on 
synthetic datasets. In total, there are 4 synthetic 
datasets available and the performance of each of the 
3 algorithms are evaluated. 12 different results are 
summarised in Table 2. CDO performs better than 
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Table 2: Performance results of mean and standard error for each measure across synthetic datasets. Bold numbers indicate 
the mean of method performance is the best among all comparable methods. 

 DADO DIWO CDO 
DS 1 

F1 0.3516 (± 0.131) 0.4586 (± 0.176) 0.4601 (± 0.179) 
G-means 0.6341 (± 0.194) 0.8498 (± 0.080) 0.8456 (± 0.084) 
PR-AUC 0.9439 (± 0.030) 0.9594 (± 0.026) 0.9603 (± 0.026) 

DS 2 
F1 0.1805 (± 0.067) 0.4219 (± 0.116) 0.4244 (± 0.105) 

G-means 0.4012 (± 0.182) 0.8342 (± 0.048) 0.8158 (± 0.042) 
PR-AUC 0.9516 (± 0.019) 0.9786 (± 0.024) 0.9792 (± 0.023) 

DS 3 
F1 0.1333 (± 0.047) 0.1092 (± 0.063) 0.1092 (± 0.063) 

G-means 0.0693 (± 0.176) 0.4733 (± 0.216) 0.4638 (± 0.250) 
PR-AUC 0.9706 (± 0.020) 0.9684 (± 0.022) 0.9687 (± 0.021) 

DS 4 
F1 0.8623 (± 0.107) 0.8632 (± 0.113) 0.8679 (± 0.099) 

G-means 0.9861 (± 0.014) 0.9926 (± 0.007) 0.9907 (± 0.009) 
PR-AUC 0.9973 (± 0.011) 0.9974 (± 0.011) 0.9974 (± 0.011) 

 
Figure 1: Plots for synthetic datasets, blue area indicates minority generation density. 

DADO in all evaluation metrics over 3 of 4 datasets. 
CDO performs better in 2 of 3 evaluation metrics to 
DIWO, when 2 or more clusters are detected (DS1 
and DS2). CDO outperforms in 1 of 3 evaluation 
metrics for DS 3, and 2 of 3 evaluation metrics for 
DS4, where datasets have less than 2 clusters 

4.5 Graphical Representation  

To provide a graphical representation of the synthetic 
datasets generated by CDO and its 5 comparable 
methods (BL-SMOTE, DB-SMOTE, DIWO, DADO 
and MAHAKIL), we created a seperate synthetic 
dataset with two clusters, 5% imbalanced ratio in 
testing data with a balanced ratio in training data. The 
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generated minority data for each algorithm is 
displayed in Figure 1. We observe that the region of 
synthetic generated instances for CDO, DIWO and 
MAHAKIL is relatively similar. However, CDO 
stands out for its ability to cover all the data points of 
the minority test data with the narrowest region. 
MAHAKIL created synthetic data points between the 
2 clusters, which occupies a larger region and could 
result in over-generalisation and higher false positive 
rate. For DADO, BL-SMOTE and DB-Smote, the 
region of generated data does not cover all of minority 
test data points, which could result in higher false 
negative rate. 

5 VALIDATION  

We validate the proposed CDO algorithm against an 
assortment of 10 imbalanced datasets, with varying 
dimensions. The datasets and their characteristics are 
described in Table 3, and “Ratio” is used to indicate 
the original proportion of majority to minority 
instances. To replicate the scenarios with low and 
extremely low imbalanced ratio, we reduce the 
imbalanced ratio to 5% and 10 absolute count of 
minority instances. 

The data within each of the real-world datasets are 
randomly divided into train and test datasets using a 
75:25 split respectively. This process is repeated for 
30 iterations, resulting in 30 unique variations of 
training datasets and accompanying test datasets for 
each of the 10 real-world datasets. After the 
initialisation step, we apply our proposed method, 
CDO, alongside with existing methods in the 
literature, namely BL-SMOTE, DB-SMOTE and 

MAHAKIL to evaluate algorithm performance.  Six 
learning classifiers (GLM, NB. DT, KNN, SVM, NN) 
are then constructed on each of the training datasets 
(n=30). Subsequently, the trained classifiers are 
applied onto test datasets.  

For each real-world datasets, the best performing 
classifier is selected, and we compute the mean and 
standard error of the performance measures as F1, 
AUC and G-mean. Additionally, we examine the 
statistical significance of differences for the 
performance measures obtained from CDO, BL-
SMOTE, DB-SMOTE and MAHAKIL using a non-
parametric test, Mann-Whitney test. 

5.1 Experimental Results 

The mean and standard error (stated in parenthesis) of 
our proposed method (CDO) and its comparable 
methods (BL-SMOTE, DB-SMOTE and 
MAHAKIL) are presented in Table 4 and 5, with 5% 
imbalanced ratio and 10 minority instances. 

By looking at the performance metrics for 5% 
imbalanced ratio (Table 4), it can be concluded that 
CDO shows encouraging result as it outperformed its 
comparable algorithms in terms of F1 score and G-
Means in 5 out of the 10 datasets. Additionally, CDO 
outperformed other comparable methods in 6 out of 
the 10 datasets based on PR-AUC.  

By looking at the performance metrics for 10 
minority instances (Table 5), CDO shows promising 
result as it outperformed its comparable algorithms in 
terms of F1 score in 4 out of the 10 datasets. It 
outperformed other comparable methods in 5 out of 
the 10 datasets based on PR-AUC. CDO performed 
equivalently well to MAHAKIL in G-Means. 

Table 3: Real-word Data Description. 

Dataset Name Dim Size Ratio Dataset Name Dim Size Ratio 

D1 Wisconsin 9 683 65-35 D6 Glass (0,1,2,3 vs 4,5,6) 9 214 76-24 

D2 Diabetes 8 768 65-35 D7 Haberman 3 306 74-26 

D3 Ecoli (0,1 vs 5) 6 240 90-10 D8 New Thyroid 5 215 84-16 

D4 Ecoli 2 7 336 85-15 D9 Pima 8 768 65-35 

D5 Ecoli 3 7 336 90-10 D10 Wine Red Low vs High 11 280 75-25 
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Table 4: Performance results of mean and standard error across datasets with 5% imbalance levels. Bold numbers indicate 
the mean of method performance is the best among all comparable methods. 

  F1 
Dataset CDO BL-SMOTE DB-SMOTE MAHAKIL 
D1 0.9528 (± 0.022) 0.9443 (± 0.023) 0.9487 (± 0.022) 0.9494 (± 0.023) 
D2 0.4834 (± 0.067) 0.4639 (± 0.125) 0.4987 (± 0.096) 0.5964 (± 0.054) 
D3 0.9091 (± 0.089) 0.8860 (± 0.095) 0.9113 (± 0.101) 0.9158 (± 0.086) 
D4 0.8529 (± 0.091) 0.8467 (± 0.070) 0.8635 (± 0.074) 0.8221 (± 0.111) 
D5 0.6441 (± 0.103) 0.6788 (± 0.083) 0.6600 (± 0.081) 0.6365 (± 0.109) 
D6 0.8515 (± 0.065) 0.8004 (± 0.084) 0.8181 (± 0.081) 0.8378 (± 0.070) 
D7 0.4327 (± 0.127) 0.2555 (± 0.151) 0.3747 (± 0.133) 0.4084 (± 0.139) 
D8 0.9628 (± 0.046) 0.9458 (± 0.056) 0.9551 (± 0.043) 0.9571 (± 0.041) 
D9 0.4845 (± 0.065) 0.4582 (± 0.120) 0.4888 (± 0.097) 0.5964 (± 0.054) 
D10 0.6600 (± 0.105) 0.4915 (± 0.165) 0.5763 (± 0.127) 0.6317 (± 0.117) 
  G-Means 
Dataset CDO BL-SMOTE DB-SMOTE MAHAKIL 
D1 0.9681 (± 0.014) 0.9616 (± 0.017) 0.9646 (± 0.016) 0.9668 (± 0.015) 
D2 0.5890 (± 0.050) 0.5690 (± 0.102) 0.6025 (± 0.073) 0.6861 (± 0.034) 
D3 0.9521 (± 0.066) 0.9109 (± 0.087) 0.9415 (± 0.086) 0.9552 (± 0.065) 
D4 0.9260 (± 0.041) 0.9130 (± 0.049) 0.9285 (± 0.043) 0.9108 (± 0.048) 
D5 0.8890 (± 0.045) 0.9068 (± 0.053) 0.8841 (± 0.064) 0.8907 (± 0.042) 
D6 0.8916 (± 0.059) 0.8378 (± 0.077) 0.8578 (± 0.075) 0.8854 (± 0.060) 
D7 0.5883 (± 0.085) 0.3963 (± 0.132) 0.5541 (± 0.090) 0.5767 (± 0.082) 
D8 0.9847 (± 0.023) 0.9581 (± 0.047) 0.9762 (± 0.028) 0.9789 (± 0.026) 
D9 0.5885 (± 0.050) 0.5671 (± 0.098) 0.5966 (± 0.073) 0.6861 (± 0.034) 
D10 0.7450 (± 0.089) 0.5874 (± 0.144) 0.6760 (± 0.115) 0.7442 (± 0.099) 

 PR AUC 
Dataset CDO BL-SMOTE DB-SMOTE MAHAKIL 
D1 0.9821 (± 0.062) 0.9778 (± 0.067) 0.9801 (± 0.065) 0.9815 (± 0.061) 
D2 0.8279 (± 0.062) 0.8437 (± 0.062) 0.8268 (± 0.067) 0.8175 (± 0.065) 
D3 0.9981 (± 0.003) 0.9978 (± 0.003) 0.9985 (± 0.002) 0.9981 (± 0.003) 
D4 0.9803 (± 0.039) 0.9769 (± 0.039) 0.9796 (± 0.036) 0.9798 (± 0.038) 
D5 0.9934 (± 0.004) 0.9927 (± 0.005) 0.9924 (± 0.005) 0.9925 (± 0.006) 
D6 0.9559 (± 0.094) 0.9662 (± 0.068) 0.9614 (± 0.082) 0.9560 (± 0.094) 
D7 0.8391 (± 0.056) 0.8222 (± 0.060) 0.8182 (± 0.060) 0.8238 (± 0.064) 
D8 0.9990 (± 0.001) 0.9988 (± 0.002) 0.9989 (± 0.001) 0.9989 (± 0.001) 
D9 0.8291 (± 0.062) 0.8433 (± 0.062) 0.8259 (± 0.067) 0.8175 (± 0.065) 
D10 0.9578 (± 0.057) 0.9488 (± 0.066) 0.9517 (± 0.059) 0.9571 (± 0.056) 
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Table 5: performance results of mean and standard error across datasets with 10 minority instances. Bold numbers indicate 
the mean of method performance is the best among all comparable methods. 

  F1 
Dataset CDO BL-SMOTE DB-SMOTE MAHAKIL 
D1 0.9465 (± 0.021) 0.9358 (± 0.029) 0.9453 (± 0.024) 0.9417 (± 0.025) 
D2 0.3799 (± 0.085) 0.2176 (± 0.111) 0.3818 (± 0.081) 0.4434 (± 0.148) 
D3 0.8490 (± 0.115) 0.8571 (± 0.105) 0.8725 (± 0.119) 0.8548 (± 0.130) 
D4 0.8586 (± 0.082) 0.8438 (± 0.075) 0.8617 (± 0.077) 0.8330 (± 0.089) 
D5 0.6509 (± 0.086) 0.6828 (± 0.093) 0.6763 (± 0.076) 0.6456 (± 0.101) 
D6 0.8549 (± 0.070) 0.8187 (± 0.089) 0.8240 (± 0.081) 0.8672 (± 0.062) 
D7 0.4398 (± 0.108) 0.2822 (± 0.121) 0.3788 (± 0.116) 0.4114 (± 0.118) 
D8 0.9753 (± 0.029) 0.9510 (± 0.063) 0.9672 (± 0.037) 0.9716 (± 0.035) 
D9 0.3980 (± 0.078) 0.2125 (± 0.114) 0.3846 (± 0.078) 0.4389 (± 0.141) 
D10 0.6769 (± 0.074) 0.5128 (± 0.137) 0.6413 (± 0.091) 0.6525 (± 0.099) 

  G-Means 
Dataset CDO BL-SMOTE DB-SMOTE MAHAKIL 
D1 0.9625 (± 0.014) 0.9514 (± 0.027) 0.9588 (± 0.019) 0.9580 (± 0.020) 
D2 0.5267 (± 0.062) 0.3454 (± 0.159) 0.5372 (± 0.055) 0.6261 (± 0.062) 
D3 0.9128 (± 0.101) 0.8908 (± 0.094) 0.9073 (± 0.106) 0.9194 (± 0.096) 
D4 0.9301 (± 0.044) 0.9122 (± 0.057) 0.9332 (± 0.042) 0.9188 (± 0.045) 
D5 0.8918 (± 0.044) 0.8955 (± 0.060) 0.8975 (± 0.053) 0.8905 (± 0.051) 
D6 0.8882 (± 0.066) 0.8516 (± 0.080) 0.8597 (± 0.074) 0.9029 (± 0.049) 
D7 0.5905 (± 0.079) 0.4327 (± 0.107) 0.5432 (± 0.078) 0.5765 (± 0.080) 
D8 0.9927 (± 0.011) 0.9675 (± 0.055) 0.9787 (± 0.030) 0.9889 (± 0.018) 
D9 0.5310 (± 0.064) 0.3476 (± 0.156) 0.5364 (± 0.054) 0.6258 (± 0.061) 
D10 0.7691 (± 0.068) 0.6105 (± 0.119) 0.7135 (± 0.071) 0.7467 (± 0.088) 

  PR AUC 
Dataset CDO BL-SMOTE DB-SMOTE MAHAKIL 
D1 0.9937 (± 0.004) 0.9855 (± 0.015) 0.9911 (± 0.008) 0.9919 (± 0.007) 
D2 0.8099 (± 0.063) 0.7950 (± 0.071) 0.8131 (± 0.055) 0.8064 (± 0.059) 
D3 0.9903 (± 0.023) 0.9888 (± 0.024) 0.9894 (± 0.023) 0.9882 (± 0.027) 
D4 0.9838 (± 0.029) 0.9817 (± 0.028) 0.9825 (± 0.027) 0.9826 (± 0.028) 
D5 0.9902 (± 0.020) 0.9901 (± 0.017) 0.9908 (± 0.016) 0.9893 (± 0.021) 
D6 0.9609 (± 0.092) 0.9655 (± 0.075) 0.9625 (± 0.084) 0.9625 (± 0.086) 
D7 0.8233 (± 0.065) 0.8139 (± 0.063) 0.8094 (± 0.069) 0.8127 (± 0.067) 
D8 0.9923 (± 0.032) 0.9925 (± 0.030) 0.9923 (± 0.031) 0.9923 (± 0.032) 
D9 0.8134 (± 0.062) 0.7963 (± 0.070) 0.8139 (± 0.054) 0.8085 (± 0.059) 
D10 0.9586 (± 0.054) 0.9449 (± 0.064) 0.9535 (± 0.057) 0.9563 (± 0.053) 
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Table 6: performance results of Mann-Whitney test across datasets with 5% imbalance levels. Each figure reports the 
frequency that the selected method is significantly better than its comparable methods within the same dataset (p < 0.05). 

F1 
Dataset CDO BL-SMOTE DB-SMOTE MAHAKIL Dataset CDO BL-SMOTE DB-SMOTE MAHAKIL 
D1 3 0 0 1 D6 2 0 0 2 
D2 0 0 1 3 D7 3 0 1 1 
D3 0 0 0 0 D8 0 0 0 0 
D4 1 1 1 0 D9 0 0 0 3 
D5 0 3 0 0 D10 2 0 1 1 

G-Means 
  CDO BL-SMOTE DB-SMOTE MAHAKIL Dataset CDO BL-SMOTE DB-SMOTE MAHAKIL 
D1 2 0 0 1 D6 2 0 1 2 
D2 0 0 1 3 D7 2 0 1 1 
D3 0 0 1 1 D8 3 0 1 1 
D4 1 0 1 0 D9 0 0 1 3 
D5 0 3 0 0 D10 2 0 1 1 

PR-AUC 
 Dataset CDO BL-SMOTE DB-SMOTE MAHAKIL Dataset CDO BL-SMOTE DB-SMOTE MAHAKIL 

D1 1 0 1 1 D6 0 0 0 0 
D2 1 3 1 0 D7 3 0 0 0 
D3 0 0 0 0 D8 0 0 0 0 
D4 0 0 0 0 D9 1 3 1 0 
D5 0 0 0 0 D10 0 0 0 1 

Table 7: performance results of Mann-Whitney test across datasets with 10 minority instances. Each figure reports the 
frequency that the selected method is significantly better than its comparable methods within the same dataset (p < 0.05). 

F1 
Dataset CDO BL-SMOTE DB-SMOTE MAHAKIL Dataset CDO BL-SMOTE DB-SMOTE MAHAKIL 
D1 1 0 1 0 D6 2 0 0 2 
D2 1 0 1 3 D7 3 0 1 2 
D3 0 0 2 0 D8 2 0 1 1 
D4 2 0 2 0 D9 1 0 1 3 
D5 0 2 2 0 D10 1 0 1 1 

G-Means 
  CDO BL-SMOTE DB-SMOTE MAHAKIL Dataset CDO BL-SMOTE DB-SMOTE MAHAKIL 
D1 2 0 1 0 D6 2 0 0 2 
D2 1 0 1 3 D7 2 0 1 2 
D3 0 0 1 1 D8 2 0 0 2 
D4 2 0 2 0 D9 1 0 1 3 
D5 0 0 0 0 D10 2 0 1 1 

PR-AUC 
 Dataset CDO BL-SMOTE DB-SMOTE MAHAKIL Dataset CDO BL-SMOTE DB-SMOTE MAHAKIL 
D1 1 0 1 1 D6 0 0 0 0 
D2 1 0 0 0 D7 3 0 0 0 
D3 0 0 0 0 D8 0 0 0 1 
D4 1 0 0 0 D9 1 0 0 0 
D5 0 1 1 0 D10 0 0 0 0 

The Mann-Whitney test is performed for each 
pairing of all 4 comparable methods. This implies that 
there are 6 total combinations of pairings available.  
Table 6 and 7 displays the results from the test, where 
each figure represents the frequency that the specified 

method is statistically better than its comparable 
method.  

From Table 6, CDO performs the best across 10 
datasets where there is a 5% imbalanced ratio. It 
statistically outperforms its comparable algorithms 
on 11 occasions based on F1, 12 occasions based on 
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G-Means and 6 occasions based on PR-AUC. 
MAHAKIL comes next in line in terms of 
performance, where it statistically outperforms its 
comparable methods on 11 occasions based on F1, 13 
occasions based on G-Means and only 2 occasions 
based on PR-AUC. Both BL-SMOTE and DB-
SMOTE only statistically outperform their 
comparable methods on 4 occasions using F1. DB-
SMOTE performs significantly better when evaluated 
using G-Means, where it outperformed its 
comparable methods on 8 occasions. BL-SMOTE 
comes last as it only statistically outperformed its 
comparable methods on 3 occasions based on G-
Means and on 6 occasions based on PR-AUC. 

From Table 7, CDO is the best performing 
algorithm for 10 minority instances. It statistically 
outperformed its comparable algorithms on 13 
occasions based on F1, 14 occasions based on G-
Means and 7 occasions based on PR-AUC. For the 
remaining algorithms, MAKAHIL is the 2nd best 
performing algorithm as it statistically outperformed 
its comparable methods on 12 occasions using F1, 14 
occasions using G-Means and 2 occasions using PR- 
AUC. DB-SMOTE comes 3rd, as it statistically 
outperformed its comparable methods on 12 
occasions using F1, 8 occasions using G-Means and 
2 occasions using PR-AUC. BL-SMOTE comes last 
as it barely outperformed other methods (2 occasions 
using F1, 0 occasion on G-Means and 1 occasion on 
PR-AUC). 

6 DISCUSSIONS 

As shown in the statistical test results, although CDO 
outperforms MAHAKIL in most cases, CDO and 
MAHAKIL have superior performance results when 
compared to BL-SMOTE and DB-SMOTE. This can 
be explained by their better ability to capture more 
information when constructing minority generation 
region. Both CDO and MAHAKIL consider the entire 
minority class distribution and generating instances 
within the boundaries of the identified data generation 
region diversely.  In contrast, SMOTE-based methods 
typically create synthetic instances using linear 
interpolation.  

If we evaluate the statistical significance of 
CDO’s performance, it has better performance 
compared to MAHAKIL when minority instances 
become more sparse. This is due to the nature of 
MAHAKIL algorithm that it only performs well when 
minority data distribution is convex and when there 
are sufficient  number of minority instances 
(Khorshidi & Aickelin, 2021). In addition, 

MAHAKIL algorithm does not consider clusters 
within datasets, which results in a broader generation 
region for minority instances and leads to a higher 
false positive rate. The main reason for superiority of 
CDO in comparison with MAHAKIL in terms of PR-
AUC is that MAHAKIL generates synthetic 
instances, even though few, in the majority space (see 
Figure 1). This leads to lower precision that can be 
picked up by PR-AUC. 

7 CONCLUSIONS 

In this study, our key objective is to design an 
algorithm which generates diversified synthetic 
instances within the minority class while considering 
the distribution of the minority data space. We 
incorporate diversity optimization which optimises 
both similarity to minority instances and diversity of 
synthetic instances. The proposed algorithm first 
utilises clustering technique to identify the 
boundaries for the generation of minority instances 
and preserve similarity between minority instances. 
Subsequently, diversity  optimization is incorporated 
to promote diversity within clusters. The proposed 
method CDO is evaluated on 10 real-world datasets, 
and it has statistically superior performance to its 
comparable methods. Its superior performance can be 
attributed to its ability to identify the minority space 
for synthetic data generation and its ability to obtain 
optimal spread of generated instances due to genetic 
algorithm. The proposed algorithm is evaluated on 2 
class imbalance datasets. For future research, we 
extend CDO to address multi-class imbalance 
problems. 
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