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Abstract: Alzheimer’s disease is a pogressive neurodegenerative disease that constitutes most cases of dementia. This 
study aims to converge existing data from GWAS studies and bulk RNA-Seq from patients with and without 
Alzheimer’s disease to prioritize genes involved in the disease pathology. For this study, I examine existing 
bulk RNA-Seq datasets from patients with and without Alzheimer’s disease [GSE159699], focusing on genes 
previously identified as links to late-onset Alzheimer’s disease in GWAS studies. I confirmed my results with 
a publicly available AD transcriptomics consensus tool published by the Swarup lab. In my analysis, I 
identified shared gene expression differences in STAG3L5P, MEF2C, MS4A6A, PILRA and CASS4 between 
Alzheimer’s disease and control patients across several datasets. These genes were previously linked to late-
onset Alzheimer’s disease. Further investigation should explore how their mutations and gene expression 
differences contribute to the mechanisms underlying Alzheimer’s disease. 

1 INTRODUCTION 

Alzheimer’s disease (AD) was first diagnosed by 
Alois Alzheimers in 1907 in a case of a 51-year-old 
woman who was experiencing a relatively rapidly 
deteriorating memory along with psychiatric 
disturbances. Over time, the definition of AD has 
changed, and today we consider it to be a neurological 
disorder accompanied by a hallmark pathology: 
presence of extracellular amyloid beta plaques and 
intracellular neurofibrillary tangles formed of tau 
protein in the brain (Matthews, Xu, Gaglioti, Holt, 
Croft, Mack, McGuire. 2019); (Morgan, 2011). 
Currently, AD affects more than 20 million people 
worldwide, with about 135 million people expected 
to develop it by 2050 (Castellani, Rolston, Smith. 
2010); (Fratiglioni, Ronchi, Agüero-Torres. 1999). 

AD can be classified into two categories, early 
and late-onset, defined by the age of diagnosis and 
inheritance pattern (Masters, Bateman, Blennow, 
Rowe, Sperling, Cummings. 2015). Whilst early-
onset AD forms around 10% of the cases, around 90% 
of AD cases are late-onset, with 85% of the patients 
older than 75 years of age (Rabinovici. 2019). 

Multiple genetic mutations are responsible for the 
development of AD. Mutations in genes processing 
amyloid beta proteins are linked to early-onset AD: 
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APP, PSEN1 and PSEN2 (Masters, Bateman, 
Blennow, Rowe, Sperling, Cummings. 2015). 
Genome-wide association studies (GWAS) have 
identified a number of risk factors related to late-
onset AD, including the APOE allele e4 (Rabinovici. 
2019). APOE e4 carriers have a higher risk of 
developing late-onset AD, in contrast to carriers of e2 
or e3 alleles. Subsequent GWAS studies have 
identified dozens other loci conferring risk factors for 
late-onset AD, including TREM2, ADAM10, 
ADAMTS1 and others (Kunkle, 2019); (Jansen, 
2019). 

To understand more about the mechanism behind 
the pathology of AD, I evaluated the expressions of 
genes linked to late-onset AD in patients with and 
without Alzheimer’s disease. I assessed whether the 
genes that confer a known risk towards late-onset 
Alzheimer’s disease are also differentially expressed 
in patients with Alzheimer’s disease, regardless of 
their mutation status. 

2 METHODOLOGY 

Publicly available bulk RNA-Seq datasets from post-
mortem temporal lobes from patients with and 
without Alzheimer’s disease were used to investigate 
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the expression of genes previously identified as 
linked to late-onset AD [GSE159699, 9]. The data 
was re-analyzed using DESeq2 in Rstudio (Michael, 
2014). Six patients that were identified as outliers via 
PCA were removed from the dataset, including three 
patients with AD and three healthy controls. Using 
boxplots, I investigated the expression of genes 
previously identified as linked to late-onset AD 
(Kunkle, 2019); (Jansen, 2019) in the GSE159699 
dataset. To compare my results with previously 
published literature, I investigated the expression of 
the genes linked to late-onset AD via a publicly 
available AD consensus transcriptomics resource 
developed by the Swarup lab (Morabito, 2020) which 
reanalyzed human AD gene-expression datasets from 
several resources, including the ROSMAP dataset 
(Bennett, 2018) and the Mayo dataset (Allen, 2016).  

The main goal of this study was to investigate the 
expression of genes previously identified as 
associated with late-onset AD in GWAS studies, in 
bulk RNA-Seq data from post-mortem brains with 
and without Alzheimer’s disease. For this, I identified 
genes of interest associated with late-onset AD 
published in recent GWAS studies (Kunkle, 2019); 
(Jansen, 2019). Using bulk RNA-Seq dataset from the 
temporal lobes of these patients, I compared the 
expression of the genes linked to late-onset AD in the 
temporal lobes of patients with and without AD 
[GSE159699, 9]. To relate my research to previously 
published literature, I compared my results to the AD 
consensus transcriptomics resources by the Swarup 
lab (Nativio, 2020) which was used to display AD 
consensus gene expression from multiple sources 
(Bennett, 2018); (Allen, 2016). 

The GSE159699 dataset is a bulk RNA-Seq 
dataset from the temporal lobes of 12 patients with 
AD, 10 healthy age-matched controls to the AD 
patients and 8 healthy young controls (Nativio, 2020). 
First, I plotted all patients using a PCA plot and a 
heatmap of the top 20 differentially expressed genes 
in DESeq2 (Michael, 2014). I identified 6 outliers, 
that were significantly different from all the other 
patients. After removing the outliers from the dataset, 
the AD patients (n=9) were separated from the 
healthy young (n=4) and healthy old controls (n=7) in 
the PCA plot, with PC1 explaining 19% variance in 
the dataset (Figure 1). A heatmap of the top 20 
differentially expressed genes did not identify any 
significant difference between AD patients and the 
healthy and young controls. This result was 
unremarkable and in line with previous results 
published by Nativio et al. (2020), who reported 
differences in expression among the genes related to 
epigenetic alterations (Nativio, 2020). The original 

paper by Nativio et al. (2020) analyzed gene 
expression of only genes related to the GO term 
‘regulation of transcription’ (Nativio, 2020), whereas 
my heatmap graph presented the top 20 genes that 
were differentially expressed among the AD, young 
and old healthy controls (Figure 1). 

 

 
Figure 1: PCA and heatmap of top 20 differentially 
expressed genes among the bulk RNA-Seq data from the 
temporal lobes of patients with and without AD 
[GSE159699, 9]. 

Because genes that are differently expressed 
between AD and controls were previously discussed 
and reported in the original paper by Nativio et al. 
(Nativio, 2020), I did not seek to replicate the analysis, 
but instead decided to look into whether genes 
previously identified as links to late-onset AD in 
GWAS studies are differently expressed between AD 
and controls in the GSE159699 bulk RNA-Seq 
dataset which contained AD patients, along with old 
and healthy controls. For this, I identified genes 
linked to late-onset AD using previously published 
GWAS studies (Kunkle, 2019); (Jansen, 2019). For 
each gene previously identified as linked to late-onset 
AD, I reported whether it was differently expressed in 
the current dataset. In addition, I crossed my results 
with the AD transcriptomics consensus resource 
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developed by the Swarup lab (Morabito, 2020). This 
resource allows plotting of gene expression 
differences among the brains of AD patients, age-
matched patients, and healthy controls. The plots 
below summarize fold-change expressions between 
AD and controls using the GSE159699 dataset 
(Nativio, 2020), and the AD consensus resource by 
the Swarup lab (Morabito, 2020). 

 

 
Figure 2: The boxplot of differences in STAG3L5P-
PVRIG2P-PIL gene expression among AD, along with 
healthy young and old controls indicates a significant 
increase of expression of STAG3L5P - PVRIG2P - PIL in 
the AD group. On the left is the boxplot of gene expression 
differences plotted using the bulk RNA-Seq data from the 
temporal lobes of patients with and without AD 
[GSE159699, 9]. On the right is the boxplot of gene 
expression differences in bulk RNA-Seq datasets using the 
AD gene expression consensus resource developed by the 
Swarup lab (Morabito, 2020). Three published datasets 
show an upregulated expression while three shows a 
downregulated expression. 

The STAG3L5P gene displays an increase in 
expression in AD vs control patients in the 
GSE159699 dataset. When compared to the AD 
consensus transcriptomics resource by the Swarup lab, 
STAG3L5P also showed an increase in expression in 
the ROSMAP dataset (Fig.7a). Previously, the 
exome-sequencing studies showed that the 
associations with two variants in a novel gene STAG3 
were also replicated and significantly associated with 
AD in the replication analysis. The rare variants in 
STAG3 identified by WGS suggested the possibility 
that STAG3 has a distinct mechanistic role in AD 

which is different from other normal variants (Joshua, 
2020). 

 

 
Figure 3: The boxplot of differences in ME2FC gene 
expression among AD patients, along with healthy young 
and old controls indicates a significant decrease in ME2FC 
of expression in the AD group. On the left is the boxplot of 
gene expression differences plotted using the bulk RNA-
Seq data from the temporal lobes of patients with and 
without AD [GSE159699, 9]. On the right is the boxplot of 
gene expression differences in bulk RNA-Seq datasets 
using the AD gene expression consensus resource 
developed by the Swarup lab (Morabito, 2020). 

A Similar process was performed for the MEF2C 
gene, which showed a decrease in expression in AD 
vs control patients in the GSE159699 dataset. 
Comparison to the AD consensus resource by the 
Swarup lab revealed unclear changes in gene 
expression between AD patients and the controls, 
displaying a decreased expression in AD brains using 
the Mayo and the MSMM dataset, but not in the other 
datasets (Figure 3). MEF2C has a role in conferring 
resilience to pro-inflammatory stimuli in microglia 
(Deczkowska, 2017). Microglia plays an important 
role in AD, and MEF2C restricts the microbial 
response to immune stimuli. Additionally, other 
GWAS studies show that mutations in MEF2C are 
linked to late-onset AD. Inflammation is known to be 
associated withcognitive dysfunction and may 
contribute to the pro-inflammatory milieu of the brain 
in AD or aging patients (Simen, 2011). 
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MS4A6A displays an increased expression in the 
AD group using the GSE159699 dataset, Mayo and 
MSSM dataset, but the gene expression relationship 
is unclear using the other datasets from the AD 
consensus resource by the Swarup lab (Nativio, 2020) 
(Morabito, 2020). Previous studies show that 
MS4A6A is associated with AD and is likely to have 
an immune-related function (Reitz. 2015); (Paul, 
2011). 

 

 
Figure 4: The boxplot of differences in MS4A6A gene 
expression among AD patients along with healthy young 
and old controls indicates an increase in MS4A6A of 
expression in the AD group. On the left is the boxplot of 
gene expression differences plotted using the bulk RNA-
Seq data from the temporal lobes of patients with and 
without AD [GSE159699, 9]. On the right is the boxplot of 
gene expression differences in bulk RNA-Seq datasets 
using the AD gene expression consensus resource 
developed by the Swarup lab (Morabito, 2020). 

The PILRA gene is associated with late-onset AD 
and exhibits an increase in gene expression in the AD 
vs control group in the GSE159699 dataset and the 
MSSM datasets from the AD consensus resource by 
the Swarup lab. Previous research revealed a 
significant burden of PILRA variants in the exome-
wide burden analysis of AD (Patel, 2018). 

 
 

 
Figure 5: The boxplot of differences in PILRA gene 
expression among AD patients along with healthy young 
and old controls indicates an increase in PILRA expression 
in the AD group. On the left is the boxplot of gene 
expression differences plotted using the bulk RNA-Seq data 
from the temporal lobes of patients with and without AD 
[GSE159699, 9]. On the right is the boxplot of gene 
expression differences in bulk RNA-Seq datasets using the 
AD gene expression consensus resource developed by the 
Swarup lab (Morabito, 2020). 

 

 
Figure 6: The boxplot of differences in CASS4 gene 
expression among AD patients along with healthy young 
and old controls indicates an increase in CASS4 expression 
in the AD group. On the left is the boxplot of gene 
expression differences plotted using the bulk RNA-Seq data 
from the temporal lobes of patients with and without AD 
[GSE159699, 9]. On the right is the boxplot of gene 
expression differences in bulk RNA-Seq datasets using the 
AD gene expression consensus resource developed by the 
Swarup lab (Morabito, 2020). 

The CASS4 gene exhibits an increase in 
expression in AD patients vs the control group in the 
GSE159699 dataset as well as the Mayo dataset using 
the AD consensus resource from the Swarup lab. 
CASS4 was previously found to be associated with 
the amyloid, tau pathology, cytoskeletal function and 
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the axonal transport pathways identified in GWAS 
studies (Reitz. 2015). It was found to retain the motifs 
required for the interaction with PTK2B and to 
contribute to the pathology of AD (Beck, 2014). 

3 DISCUSSIONS 

AD is a progressive neurodegenerative disease that 
accounts for the most cases of dementia. This study 
aimed to converge existing data from GWAS studies 
and RNA-Seq to prioritize the high-risk genes for AD. 
I found that 5 genes, STAG3L5P, MEF2C, MS4A6A, 
PILRA and CASS4, were both linked to AD in the 
GWAS studies and differentially expressed in the 
RNA-Seq analysis between the AD and control 
groups using the GSE159699 dataset (Nativio, 2020). 
To validate my findings, I compared my results with 
an AD transcriptomics consensus tool published by 
the Swarup lab (Morabito, 2020), that reanalyzed 
golden-standard bulk RNA-Seq datasets from AD 
patients along with healthy old and young controls 
using various datasets, including Mayo and 
ROSMAP (Bennett, 2018); (Allen, 2016). 

4 CONCLUSIONS 

My analysis shows that STAG3L5P, MEF2C, 
MS4A6A, PILRA and CASS4 exhibit changes in 
expression between AD and control patients that are 
fairly consistent across different datasets. These 
results suggest that these genes could be particularly 
important in AD. All these genes were previously 
found to be associated with AD in GWAS studies 
(Kunkle, 2019); (Jansen, 2019). In addition, their 
gene functions are relevant to AD mechanisms. 
STAG3LAP has several rare variants identified 
through exome-wide analysis, with suspected distinct 
mechanisms in causing AD (Joshua, 2020). MS4A6A 
has a gene function associated with microglial 
function and immunity (Reitz. 2015); (Hollingworth, 
2011). The five genes explored in this study should 
be further investigated to confirm their causality to 
AD, and the role of the genetic variants and changes 
in the expression of mechanisms leading to AD. 

Further understanding of how STAG3L5P, 
MEF2C, MS4A6A, PILRA and CASS4 contribute to 
AD may be used for early detection, prevention and 
drug development in AD. 
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