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Abstract: The evolutionary process of a protein family is usually an up and down fluctuating curve when it presents in 
the x, y coordinates, where the x-axis is time and y-axis is an evolutionary feature of proteins. This irregular 
curve characterizes its patterns with various periodicities and unexplainable time frames. In the past, we 
used the fast Fourier transform (FFT) to find these periodicities in hemagglutinin, a surface protein from 
influenza A virus. However, FFT cannot distinguish the up and down fluctuations without periodicity. In 
this study, we employ the analytical solution of a system of differential equations from our previous studies 
to determine the half-life of evolution of the polymerase basic protein 1 (PB1) from influenza A virus from 
1918 to 2009. We (i) converted 2352 PB1 into the predictable portion, (ii) presented these predictable 
portions according to their sampling times with respect to subtypes, (iii) employed the analytical solution to 
fit the predictable portions versus time profile, (iv) used several statistical measures to determine the 
goodness-of-fit, and (v) obtained the half-life of evolutions with respect to subtypes. Although our study 
sheds some insight onto the PB1evolution, much work is needed to better understand the virus evolution. 

1 INTRODUCTION1 

It is widely acceptable and well known that 
mutations in protein push the protein evolution 
forward (Levine, 2020, Lyons, Lauring, 2018, 
Bloom, Arnold. 2009). In the x, y coordinates, the x-
axis and y-axis are time and a protein feature, which 
represents its evolution. Based upon this evolution-
time profile, one can easily perceive some particular 
aspects of a protein evolution. In this x, y 
coordinates, the y-axis is can be any protein feature 
subject to mutations. In other words, a mutation 
changes a given protein feature, which leads to a 
different value in the y-axis. 

In such x, y coordinates, the evolutionary process 
can be a line up and down irregularly, no matter 
whether it presents in alphabets, which are form of 
protein, or in numeric values, which are converted 
using any of 540-plus conversion methods 
(Kawashima et al., 2008, Wu, Yan, 2008). 
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It is useful and meaningful to find the patterns in 
such irregular up and down evolution-time profile. 
In the past, our research group used the fast Fourier 
transform to find the periodicity in the evolution of 
hemagglutinins from influenza A virus (Wu, Yan, 
2005, 2006). However, the evolution of 
hemagglutinins does not have a unique periodicity, 
but many periodicities, because the fast Fourier 
transform can decompose a combined periodicity 
into many components. Therefore, it would be more 
useful and meaningful to pursue another aspect of 
evolution, the half-life of irregular up and down 
evolutionary line in the x, y coordinates. 

In the past, our research group developed a 
system of differential equations to describe the 
evolution of influenza A virus hemagglutinins (Wu, 
Yan, 2009), matrix protein 2 (Yan et al., 2009), 
matrix protein 1 (Yan et al., 2010), polymerase 
acidic protein (Yan, Wu, 2010), nucleoprotein (Yan, 
Wu, 2011), and neuraminidase (Yan, Wu, 2021). We 
prefer three terms of the analytical solution as y(t) = 
A1e-k1tcos(α1t+φ1) + A2e-k2tcos(α2t+φ2) + A3e-

k3tcos(α3t+φ3) + C, where y is the protein feature of 
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evolution, A, α and k are parameters, t is the time, ϕ 
is a phase difference, and C is a constant. 

In this study, we are interested in the polymerase 
basic protein 1 (PB1) from influenza A virus. PB1 is 
a subunit of RNA-dependent RNA polymerase 
complex, which is associated with the transcription 
and replication of the influenza A viral genome 
(Engelhardt, Fodor, 2006, Nayak et al., 2004). PB1 
is important for the efficient propagation of the virus 
in the host and for its adaptation to new hosts 
(Brower-Sinning et al., 2009) and considered as a 
determinant of the pathogenicity of the 1918 
pandemic virus (Watanabe et al., 2009). Besides, 
PB1 is the major target for both CD4(+) and CD8(+) 
T-cell responses (Assarsson et al., 2008). Because of 
this importance, we wish to find some patterns in 
PB1 evolution. 

2 MATERIALS AND METHODS 

2.1 Data 

5125 full-length PB1s of influenza A virus sampled 
from 1918 to 2009 were obtained from the influenza 
virus resources (Influenza virus resources, 2021). 
After excluded identical sequences (Furuse et al., 
2009), 2352 PB1s were used in this study. 

2.2 PB1 Evolution 

In x, y coordinates, we use the time in the x-axis and 
the amino-acid pair predictability (AAPP) of each 
PB1 as protein evolution feature in the y-axis, and 
AAPP was computed with the following example. 
ABL31752 PB1 from human H5N1 influenza virus, 
strain A/Indonesia/CDC836/2006(H5N1), comtains 
757 amino acids. The first and second amino acids 
can be counted as an adjacent amino-acid pair, the 
second and third as another pair, the third and fourth, 
until the 756th and 757th, thus there are totally 756 
adjacent amino-acid pairs. 

This PB1 has 51 serines (S) and 59 threonines 
(T), if the permutation can predict the appearance of 
amino-acid pair ST: it must appear 4 times 
(51/757×59/756×756=3.97). Actually it does appear 
four times, so the pair ST is predictable. In contrast, 
this PB1 has 33 phenylalanines (F) and 50 glutamic 
acids (E), if the permutation can predict the 
appearance of amino-acid pair FE: it must appear 
twice (33/757×50/756×756=2.18). But, it appears 
six times in realty, so the pair FE is unpredictable. In 
this way, all amino-acid pairs in ABL31752 PB1 can 

be classified as predictable and unpredictable, which 
are 26.98% and 73.02%. 

In the second example, ABL31774 PB1 from 
human influenza virus isolated in 2006 has only one 
amino acid different from ABL31752 PB1 at 
position 598. However, its predictable and 
unpredictable portions are 25.40% and 74.60%. 
Thus, AAPP distinguishes one PB1 from another in 
terms of numbers rather than alphabets that represent 
amino acids. 

In this manner, we can use 26.98% to represent 
ABL31752 PB1 and 25.40% to represent ABL31774 
PB1 in the y-axis of x, y coordinates. This method is 
applied to all 2352 PB1 in this study. 

2.3 Half-Life of Evolution and 
Statistics 

We use the analytical solution shown in Introduction 
to fit the AAPP-time profile to get the half-life. The 
t-test was employed to compare the difference 
between uphill and downhill half-life, and P < 0.05 
is considered significant. The fitting was conducted 
using SigmaPlot (SPSS Inc., 2002). 

3 RESULTS AND DISCUSSION 

Figure 1 shows the evolution of 2352 PB1s over 90 
year for the NA subtypes. Graphically, Figure 1 has 
the following meanings: the solid curve in the top 
panel presents the evolution of 2352 PB1s from 
1918 to 2009, and each point is the mean value of 
predictable portions of all PB1s in a given year with 
its standard deviation (vertically grey line). The 
dotted line is the fitting by three-term of analytical 
solution. Similarly, the same meanings can be 
applied to other panels. In top panel, the time starts 
from 1918, when the Spanish pandemic occurred, 
for N1 subtype. However, this is not the case for the 
rest NA subtypes. Therefore, the imbalanced data 
may compromise us to use the analytical solution to 
fit these AAPP-tine profiles to find out the half-life 
of evolution. Thus, we conducted three statistical 
tests to determine the goodness-of-fit when we use a 
three-term analytical solution to treat these 
evolutionary curses. 
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Figure 1: Evolution of influenza A virus PB1 family from 
1918 to 2009 in terms of predictable portion of AAPP in 
different NA subtypes. The data present as mean±SD. The 
dotted lines are fitted curves using analytical solution. 

 
Figure 2: Residual over time for different NA subtypes. 

Figure 2 demonstrates the goodness-of-fit for 
fitting of data in Figure 1 by observing whether there 
is a trend in plotting residual over time. Actually, we 
cannot see any monotonic trend in any panel in 
Figure 2 although there is a tendency that the longer 
the time involved, the more the fluctuations. 
Nevertheless, we observed the relatively large 
fluctuations around 1980s. 

 
Figure 3: Evolution of influenza A virus PB1s from 1918 
to 2009 in terms of predictable portion of AAPP in all 
PB1s and different HA subtypes. The data present as 
mean±SD. The dotted lines are fitted curves using 
analytical solution. 

Figure 3 illustrates the evolution of 2352 PB1s 
over 90 year for the HA subtypes. Graphically, 
Figure 3 is completely similar to Figure 1, therefore, 
all the implications in Figure 1 are applicable to 
Figure 3. In Figure 3, we can see several 
dramatically sharp decreases in AAPP while there is 
only one such fall in Figure 1, suggesting the 
difference between HA and NA subtypes. 

Figure 4 exactly is the same as Figure 2, i.e. to 
observe any trend of residuals over time for the 
goodness-of-fit. Similarly, we cannot notice any 
monotonic trend in all the panels in Figure 4, 
suggesting a goodness-of-fit. Again, we can see 
some fluctuations around 1980s. Both Figures 3 and 
4 ran our first statistical test. 
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Figure 4: Residual over time in all and different HA 
subtypes. 

Figure 5 pictures the second statistical test, that 
is, residuals versus fitted values. Here, we are still 
looking for whether there is any trend between two 
variables. Indeed, there is no any visible trend 
although sometimes clusters formed. 

Figure 6 manifests the third statistical test, say, 
residuals versus actual values. Similarly, we wish to 
find whether there is any trend in these panels. In 
good agreement with the above two statistical tests, 
we cannot find out any monotonic trend although the 
residual increases as actual value increases in some 
cases, which are generally attributed to the 
unbalanced data because of difficulty in collecting 
samples of influenza A virus. Collectively, these 
three statistical tests confirmed goodness-of-fit when 
using three exponential terms of analytical solution. 

 
Figure 5: Residual versus fitted value of predictable 
portion for all and different subtypes of PB1. 

The solid curves in Figures 1 and 2 present the 
change in predictable portions of the PB1s over 
time. Their fluctuation renders us to find the 
downhill and uphill half-life, which then serves as 
initial values for fitting. With decaying exponential, 
the half-life is t½=ln(2)/k=0.696/k, where k=(lnypeak-
lnytrough)/tinterval, which is the downhill half-life. 
Hereafter, we can compute the uphill half-life in the 
similar way. Consequently, we can find the 
parameters in the three terms of analytical solution 
in Table 1. 

 
Figure 6: Residual versus actual value of predictable 
portion for all and different subtypes of PB1. 
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In Table 1, the third term in the analytical 
solution cannot be found by fitting for H4, H6, H9 
and H11. This phenomenon may not be surprising 
because the samples of those subtypes are quite 
imbalanced. On the other hand, this also indicates 
the limitation in fitting although the goodness-of-fit 

looks good. In reality, these parameters lack physical 
meanings in biological sense. This is the drawback 
of application of mathematical methods in biological 
and medical fields because it is always very hard to 
relate a model parameter to a biological and medical 
meaningful indicator. 

Table 1: Parameters for analytical solution. 

Subtype A1 k1 α1 ϕ 1 A2 k2 α 2 ϕ 2 A3 k3 α 3 ϕ 3 C R2 
All -15.28 0.97 0.55 1.80 -0.28 0.00 2.01 -5.96 -0.23 0.00 0.89 6.75 27.41 0.53
H1 5.67 0.00 -0.04 0.52 -8.17 0.87 1.36 -3.56 0.40 0.00 1.04 -1.53 21.95 0.69
H2 13.48 0.35 0.45 3.94 2.22 0.00 0.58 6.48 -1.19 0.00 1.78 1.93 27.78 0.85
H3 -0.67 0.02 0.68 4.76 -1.52 0.04 -0.25 3.35 0.57 0.02 0.90 4.13 27.14 0.60
H4 1.13 0.13 1.71 -1.84 1.95 0.15 0.39 4.10   27.63 0.84
H5 3.75 0.17 1.52 -0.82 -2.37 0.11 0.42 0.85 3.34 0.12 1.32 -3.08 27.32 0.71
H6 4.10 0.33 2.02 -0.70 0.27 0.00 1.31 -1.57   26.91 0.98
H7 -14.93 0.86 2.02 -3.36 -2.18 0.00 0.49 1.78 -1.58 0.00 0.72 3.09 28.02 0.98
H9 -0.60 0.03 2.35 14.1

3 -5.35 0.81 1.26 0.61     27.10 0.92 

H11 -3.80 0.12 0.19 4.94 -0.92 0.00 1.27 -0.38   29.07 0.84
N1 -0.46 0.00 1.08 1.07 -0.39 0.00 0.63 0.16 11.2

6 0.53 5.59 -0.54 27.25 0.54 

N2 2.38 0.22 1.95 -2.76 2.82 0.07 -0.26 -4.15 0.31 0.03 1.21 -8.55 26.97 0.60
N3 -2.74 0.00 0.64 7.03 2.55 0.00 0.68 6.51 2.04 0.15 -1.21 -6.86 27.71 0.76
N6 -29.25 0.99 1.99 -0.31 -0.26 0.00 2.08 1.69   27.80 0.98
N8 2.17 0.06 1.08 0.30 1.01 0.04 1.55 8.05 1.88 0.05 0.46 -0.22 28.40 0.52
N9 0.73 0.00 1.50 -0.40 -0.81 0.00 -0.31 3.37 0.66 0.02 0.87 1.82 28.40 0.94

Table 2. Half-life between uphill and downhill in influenza A virus PB1. 

Subtype Uphill half-life (years) Downhill half-life (years) t test 
P value Number Mean SD Number Mean SD 

All PB1 11 50.34 15.94 12 38.34 16.25 0.09
H1 11 46.64 19.90 13 41.82 19.28 0.55
H2 10 36.73 15.45 8 36.73 15.45 0.64
H3 6 44.83 31.65 6 39.30 19.13 0.72
H4 3 30.42 18.69 5 49.72 22.93 0.27
H5 7 42.67 16.68 10 54.99 22.18 0.23
H6 7 36.76 15.51 7 41.66 25.39 0.67
H7 5 32.68 18.57 6 44.19 18.30 0.33
H9 4 52.40 26.01 6 56.27 19.33 0.79
H11 6 38.21 13.15 4 36.63 14.85 0.86
N1 10 50.74 19.01 11 40.19 15.97 0.18
N2 8 34.09 15.07 10 38.09 12.77 0.55
N3 6 64.18 29.62 6 42.95 13.58 0.14
N6 8 56.55 20.38 7 58.74 28.13 0.87
N8 5 23.63 16.89 7 26.79 19.00 0.77
N9 6 48.69 21.35 7 45.96 24.09 0.83

 
Table 2 lists the half-life with statistical 

comparison, As no statistical difference was found 
between uphill and downhill half-lives, we can see 
that the half-life is ranged smaller in HA subtype 
than that in NA subtype, especially for the uphill 
half-life. Yet, the standard deviations (SD) are 
actually quite large, suggesting the sampling number 
is not large. This demonstrates another difficulty in 
modeling, that is, the experimental data always do 
not meet the demand from modelers. Therefore, do 

we need to design an experiment according to 
experimenters or modelers? 

The pandemic/epidemic mechanism is extremely 
complicated, and the current Covid-19 is the best 
proof that we know too little to implement any 
efficient and effective measures to stop the spread of 
coronavirus. Because of rich data in influenza virus, 
the detailed and comprehensive studies on influenza 
virus nevertheless can enrich our knowledge on 
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influenza virus, which can extrapolate to 
coronavirus. 

4 CONCLUSIONS 

In this study, we attempted to determine the half-life 
of PB1 from influenza A virus in terms of its 
evolutionary process. This is accomplished by using 
a three-term analytical solution of a system of 
differential equations obtained in our previous 
studies. In this way, we hope to reveal another 
aspect of virus evolution, however how to interpret 
the meaning of model parameters still requires more 
studies in the future. 
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