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Abstract: In this research paper, the evaluation of a new system for machine learning-based Named Entity Recognition
is presented. After introducing our approach supporting two fundamental tasks for training Named Entity
Recognition models using machine learning (data cleanup and data annotation), our features, prototype and
evaluation methodologies are described. Also, the results of our performed quantitative and qualitative exper-
iments validating our approach and user interface are shown. Finally, our evaluation results are discussed to
derive challenges for future work.

1 INTRODUCTION

Named Entity Recognition (NER) is a method of In-
formation Extraction that aims at recognizing Named
Entity s (NEs) in a Natural Language (NL) full text
(Konkol, 2015). NEs are, “a word or sequence of
words that [are] used to refer to something of inter-
est in a particular application’’ (Croft et al., 2010).
A typical NE can refer to a real-world object such
as organization, person, or location. The identifica-
tion and classification of NEs is known as Named En-
tity Recognition and Classification (NERC) (Nadeau
and Sekine, 2007). NER, being one of the most
fundamental tasks of Natural Language Processing
(NLP) (Jiang, 2012), is generally applied in systems
involving the semantic analysis of textual documents
and has found many applications in Information Dis-
covery (ID) (Dias et al., 2020) and Information Re-
trieval (IR) (Mahalakshmi, 2015). Techniques for
NER include hand-coded, based on human crafted
rules or dictionary lookups, and Machine Learning
(ML) (Nadeau and Sekine, 2007; Palshikar, 2013).
Our research particularly focuses on ML-based meth-
ods for NER as they have greatly evolved in recent
years and have been widely used in combination with

a https://orcid.org/0000-0002-0786-4253
b https://orcid.org/0000-0002-7344-6869
c https://orcid.org/0000-0001-8293-2802
d https://orcid.org/0000-0001-9715-1590

IR systems for accessing and retrieving various tex-
tual documents in domains like Software Engineering
(Liu et al., 2018), Social Media (Onal and Karagoz,
2015), and Medical Research (Nawroth et al., 2018).
“Machine Learning (ML) can be described as com-
putational approaches in which a specific function is
not programmed by a human being but by another
program, called learner, that uses existing example
data to generate programs called models, .... The pro-
cess of creating models is called training” (Swoboda,
2021). ML is an important method for performing
NER. However, applying it generally requires domain
specific knowledge in addition to software develop-
ment skills (Zhang and Tsai, 2003; Swoboda, 2021).

According to (Swoboda, 2021), training a ML
model for NER appears to be impossible without lin-
guistic skills and manually provided knowledge re-
sources. In the domain of NER, this may require
providing gold labels or defining manual rules to ex-
tract NEs in the target domain (Christian, 2021). Peo-
ple with general software development knowledge
may not have sufficient domain knowledge to provide
such labels or rules. The reason is that gold stan-
dard datasets required for model training are a con-
tinuous team effort involving domain experts and in-
formation modelers (Swoboda, 2021). Analogously,
domain experts may also lack the software engineer-
ing skills required for ML. However, such skills are a
prerequisite for ML as writing program codes (cod-
ing) to organize one’s domain data and being able
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to derive useful insights and patterns is often needed
(MSV, 2020). This may be a bottleneck and a very
difficult task for domain experts without software en-
gineering background. We have recently designed
and developed a system for ML-based NER using
User Centered Design (UCD) methodology (Norman
and Draper, 1986). This included the analysis of re-
maining challenges in NER, covering aspects of do-
main, language, and entity types, resulting in the def-
inition of use cases, component models, and overall
architecture of the system. We addressed two ma-
jor tasks of NER, data cleanup and data annotation
(Tamla, 2022). An initial prototype of this system,
called Stanford Named Entity Recognition and Clas-
sification (SNERC), was integrated in an innovative
ecosystem for knowledge management and creation
called Knowledge Management - Ecosystem Portal
(KM-EP) (Salman et al., 2017). The goal of SNERC
was to enable the training and customization of NER
models for both experts and novice users (newbies)
and support knowledge management and retrieval in
KM-EP.

In this paper, we present the results of various
quantitative and qualitative evaluations demonstrating
the effectiveness, generality and adaptability of the
approach and implemented prototype. The paper is
organized as follows. We review related works (sec-
tion 2), summarize the implementation of SNERC,
(section 3). Next, we discuss our evaluation findings
(section 4) and conclude, discussing future work (sec-
tion 5).

2 STATE OF THE ART IN
SCIENCE AND TECHNOLOGY

2.1 Named Entity Recognition

Techniques for NER vary from hand-coded, over ML-
based, to hybrid methods. But, ML-based methods
are more efficient on Web content, because they in-
clude statistical models that can automatically recog-
nize and classify named entities from very large and
heterogeneous content on the Web. Existing NER
techniques based on ML are often classified into Su-
pervised Learning (SL), Unsupervised Learning, and
Semi-supervised Learning. SL (Thenmalar et al.,
2015) is currently the dominant technique for address-
ing NER and can achieve promising performance if
enough high-quality training data is available. These
labeled data created by domain experts are called,
gold standard (Kang et al., 2012). Conditional Ran-
dom Fields (CRF) is a SL method based on statistical
algorithms (Zhang et al., 2020). It represents, “the

state of the art in sequence modeling and has also
been very effective at NER task” (Mao et al., 2007).

Training a NER model using ML is often very
challenging. It requires, besides substantial program-
ming knowledge, dealing with different technologies
and pipelines for text analysis, NLP, ML and rule-
based operations (Konkol, 2015). Errors in the ini-
tial stages of the pipeline can have snowballing ef-
fects on the pipeline’s end performance. A list of
remaining challenges in NER was already identified
and discussed in our recent research (Tamla, 2022).
These challenges cover aspects of language, domain,
addressing the portability and adaptiveness of NER
systems, entity types and gold-standard design and
creation, ML features selection, and quality of NER
preliminary steps, e.g., data cleanup, data annotation.
Following these challenges, it is necessary to effi-
ciently design, develop, amd customize all necessary
preliminary steps in a NER pipeline in order to reduce
the effort of training new NER models whilst optimiz-
ing the performance of the whole system.

2.2 Knowledge Management System

A Knowledge Management System (KMS) is an
information system for organizing and managing
knowledge such that it can be easily accessible by
potential knowledge producers and consumers (Natek
et al., 2016). Systems for Knowledge Management
(KM) are often introduced to support the creation,
storage, retrieval, transfer, and application of Knowl-
edge (Alavi and Leidner, 2001). The architecture of
KMSs is described in (Gronau, 2002) and generally
includes a Taxonomy Management System (TMS) for
organizing informationd and documents, a content
management system, and a search engine for docu-
ment indexing. The European research project, Re-
alizing and Applied Gaming Ecosystem (RAGE) is
an innovative KMS and central online portal for ac-
cessing and retrieving reusable software components
and other related textual documents from the Web,
such as research publications, source code reposito-
ries, issues, and online discussions. RAGE is used
to support software reuse in the domain of applied
gaming. Applied games (AG) or serious games (SG)
aim at training, educating and motivating players, in-
stead of pure entertainment (David R. and Sandra L.,
2005). The RAGE system was developed as part of
KM-EP. This ecosystem uses various REST APIs to
enable the integration and import of text documents
from various social networks like Stack Exchange di-
alogs (“Hot questions”), or GitHub (“Build software
better”). It also includes an own developed TMS (Vu,
2020) enabling the classifying of text documents into
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taxonomies. KM-EP users can easily import various
Web content like online discussions from, e.g., the
Stack Overflow social site, describe them with further
meta information, classify them “manually” using an
integrated taxonomy management system, and then fi-
nally retrieve useful information with a faceted search
that enables drilling down large set of documents.
To enable semantic text analysis and automatic docu-
ment classification of Web content, a new NER sys-
tem based on the Stanford CoreNLP (called SNERC)
was recently developed and integrated within KM-EP
(Tamla, 2022). SNERC facilitates the design, devel-
opment, customization, and management of domain-
specific models and can be used by both NER experts
and novice users to develop new NER models.

3 IMPLEMENTATION OF SNERC

Figure 1: SNERC Use Cases for NER.

Our system, SNERC, was experimentally developed
using the well-known NLP framework of Stanford
university (Manning et al., 2014). This framework
supports most of the common NLP tasks used for
NER. We defined several use cases for designing, de-
veloping and customizing ML-based NER models as
shown in Figure 1. Some GUI components of SNERC
with different tabs are presented in Figure 2. Using
SNERC, users can manage basic parameters and con-
figuration steps, which we call NER model definition,
that are used to select, execute, and customize vari-
ous preliminary steps for training a NER model using
ML. For instance, users can upload a domain corpus
(data dump) and select various options for cleaning it
up. They can also execute the automatic annotation
of this domain corpus using the standard BIO format
for token annotation (Arellano et al., 2015). For the
system to annotate the corpus, users have to define
the original name of each NE (like Java Script) and, if
necessary, inform the system about the NE synonyms
and name variations of this NE (like js, JavaScript,
Javascript, Js). Also, the domain-specific NE cate-
gory (or label) that should be used to annotate this
NE and its synonyms, and name variations, must be
defined. After the data is annotated, users can specify

how to split them to generate training and testing data
automatically. Domain experts can use this feature to
reduce the effort in creating their training and testing
data. Also, they have the possibility to review and up-
date the annotated data to avoid the problem of over-
fitting which can lead to reduced performance of the
trained model (Géron, 2019). Another feature avail-
able in SNERC is the definition of global and local
features. Various CRF parameters can be customized
for model training. One or more gazetteers can be
added to the NER pipeline to optimize the training
datasets. Regular Expressions (REs) can be also intro-
duced to the NER pipeline to detect complex NEs us-
ing handcrafted rules. All these features are available
in the NER pipeline and can be executed to train a new
model using ML. The execution of all NER prelimi-
nary steps before model training, e.g., data cleanup
and annotation, can be monitored using logs visual-
ization (of automatically cleaned data and annotated
tokens), which helps to check and optimize the qual-
ity of the model at an early stage. The standard eval-
uation metrics, Precision (P), Recall (R), and F-Score
(F1), can be also visualized after each model training
to check the quality of each new model.

Based on our use cases, we have defined three
main components related to them as seen in Figure
3. NER Model Definition Manager manages all the
necessary definitions and parameters for model train-
ing using ML. Its information model includes three
main classes. The first two, Named Entity Cate-
gory and Named Entity, hold information about the
domain-specific NEs names and categories. The third
class, NER Model Definition, is used to store data in
the KM-EP database like model name, text corpus,
gazette lists, and regex rules. We use the Stanford
RegexNER API to construct and store complex rules,
as they can easily be combined with already trained
models. The NER Model Manager component con-
sists of the single NER Model class which is used for
storing trained NER models into the KM-EP filesys-
tem so that they can be used by other systems. If
a model was created using a NER Model Definition,
users can update the generated testing and training
data within the NER Model Manager to get better
P, R and F1 scores. Also, regular expression rules
created using the Stanford Regex API can be edited
and updated. It is also possible to upload a Stanford
CoreNLP NER model that was trained with another
system and use it in KM-EP.

The NER Model Trainer component is used to ex-
ecute the training of a NER model using ML. This
includes the automatic annotation of the domain text
corpus based on the previously defined NE categories,
NE names and synonyms. SNERC is also able to au-
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Tab 1

Tab 2

List of trained NER Models

Figure 2: SNERC GUI components.

Figure 3: SNERC components for NER.

tomatically split the annotated text corpus into testing
and training data. However, the testing data, needs to
be reviewed by a human expert and uploaded again
to avoid overfitting, and thus a realistic calculation
of P, R and F1 scores. When this is done, the NER
Model Trainer component is used to execute the task
for training a NER model using jobs and Stanford
CoreNLP. Its information model defines two classes.
The first class, NER Model Definition, holds the same
basic information provided in the NER Model Defini-
tion Manager component which is needed for model
training. The second class, Trainer, is used to control
the training process whether the model is in the pre-
pared or trained state. It is also used to store the ref-
erence to each trained model in the KM-EP database.
Further detail on all components of SNERC can be
found in (Tamla, 2022).

4 EVALUATION OF SNERC

To validate our research, we need to prove the feasi-
bility, usability, usefulness and efficiency of our ap-
proach and implemented SNERC prototype. Hence,
this work aims at evaluating various aspects of our
solution using qualitative and quantitative methods.

There are different evaluation methodologies used
for software applications (Kitchenham, 1996). A
well-known method to measure the efficiency or ef-
fectivity of a system is a Controlled Experiment, a
qualitative evaluation methodology relying on hy-
pothesis testing (Helander, 2014). Controlled experi-
ments have clear and precise goals where all partici-
pants have a fix set of tasks to complete. The evalua-
tion results are then assessed to check whether or not
the previously defined research goals were reached.
Participants in a controlled experiment generally have
various profiles and can thus be clustered into differ-
ent groups of users based on their background or ex-
pertise. The well-known metrics P, R, and F1 (Pow-
ers, 2020) can also be used to evaluate the results, if
the tasks require the participants to choose items out
of a set of possible solutions. When a prototype so-
lution is available, it becomes easy to compare the
results of each group of users. Let s1 be the set of
correctly chosen items (hits), s2 the set of prototype
solution items that were not chosen (misses), and s3
the set of incorrectly chosen items (false alarms). The
standard metrics P, R, F1 are calculated as follows:

P =
s1

s1 ∪ s2
,R =

s1

s1 ∪ s3
,F1 = 2× P×R

P+R
(1)

The initial evaluation (section 4.2) is a controlled
experiment for assessing the efficiency of our ap-
proach. It evaluates our features supporting two fun-
damental tasks of NER, “data cleanup” and “data an-
notation”. Our two user groups including NER ex-
perts and novice users (newbies) are taking part of
this evaluation. We use prototype solutions and the
standard metrics (P, R, and F1) to assess our sup-
ported features while comparing the results of our
user groups.
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In the second evaluation (section 4.3), a walk-
through approach (including surveys and question-
naires) (Finstad, 2010; Lund, 2001; Thielsch and
Stegemöller, 2014) is used as the evaluation method-
ology to validate the GUI features of our prototype.
Following a predefined tutorial, NER experts and
newbies are asked to train a new NER model. Our
goal is to evaluate and check the feasibility, usability
and usefulness of SNERC GUI components in sup-
porting the tasks of NER in a real-world environment.

4.1 Evaluation Setup and Pretesting

The experiments presented were guided by a tutorial
document. This document consisted of sections for
assessing our NER approach and implemented proto-
type. Each of these sections included an introduction
with the structure and goal of the experiment, exam-
ples highlighting our approaches and features, and a
doing phase with tasks to be completed by the partici-
pants. Before our participants commenced the exper-
iments, they were asked to complete an initial survey
questionnaire, which helped us to collect information
about their background and experience in program-
ming languages, ML, NER. Based on this informa-
tion, we were able to classify our participants into the
categories NER experts and newbies.

We created an evaluation document, including tu-
torial, guidelines, and description of tasks, and sent
it to a NER expert to perform a pretesting of our
approaches and provide feedback. This NER expert
completed his Ph.D. research in the domain of emerg-
ing Named Entity (eNE) and has more than 5 years
experience in the development of ML projects. The
result of the pretesting did not lead to significant im-
provements in the evaluation guidelines and tutorial
document. After the review of the evaluation docu-
ment, we sent its final version to all the participants
together with credentials, usernames and passwords,
for accessing the KM-EP portal.

For our evaluations, we focus on two groups of
users having different backgrounds and educations:
Newbies (group 1) and Experts (group 2). Newbies
are normal users, who might or might not have knowl-
edge about NER. Experts are defined as skillful peo-
ple having experience in ML-based NER. Our partic-
ipants were chosen from the domain of software en-
gineering and data science, which also includes ML
experts. Our group of newbies consists of 4 software
engineers, who have a master’s degree in computer
science. These users do not have experience in NER
and ML. The group of experts consists of 4 users (2
Ph.D.s and 2 Ph.D. candidates), all having at least
3 years experience in using and developing ML and

NLP systems, including NER. The job of all these
users was to perform all evaluations.

4.2 Qualitative Evaluation of the NER
Approach

The concept of this evaluation is to let newbies and
experts do the same, completing various preliminary
tasks for training a NER model, then compare the re-
sults to validate if newbies can achieve similar or even
better results than experts.

4.2.1 Evaluation Setup

To execute this evaluation, a document, can be down-
loaded from Google Drive1, including tutorial, guide-
lines, and description of tasks was presented to the
participants. This document also described the do-
main corpus and labels we used to execute the ex-
periment. Finally, the document included ques-
tions for gathering direct feedback from all partici-
pants about our approach supporting the NER pre-
liminary steps of, “data cleanup” and “data annota-
tion”. The domain corpus that is used in this ex-
periment contains a list of discussion posts about
programming languages found in the Stack Over-
flow social network. Such discussion posts gener-
ally contain various types of NEs, related to offi-
cial names of programming languages (like “Java
Script”), their synonyms (like “js”), and name varia-
tions (like “javascript”, “JavaScript”, “Javascript”) as
it was initially analyzed in our previous preliminary
study (Tamla et al., 2019).

Table 1 shows a set of documents from our se-
lected domain corpus. Column 1 shows some sen-
tences of each discussion post. We can identify
HTML and code snippets in some of these discus-
sions. Column 2 shows the NEs identified in the
documents together with their synonyms and name
variations used by online users (like Java Script,
Javascript, JS). Column 3 shows a reference ID to
each Stack Overflow post. As we are dealing with
programming languages, our selected domain labels,
or NE category names, are defined based on com-
mon programming paradigms. For the sake of sim-
plicity, we only consider five programming paradigms
with a respective label, as they are very popular
in programming: Declarative (LANGDECL), Func-
tional (LANGFUNC), Imperative (LANGIMP), Ob-
ject Oriented (LANGOOP) and Procedural (LANG-
PROC) programming languages.

1https://drive.google.com/file/d/1FCKuX GY1Xm
Rxe8IkAR1oN15aDXcRSh
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Table 1: Subset of Documents about Serious Games (SG)-related Posts in Stack Overflow.

Document Identified
NEs and
synonyms

Stack ID

What is the difference between String and string in C#? C# #7074
How can I decrypt an “encrypted string with java” in c sharp? C Sharp #22742097
Is Java “pass-by-reference” or “pass-by-value”? Java #40480
javascript code to change the background color onclicking more buttons javascript #67365586
Check out ⟨a href=“...”⟩Unobtrusive JavaScript⟨/a⟩ and Progressive enhance-
ment (both Wikipedia).

JavaScript #134845

Are there any coding standards for JavaScript? ⟨code⟩...if . . . else ...⟨/code⟩ JavaScript #211795
Parse an HTML string with JS JS #10585029
javascript code to change the background color onclicking more buttons javascript #67365586
Finding duplicate values in a SQL table SQL #2594829
Learning COBOL Without Access to Mainframe COBOL #4433165

4.2.2 Procedure

In the first task of this experiment (Task 1.1), users are
asked to apply a set of options to clean up our selected
domain corpus consisting of Stack Overflow discus-
sion posts about programming languages. SNERC
supports a variety of options for cleaning up data from
a Web document, which might not be relevant for
training a model in the target domain. For instance, if
the initial domain corpus is a HTML document, users
may choose to remove all the HTML markups, im-
ages, code snippets, and links, whilst keeping only
the textual information containing the relevant NEs
in the target domain. The cleaned-up document can
then be easily annotated to create the gold standard for
model training. After explaining our cleanup features
and providing concrete examples how to apply them
on the example documents, a doing-phase including
multiple clean up tasks was presented to the users to
complete them. Users were asked to choose features
to clean up documents about programming languages,
which we also collected from Stack Overflow. As
we wanted to compare the qualitative performance of
newbies with the performance of experts, both groups
performed the same task of “data cleanup”. A proto-
type solution for this task was also defined (see Table
2). Based on these prototype solutions and the an-
swers provided by the participants, we could compare
all the results of newbies and experts using the stan-
dard metrics P, R, and F1.

The second task of this experiment (Task 1.2) was
related to “data annotation”, which is another funda-
mental step for model training in NER. Our approach
provides features to automatically annotate a domain
corpus. It relies on Computational Natural Language
Learning (CoNLL) (Sang and De Meulder, 2003), a
widely used data format for generating testing and

training data (Pinto et al., 2016). CoNLL uses the
standard BIO format for token annotation in NER.
BIO (short for Beginning, Inside, Outside) is the de-
facto standard format for tagging tokens in many NLP
frameworks (Arellano et al., 2015). After explaining
with appropriate examples, the concept of token anno-
tation using BIO, users were asked to annotate a set of
documents including different types of NEs, such as,
single-word NEs (like “Java”, “HTML”), multi-word
NEs (like “C sharp”, “Java Script”), and extended
NEs (like “C sharp 5.0”). We should note that some
of the documents included the official names of pro-
gramming languages, with their synonyms and name
variations used in the crowd (like “csharp”, “c#” or
“c sharp”). Thus, users had to provide the appropri-
ate BIO annotations to label them. For comparing the
results of newbies and experts, a prototype solution
(see Table 3) was also defined, which enabled us to
compare all the results using the standard metrics P,
R, and F1 as in the first task.

Finally, we introduced the following three open
questions to collect direct feedback about our ap-
proach supporting “data cleanup” and “data annota-
tion” in NER:

• Are the offered annotation features for the cre-
ation of training and testing data sufficient?

• Do you use a data format which is different from
the provided CoNLL 2003 format? If yes, which
one?

• What are you missing?

4.2.3 Evaluation Results

Table 4 shows the calculated metrics P, R, and F1 for
each user completing Task 1.1. All experts performed
with a Precision of 100% and a Recall greater than

KEOD 2022 - 14th International Conference on Knowledge Engineering and Ontology Development

24



Table 2: Prototype Solution for Task 1.1.

Document Remove
Code Tags

Remove
HTML

Remove
URL

For-each over an array in ⟨a href=“#”⟩JavaScript⟨/a⟩ No Yes Yes
Are there any coding standards for JavaScript?⟨code⟩...if . . . else
...⟨/code⟩

Yes No No

Parse an HTML string with ⟨bold⟩JS⟨/bold⟩ No Yes No
Remove the ⟨style=“text-color:#ff0000”⟩?⟨/style⟩at the end of this C
sharp code ⟨code⟩...player.run();?⟨/code⟩ to solve your compilation
error?

Yes Yes No

Table 3: Prototype Solution for Task 1.2.

Token NE Category
Name

NE type

This O
limitation O
found O
in O
your O
Java B-LANGFUNC multi-wordScript I-LANGFUNC
code O
is O
also O
found O
in O
Java B-LANGOOP single-word
and O
C B-LANGOOP extended,
sharp I-LANGOOP synonym
5.0 I-LANGOOP of c#
, O
C# B-LANGOOP extended5.0 I-LANGOOP
and O
the O
latest O
COBOL B-LANGPROC single-word
Version O

66%, while all newbies obtained a Recall of 100%
and a Precision greater than 85%. The best result is
from participant Newbie3 with a Precision of 100%
and a Recall of 100%, which means that he or she
performed even better than all the experts in this task.

The average P, R, and F1 scores for each user
group is displayed in Table 5. It shows that while
newbies have performed with the highest Recall of
100%, experts have performed with the highest Preci-
sion of 100%. Considering the F1 score, we can say
that newbies (having a F1 of 92.58%) have better per-
formed compared to experts, having a F1 of 88.18%,
in this task.

Table 4: Precision, Recall and F1 of Task 1.1.

Participant Precision (%) Recall (%) F1 (%)

Newbie1 85.71 100.00 92.31
Newbie2 75.00 100.00 85.71
Newbie3 100.00 100.00 100.00
Newbie4 85.71 100.00 92.31
Expert1 100.00 83.33 90.91
Expert2 100.00 66.67 80.00
Expert3 100.00 83.33 90.91
Expert4 100.00 83.33 90.91

Table 5: Average Precision, Recall and F1 for Task 1.1 for
each User Group.

Precision (%) Recall (%) F1 (%)

Newbies 86.61 100.00 92.58
Experts 100.00 79.17 88.18

Table 6 displays the scores for each user complet-
ing Task 1.2. It shows that 3 experts and 1 newbie
obtained the highest Precision and Recall of 100%.
Only one expert had a lower Precision of 72.73% and
a lower Recall of 88.89%. Newbie2 and Newbie4
performed poorly which had a negative effect on the
overall score of newbies compared to experts.

Table 6: Precision, Recall and F1 for Task 1.2.

Participant Precision (%) Recall (%) F1 (%)

Newbie1 100.00 100.00 100.00
Newbie2 83.33 55.56 66.67
Newbie3 100.00 77.78 87.50
Newbie4 88.89 88.89 88.89
Expert1 72.73 88.89 80.00
Expert2 100.00 100.00 100.00
Expert3 100.00 100.00 100.00
Expert4 100.00 100.00 100.00

The average scores for each user group are dis-
played in Table 7. We can see that experts have per-
formed with a 10% higher F1, concluding that experts
are better in this task.

Evaluation of a System for Named Entity Recognition in a Knowledge Management Ecosystem

25



Table 7: Average Precision, Recall and F1 for Task 1.2 for
each User Group.

Precision (%) Recall (%) F1 (%)

Newbies 93.06 80.56 85.77
Experts 93.18 97.22 95.00

The answers provided in the open questions re-
vealed that our approach supporting “data cleanup”
and “data annotation” is sufficient for most of our
participants. However, two experts found that the
CoNLL data format and BIO labels used for token
annotation in NER is not enough. From their per-
spective, supporting other data formats such as JSON,
XML, or making use of a standard library for NLP re-
lated tasks (like spaCy2) could be helpful to make our
application more flexible. The next section evaluates
our SNERC GUI components enabling NER model
training in KM-EP.

4.3 Quantitative Evaluation of SNERC

This experiment based on walkthrough methodology
aims at validating the feasibility, usability, and ef-
ficiency of our implemented SNERC prototype by
gathering feedback on its GUI components, features
and functionality. SNERC is a sub-module of KM-EP
and its features supporting NER were already sum-
marized in section 3. Also, the GUI components of
SNERC were already shown in Figure 2. In this ex-
periment, we want to validate if our participants can
use our system to train new NER models in their re-
spective domains by collecting various quantitative
factors of our prototype, such as how good the imple-
mented components are. The stakeholders of KM-EP
are different user groups and communities who will
be affected by and will be using the services and pos-
sibilities of the system developed and provided during
the project. As the participants of the first evaluation
were selected from the software engineering, ML, and
data science fields, those are also valid stakeholders of
KM-EP and have hence been selected for this evalu-
ation. KM-EP users, including NER experts or new-
bies, may want to train a new NER model to extract
NEs in their particular domains. To complete this
experiment, a document, which can be downloaded
from Google Drive3, including tutorial, guidelines,
and description of tasks was prepared and provided
to the participants.

2https://www.spacy.io
3https://drive.google.com/file/d/1FCKuX GY1Xm

Rxe8IkAR1oN15aDXcRSh

4.3.1 Evaluation Setup

A walkthrough requires setting up the environment
and preparing various data for the evaluation. To
walk through our NER features, data was cloned and
provided to all the participants’ KM-EP instances.
We created 10 user accounts (including usernames,
passwords), 8 for the participants and 2 for the ad-
mins managing all the evaluation data of this walk-
through. The usernames and passwords were sent to
the participants via E-Mail with a link to download
the document tutorial including instructions to exe-
cute this walkthrough. As in the first evaluation, our
evaluation document included instructions about our
SNERC features used for training a new NER model.
It also introduced the participants to the domain cor-
pus used to execute this walkthrough. Finally, this
document included questions for gathering informa-
tion about our features supporting NER.

4.3.2 Procedure

Our evaluation includes a combination of questions
from standardized questionnaires UMUX (Finstad,
2010), USE (Lund, 2001) and Münsteraner Frage-
bogen zur Evaluation – Zusatzmodul Diskussion
(Thielsch and Stegemöller, 2014) and open ques-
tions targeting the functionality of SNERC. Our sur-
vey largely covered questions to be answered on
a 7-point-likert-scale from strongly disagree (1) to
strongly agree (7). Also, we added three open ques-
tions at the end of the survey to collect information
concerning the improvement of the prototype and the
quality of the tutorial. Overall, our questions were
divided into four categories: Usability, Usefulness,
User Interface and NER features of SNERC. Data on
the evaluation categories was collected as follows:
Usability: We used the UMUX questionnaire (Fin-
stad, 2010) for a general assessment of the usability
with 4 items as shown in Table 8:

Table 8: Question about Usability.

Id Text

Usab1 This tool’s capabilities meet my require-
ments.

Usab2 Using this tool is a frustrating experi-
ence.

Usab3 This tool is easy to use.
Usab4 I have to spend too much time correcting

things with this tool.

Usefulness: For evaluating the usefulness of SNERC,
one scale with 8 items from USE (Lund, 2001) was
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adopted. Responses were provided on the same 7-
point rating scale as for the UMUX (Table 9).

Table 9: Question about Usefulness.

Id Text

Usef1 It helps me be more effective.
Usef2 It helps me be more productive.
Usef3 It is useful.
Usef4 It gives me more control over the activi-

ties in my work.
Usef5 It makes the things I want to accomplish

easier to get done.
Usef6 It saves me time when I use it.
Usef7 It meets my needs.
Usef8 It does everything I would expect it to do.

User Interface: This category aims at gathering in-
formation about how fast SNERC works and how
the user interface feels. We included questions con-
cerning the buttons, icons, images, and texts in the
questionnaire. To ensure consistency with the other
scales/categories, we included 5 items affecting the
user interface to be answered on a 7-point rating scale
(Table 10).

Table 10: Questions about User Interface.

Id Text

Ui1 All SNERC-components work fast.
Ui2 The user interface feels good.
Ui3 Buttons, images, and texts are in the

right position.
Ui4 Enough information and explanations

are presented.
Ui5 The images and icons look good.

NER Features of SNERC: To evaluate the NER com-
ponents of SNERC, 5 items answered on a 7-point-
rating scale dealt with the flexibility and visualization
of the NER features available in SNERC (Table 11).

Besides the questions with answers on a 7-point
rating scale, 3 open questions were asked concerning
improvements of SNERC and the tutorial (Table 12).
The answers were interpreted separately.

To get familiar with SNERC, specific tasks were
prepared, to make sure that all the participants work
with SNERC consistently. Completing this walk-
through experiment took approximately around 1.5
hours, up to 2 hours for unexperienced users, includ-
ing the time to go through the provided tutorial and
complete the survey.

Table 11: Questions about NE Features of SNERC.

Id Text

NERf1 I spent a lot of time testing the NER
Model Definition Manager.

NERf2 The NER Model Definition Manager
guided me through the process of train-
ing a custom NER model.

NERf3 I need more flexibility for customizing
the training pipeline.

NERf4 The CoreNLP based pipeline is a suffi-
cient basis.

NERf5 The “Preview” feature is helpful to get
short round trips, while customizing pa-
rameters.

Table 12: Questions about Improvement.

Id Text

Imp1 Which functions or aspects are lacking
in the current solution in your opinion?

Imp2 Do you have ideas for improvements or
alterations of SNERC?.

Imp3 Do you think the support materials (man-
uals, tutorials, etc.) are sufficient? If not,
what is missing?

4.3.3 Evaluation Results

The results of this chapter will be used to demonstrate
whether our prototype can be used to enable NER in
a real-world scenario. Also, these results can be used
as a starting point for further R&D work.

Results related to Demographics: 8 users (includ-
ing 4 experts and 4 newbies) completed both experi-
ments. All respondents hold at least a master degree
and had worked at least for 5 years as professional
software engineers or data scientists. One expert has
worked for 10 years as a data scientist and another one
has completed a Ph.D. in the domain of eNE. All 4 ex-
perts have at least 3 years of experience in developing
and applying ML-NER systems.

Results Related to Usability: All participants had
to fill out a questionnaire regarding the usability of
SNERC, which included 4 items (Usab1 to Usab4).
The responses on these items are presented in Ta-
ble 13. Figure 4 depicts the average values of all
participants providing answers to the usability ques-
tions. It shows that in average 62.5% of the partici-
pants disagreed to have a frustrating experience with
SNERC (Usab2), while 50% agreed that SNERC is
easy to use (Usab3). However, we can also observe
that there is quite a high spread in the answers for
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Table 13: Responses (%) for the Usability Questionnaire.

Scale Usab1
(%)

Usab2
(%)

Usab3
(%)

Usab4
(%)

Strongly
agree 12.5 0.0 0.0 0.0

agree 25.0 0.0 25.0 0.0
somewhat
agree 25.0 0.0 50.0 25.0

neither
agree nor
disagree

12.5 12.5 12.5 12.5

somewhat
disagree 12.5 12.5 0.0 50.0

disagree 12.5 62.50 12.5 12.5
strongly
disagree 0.0 12.5 0.0 12.5

Usab4, which might reflect the demographics of the
participants as they have different background knowl-
edge about methods and tools for NER and ML.

0% 20% 40% 60% 80% 100%

Usab1

Usab2

Usab3
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disagree

somewhat disagree

neither agree nor disagree

somewhat agree

agree

strongly agree

Figure 4: Average Values of the Answers of the Usability
Questionnaire.

Figure 5 shows a bar plot with the usability an-
swers divided by our user groups (newbies and ex-
perts). We can see that SNERC is usable and easy to
use for both user groups as they selected on average
“agree” for the two statements “This tool’s capabili-
ties meet my requirements“ (Usab1) and “This tool is
easy to use“ (Usab3). From this diagram we can also
see that newbies seem to need more time to get famil-
iar with this tool than NER experts. We conclude this
from their answers provided in Usab2 and Usab4.
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Figure 5: Average Values of the Usability Answers divided
by User Groups.

Results Related to Usefulness: All participants had
to fill out a questionnaire regarding the usefulness of
SNERC, which included 8 items (Usef1 to Usef8).
The responses of these items are presented in Table
14. Figure 6 shows the answers to the questions re-
lated to the usefulness in a bar plot. We can see that
most answers are positive which indicates that our
tool is useful to enable NER. There is one user who
gave a negative feedback (disagree), but unfortunately
no additional comment was provided. Hence, it is not
clear which feature the user was missing.
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Figure 6: Average Values of the Answers of the Usefulness
Questionnaire.

Figure 7 shows the average answers for our two
user groups to the usefulness questions. The most
positive answers are for the question ”It is useful”
(Usef3), 5.75 for experts and 5.5 for newbies, and ”It
saves me time when I use it” (Usef6), 5.75 for ex-
perts and 5.25 for newbies. As we can see, there is
no significant difference between the two user groups.
We can only see sightly smaller scores for the group
of newbies (especially Usef1, Usef2, Usef7) which
might be related to their lack of experience in the do-
main of NER. This result shows that our tool is useful
for both, NER experts and newbies.
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Figure 7: Average Values of the Usefulness Answers di-
vided by User Groups.

Results Related to User Interface: Our participants
had to fill out a questionnaire regarding the quality
of the user interface of SNERC. This questionnaire
included five items (Ui1 to Ui5). The responses of
these items are presented in Table 15.

Figure 8 depicts the average values of all partici-
pants’ answers to the user interface questionnaire. It
shows that all participants gave only positive answers
to these questions as they agree that the user interface
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Table 14: Responses (%) for the Usefulness Questionnaire.

Scale Usef1
(%)

Usef2
(%)

Usef3
(%)

Usef4
(%)

Usef5
(%)

Usef6
(%)

Usef7
(%)

Usef8
(%)

strongly agree 12.5 12.5 37.5 0.0 25.0 37.5 12.5 25.0
agree 37.5 25.0 50.0 25.0 0.0 12.5 12.5 37.5
somewhat agree 12.5 25.0 0.0 25.0 62.5 37.5 37.5 25.0
neither agree nor disagree 25.0 25.0 0.0 25.0 0.0 0.0 25.0 0.0
somewhat disagree 0.0 0.0 0.0 12.5 0.0 0.0 0.0 0.0
disagree 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5
strongly disagree 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Table 15: Responses (%) for the User Interface Question-
naire.

Scale Ui1
(%)

Ui2
(%)

Ui3
(%)

Ui4
(%)

Ui5
(%)

strongly
agree 37.5 12.5 25.0 0.0 37.5

agree 37.5 62.5 37.5 37.5 37.5
somewhat
agree 12.5 25.0 12.5 62.5 25.0

neither
agree nor
disagree

12.5 0.0 25.0 0.0 0.0

somewhat
disagree 0.0 0.0 0.0 0.0 0.0

disagree 0.0 0.0 0.0 0.0 0.0
strongly
disagree 0.0 0.0 0.0 0.0 0.0

of SNERC feels good (Ui2), has enough information
are provided (Ui4), and works fast (Ui1).
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neither agree nor disagree

somewhat agree

agree

strongly agree

Figure 8: Average Values of the Answers of the User Inter-
face Questionnaire.

Figure 9 shows the average answers divided by
user groups. We can see no significant differences
between newbies and experts which indicate that they
are all satisfied with our user interface.

Results Related to NER Features of SNERC: Our
participants had to fill out a questionnaire regarding
the NER features of SNERC, which included 5 items
(NERf1 to NERf5). The responses of these items are
presented in Table 16.
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Figure 9: Average Values of the User Interface Answers
divided by User Groups.

Figure 10 depicts the average values of all par-
ticipants’ answers for the NER features category. It
shows 37.5% of the participants agree that the “NER
Model Definition Manager” of SNERC guided them
through the process of training a custom NER model
(NERf2) which indicates that our tool is a valid tool to
complete this task. Also, 50% of the participants are
happy with the preview feature (NERf5) as it helps
them to check the results and quality of their trained
model after customizing various parameters. While
SNERC seems to be very useful to support NER, half
of the participants are neutral about its flexibility and
customization capability. The same portion of partici-
pants somewhat agree that CoreNLP-based pipeline is
a sufficient basis. These answers are also reflected in
Figure 11 where no significant differences are shown
between NER experts and newbies.
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Figure 10: Average Values of the Answers of the NER Fea-
tures Questionnaire.

Results Related to Improvement: Participants were
asked to fill out a questionnaire concerning possible
short comings (Imp1), ideas for improving SNERC
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Table 16: Responses (%) for the NER Features Questionnaire.

Scale NERf1 (%) NERf2 (%) NERf3 (%) NERf4 (%) NERf5 (%)

strongly agree 0.00 12.5 0.00 0.00 0.00
agree 0.00 37.5 0.00 37.5 50.0
somewhat agree 12.5 25.0 37.5 50.0 12.5
neither agree nor disagree 50.0 0.00 50.0 0.00 25.0
somewhat disagree 37.5 0.00 0.00 0.00 0.00
disagree 0.00 12.5 12.5 12.5 0.00
strongly disagree 0.00 0.00 0.00 0.00 0.00
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Figure 11: Average Values of the Answers of the NER Fea-
tures Questionnaire divided by User Groups.

(Imp2), and quality of support materials (including
the provided tutorial) (Imp3). For item Imp3 (qual-
ity of support materials), all participants stated that
the support materials and provided tutorials were sat-
isfactory and sufficient.

5 CONCLUSION

This paper discusses the results of quantitative and
qualitative experiments validating our approach for
ML-based NER in an innovative Knowledge Manage-
ment System for Applied Gaming. Two groups of
users including NER experts and novice users (new-
bies) participated in this research project.

Our initial evaluation is based on controlled ex-
periments and aimed at comparing results of the par-
ticipants performing two fundamental tasks of NER
model training, namely “data cleanup” and “data an-
notation”. The results of this evaluation revealed
that both groups performed nearly identical in both
tasks while designing and developing a new NER
model in their domain. Our second evaluation re-
lied on a walkthrough experiment and used question-
naires to collect answers about the usability, useful-
ness, user interface and NER features of SNERC. It
was found that SNERC, which is currently based on
the CoreNLP framework, is a valid tool for NER. It
provides a rich set of features with various GUI com-
ponents to design, develop, train, and monitor NER
models while supporting various preliminary steps
of ML-based model training. Our evaluation results

also revealed that supporting other data formats such
as JSON, XML or making use of a standard library
for NLP related tasks (like spaCy) could be helpful
to make our application more flexible. Future work
would consider developing a more agnostic approach,
to enable using and combining various NLP frame-
works easily adapting to new requirements, such as
multiple data formats for data annotation and model
training tasks.
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