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Abstract: Septic shock is a major public health concern across the world, also is a typical cause for patients being 
admitted to the intensive care unit. It is easier to be misdiagnosed, yet the situation is getting worse. Septic 
shock can be classified into three stages: irreversible (early stage), compensated, and decompensated. Sepsis 
has long been misdiagnosed, but it develops and worsens at an alarming rate, often reaching irreversible 
levels within hours. This work has expanded the proportion of invasive hemodynamics to septic shock for 
the development of understanding of the phases of septic shock. This article aims to construct and develop a 
real-time prediction model of septic shock staging based on continuous invasive hemodynamic monitoring. 
The ultimate model of the article is a multi-classification prediction model.  
In this experiment, the eICU collaborative research database was employed, and four characteristics from 
the dataset were scored to indicate the stage of septic shock. Need to point out that deep active learning, a 
new approach that combines deep and active learning, was chosen as the research's major learning approach. 
Margin sampling is the main query strategy used in the active learning approach, with the random selection 
strategy serving as a control strategy. There are two groups of query strategies, compare the two groups to 
see which one is more effective: random selection or active learning. As a result, the query strategy of active 
learning is  considerably most stable than random selection in deep active learning. Although septic shock 
cannot be diagnosed purely based on hemodynamic characteristics, the model can nevertheless assist 
clinicians in making an early diagnosis or warning.  

1 INTRODUCTION 

Septic shock is a common reason for patients to be 
admitted to the intensive care unit (ICU), and it is 
also a significant cause of mortality among severely 
sick patients in the ICU. In 2017, there were 48.9 
million instances of sepsis and 11 million fatalities 
due to sepsis, accounting for roughly 20% of all 
deaths worldwide (Genga 2017). It is worth noting 
that COVID-19, from its emergence in 2019 and 
continues to this day, has been linked to sepsis. 
Health care personnel pay particular attention to the 
development of sepsis after a COVID-19 patient is 
brought to the ICU (Bediako 2021). This was 
demonstrated in many studies that shock could be 
divided into three stages: irreversible, compensated, 
and decompensated shock. Sepsis is very easy to be 
misdiagnosed, but it deteriorates very quickly in 
hours. The staging of shock assists medical 
personnel in determining the severity of the 
condition and appropriately intervening in treatment 

and medicines to enhance patient survival rates. 
There is thereby a need for classification, but it is 
still a significant challenge to define clearly what 
stage of shock the patient is at based on the clinical 
presentation. Thus, to have better knowledge of the 
phases of septic shock, this research has increased 
the proportion of invasive hemodynamics in septic 
shock. 

The ultimate objective of this study is to provide 
some help in using a machine learning approach to 
determine the stage of shock in patients with sepsis 
in the ICU, improve efficiency and reduce fatality. 
There are many excellent reviews in literature 
dealing with the basic concepts of machine learning 
and sepsis. Continuing to learn about septic shock 
using machine learning is also a significant step 
forward in medicine. Notably, hemodynamic 
monitoring is critical for the diagnosis and 
intervention of septic shock patients. The eICU 
Collaborative Research Database (eICU-CRD) 
Demo was utilized as a source of clinical study data 
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in this study, which comprised 24 hours of 
continuous vital sign monitoring of systemic 
circulation (Badawi 2018). The author recruited 
patients previously diagnosed with sepsis from the 
eICU-CRD Demo for observation and research. The 
use of machine learning for invasive continuous 
hemodynamic monitoring of eICU sepsis patients is 
expected to further improve the understanding of the 
shock stage. 

2 METHODS 

2.1 The eICU-CRD Dataset 

Between 2014 and 2015, researchers from the MIT 
Computational Physiology Laboratory, Philips 
Healthcare, and PhysioNet's colleagues collected 
data from over 200,000 ICU patients for the ICU-
CRD database (Badawi 2018). It should be pointed 
out that this database is an electronic version that 
provides a new model of care in ICU: remote 
monitoring. The e-recording allows clinicians to 
instantly retrieve a patient's vital signs, saving time 
and preventing the loss of paper data. This research 
utilized the eICU-CRD demo as the experimental 
database because the researcher intends to see if it 
can generate predictions with a smaller amount of 
electronic data. The eICU-CRD demo includes 
2,500 patients in the ICU department from 20 large 
hospitals in the United States. These patients are 
divided into a training set and test set according to 
the radio of 8:2. The file in the eICU-CRD called 
'vitalPeriodic.csv' is particularly attractive as the 
main dataset, due to the study is based on the 
characteristic of hemodynamic to make a prediction 
model. The VitalPeriodic table includes the 
continuous invasive hemodynamic monitoring 
features which are need in this research: heart rate, 
oxygen saturation (SaO2), central venous pressure 
(CVP), systolic blood pressure, and diastolic blood 
pressure. 

2.2 Features and Score Setting 

Four features were collected to determine the stage 
of septic shock: heart rate, CVP, mean arterial 
pressure (MAP), SaO2.  
 

 

2.2.1 Heart Rate 

When cardiovascular decomposition occurs, the 
heart is the first compensation mechanism. At this 
time, the heart rate will increase to ensure sufficient 
cardiac output. According to the definition and 
diagnostic criteria of sepsis and septic shock, a heart 
rate of more than 90 beats per minute or two 
standard deviations greater than the normal value of 
the same age can be confirmed or suspected of 
infection(CCM1993).  

2.2.2 CVP 

It is generally believed that CVP at 8 to 12mmHg is 
a treatment target for severe infections and septic 
shock. In recent years, CVP has been challenged as 
a pressure indicator to evaluate volume load. It is 
now believed that CVP can be used to determine the 
type of shock. However, unless in the extreme range 
of the variables, such as in the case of a history of 
bleeding, and the CVP value is 0mmHg, it should 
always be interpreted together with other variables 
(Antonelli 2014).  

2.2.3 MAP 

Invasive blood pressure (IBP) is a commonly used 
technique in the ICU. Continuous monitoring as one 
of the advantages of IBP could provide patients 
status in real-time. In our research, MAP is selected 
as a variable shown the IBP’s feedback of patients.  

2.2.4 SaO2 

As an important monitoring indicator of severe 
infection and septic shock recovery, SaO2, also 
selected as one of the scoring indicators in this 
article. SaO2 value is from 60% to 80% in patients 
with severe infection and septic shock in normal 
circumstances. It must also be mentioned that a 
significant increase in mortality when the SaO2 
value is less than 70%.  

2.2.5 Scoring Design 

The designer created a simplified score sheet based 
on the given information and the MAP data in the 
APACHE II score, as shown in table 1.  

 

 

Table 1: Criteria for scores calculated based on invasive 
hemodynamic data patients. 

Predictive Model of Septic Shock Staging Base on Continuing Invasive Hemodynamic Monitoring

519



 

Parameters Points 

 +4 +3 +2 +1 
Heart Rate 
(BPM) - - - ≥90 

CVP 
(mmHg) - - - <8 & 

>12 

MAP 
(mmHg) 

≥160 or 
≤49 130~159 ≥110 or 

≤ 69 - 

SaO2 (%) 60~70 70~80 - - 

In addition, the scores are divided as follows 
based on the aforementioned features and scores to 

identify the phases of septic shock: 1) a score of 0 to 
4 is judged to be a non-septic patient. The patient’s 
septic shock phase is assessed to be more severe as 
the score rises. 2) with the score of 4, it is in 
irreversible stage, 3) it is belonging to a 
compensated stage when the score is 5 to 7, 4) and 
the patient will be classified as in the 
decompensated phase with the score of 8 to 10. This 
shown as below figure. This is the multi-
classification standard of this experiment.  

Table 2: Stratification criteria for multi-classification scores. 

Score 

N
on-sepsis 

Irreversible 

C
om

pensated 

D
ecom

pensated  

0     
1 
2 
3 
4     
5     
6     
7 
8 
9     
10     

 
2.3 Model Development 

The eICU-CRD is collected patients’physiological 
data every few minutes. As mentioned previously, 
the patients are randomly separated into two parts: 
80% for model training (2000 patients), 20% as the 
test set. Convolution neural networks (CNN) also is 
a multi-layer neural network, were utilized in this 
research to create a prediction model of which phase 
of the septic shock the patient will be in. CNN has 
the ability to extract features automatically, the 
convolution layer is in charge of extracting features 
and convolution is used to extract the needed 
information (Asafuddoula 2016).  

One of our goals is to develop a prediction 
model with as minimal data as feasible; the model 
also uses deep active learning (DAL), a hybrid of 
deep and active learning(Chang 2020). The flow of 
the model is shown in Figure 1 below. DAL 
framework can be roughly divided into two parts: 

the active learning query strategy on the unlabeled 
data set and the training method of the deep learning 
model(Chang 2020). There are hundreds, if not 
thousands, of records for each of the 2,500 patients. 
Unlike most traditional active learning algorithms, 
which query one by one, batch model deep active 
learning (BMDAL) picks an entire batch of 
unlabeled data based on certain selection criteria 
(Agarwal 2019). The amount of information and 
diversity of the samples are considered at the same 
time as the batch selection of samples (Agarwal 
2019). The DAL code is built on a Github library 
called "deep active learning" and is publicly 
available. It is worth pointing is that the optimizer of 
the DAL used Adam. The benefit of DAL code is 
that it has a rapid gradient to huge data, which is 
ideal for our needs in eICU-CRD, where we need to 
analyze enormous volumes of data. Another 
significant advantage of the DAL is that it does not 
boost the budget of recognition and classification 
(Chang 2014). 
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Figure1: The framework of the deep active learning 
process. 

2.4 Query Strategy 

The most important things in active learning are 
how to select samples for labeling and the selection 
of query strategy. There are two main principles for 
how to select samples for labeling: uncertainty 
principle and difference principle. Margin sampling 
as one of the uncertainty samplings was chosen in 
the active learning. The concept of active labeling 
by margin sampling is to give the sample the 
smallest separation between the top two class 
predictions, as seen in the equation:   ୶౟                                                 ୶౟౉౏ୀ ୟ୰୥୫୧୬(୮൫yଵหx୧൯ି୮൫yଶหx୧൯)             (1) 

where y 1 and y 2 are the deep learning network's 
first and second most probable class labels, 
respectively (Agarwal 2019). The Random sampling 
strategy, is mainly as a control strategy. This 
strategy randomly select a certain proportion of 
samples from the unlabeled samples and submit 
them to the labeler for labeling. It also has been used 
in this article. In the processing, there are two 
groups:  

One uses a combination of margin sampling and 
the Random sampling, referred to as active learning 
by learning strategy. Another does not use a margin 
sampling strategy.  

To determine which strategy is more successful, 
the two groups will be compared in the next and the 
more effective strategy will be found between 
random selection and active learning. 

3 RESULTS AND ANALYSIS 

According to information derived from the eICU-
CRD sub-database ‘diagnose’, the proportion of 
people diagnosed with septic shock during their ICU 
stay was 7.33 percent of the total number of people 
in the database. The percentage of positive to 

negative occurrences was 3:38. These are patients 
who were diagnosed with sepsis and shock by 
clinicians, but who were not classified as being in 
the septic shock phases by the doctors. 

After 15 rounds with 1000 batch sizes and 1000 
queries per round, the ultimate accuracy of the 
active learning by learning approach is 55.017 
percentage, whereas the accuracy of random 
selection is 51.958 percent. Regardless of the fact 
that there may not be much of a difference in the 
accuracy, Figure 2 illustrates that the accuracy of 
random selection outperforms that of active learning 
initially. As shown in the diagram, the initial 
random selection approach has significantly higher 
accuracy and stability than the active learning 
technique. However, when additional input data and 
data are labeled, the stability of random selection 
tends to deteriorate, compared to active learning. 

 
Figure 2: Active accuracy of two query strategies. 

Conversely, since more data is added to the 
model, the accuracy of active learning gradually 
overcomes the measurement rate of random 
selection, and the active learning model is more 
stable than random selection. This article also makes 
use of deep learning. Deep neural networks (DNN) 
were constructed, and the batch-based sample query 
approach was used. The following graphs of 
accuracy and loss are obtained using the case of a 
batch size of 64. Deep learning is better than active 
learning if readers look objectively at the accuracy 
and loss of the final model in this experiment, as is 
demonstrated in figures 3 and 4.  
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Figure 3. Deep learning accuracy. 

 
Figure 4. Deep learning loss. 

4 DISCUSSION 

The most direct charm of active learning is that it 
can significantly reduce the cost of labeling samples. 
Researchers have discovered that accuracy is quite 
low and about 0.55 based on of Figure 2, which 
represents accuracy in both query techniques, 
random selection and active learning. for this, the 
authors have come up with the following hypothesis. 
Firstly, it can no longer learn from the data, although 
it is an active learning model. Our deep learning 
model, on the other hand, appears to contradict this 
notion. Furthermore, the authors discovered that the 
percentage of individuals with septic shock in the 
eICU-CRD demo is extremely tiny. The percentage 
of scores below 4 that indicate a non-sepsis state is 
approximately 0.99, and the distribution is 
extremely unbalanced. As a result, it's thought that 
this data set isn't appropriate for the test model, and 

the accuracy rate is poor.  Even though the testing 
accuracy is indeed very high for this type of 
database, it really has no effect on the model. A 
further option is that a deep active learning library 
setting was not properly debugged in the 
experiment, preventing the DAL model from 
learning anything. 

Another thing worth mentioning is that because 
of the interdependence of the sympathetic and 
parasympathetic nervous systems, shock should not 
be judged simply based on "normal" hemodynamic 
measurements. Regardless of the fact that the model 
can predict a patient's sepsis stage based on current 
eICU datasets, it still has to be validated and 
adjusted before it can be utilized in real life. Since 
this complex septic shock phase is solely assessed 
by invasive hemodynamics, the model is still 
immature. Nevertheless, most ICU patients who 
underwent intubation medication are adept at 
gathering invasive hemodynamics parameters. As a 
consequence, the model can still be used as a guide 
to assist clinicians in promptly diagnosing or 
warning of the onset of more severe shock. 

5 CONCLUSIONS 

Based on hemodynamic data and the features of 
most intubation treatments in ICU patients, this 
paper provides a technique for predicting and 
staging septic shock in the article. For multi-class 
prediction, deep active learning and deep learning 
active learning are used to study. Deep learning 
validates the model’s feasibility and correctness. 
The query strategy of active learning is considerably 
most stable than random selection in deep active 
learning. The fraction of patients with sepsis is too 
small since the data is concentrated, resulting in the 
low accuracy of the active learning model. The low 
accuracy and instability of the DAL model are 
caused.  

However, this paper also has the deficiency that 
the author's knowledge of the DAL source code is 
incomplete and inaccurate, a representative database 
should be chosen to debug the model and code. And 
even though it cannot fully diagnose and forecast 
septic shock with invasive and continuous 
hemodynamic monitoring of patients, this 
experiment is likely to increase the understanding of 
the shock stage and aid clinicians in quick diagnosis 
and real-time prediction. Even if invasive 
hemodynamics cannot properly detect and 
discriminate the stages of septic shock after 
successful debugging of the future model, it will 
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offer a new research avenue for the study of the 
stages of septic shock. Septic shock may be 
immediately interfered with and the mortality 
incidence of septic shock can be reduced by 
accurately evaluating the stage of septic shock and 
offering assistance to medical personnel. 
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