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Abstract: The rapid advances in machine learning and deep learning algorithms have led to their adoption to tackle 
different security problems such as spam, intrusion, and malware detection. Malware is a type of software 
developed with a malicious intent to damage, exploit, or disable devices, systems, or networks. Malware 
authors typically operate through black-box sitting when they have a partial knowledge about the targeted 
detection system. It has been shown that supervised machine learning models are vulnerable to well-crafted 
adversarial examples. The application domain of malware classification introduces additional constraints in 
the adversarial sample crafting process compared to the computer vision domain: (1) the input is binary and 
(2) retaining the visual appearance of the malware application and its intended functionality. In this paper, we 
have developed a heterogeneous ensemble classifier that combines supervised and unsupervised models to 
hinder black-box attacks designed by two variants of generative adversarial network (GAN). We 
experimentally validate its soundness on a corpus of malware and legitimate files. 

1 INTRODUCTION 

Malware refers to a malicious software that has the 
intent to damage, disrupt, destroy, or perform harmful 
actions on a computer system. The detection of 
malicious software through ML-based methods has 
received an increasing amount of attention in 
cybersecurity. To build a malware classifier, the 
features are extracted from legitimate and malicious 
files either statically or dynamically. The techniques 
that extract static features do not execute the file and 
only examine the code structure and other binary 
properties. On the other hand, dynamic features are 
obtained by observing the execution behavior of the 
program. The selected features, be they static, 
dynamic features or both, are then fed into the ML 
model to discriminate between legitimate and 
malicious files. These models can be embedded in 
antivirus software to provide an automatic detection 
tool for incoming files. 

The advances and presence of intelligence in the 
adversaries’ techniques have facilitated the need to 
craft adversarial examples that are rarely identified by 
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deployed ML models such as Decision tree (DT), 
Support Vector Machine (SVM), Logistic Regression 
(LR), and Artificial Neural Network (ANN). To 
attack a deployed malware detection system, three 
assumptions are made in the literature about the 
knowledge available to the adversaries, namely 
white-box, black-box, and gray box. In the white-box 
scenario, the adversaries have immediate access to 
the ML system’s architecture, its parameters, and its 
training data. However, adversaries in reality do not 
have access to this kind of information. Thus, the 
adversaries operate instead in a black-box threat 
model. They use the target classifier as an oracle to 
label their adversarial examples. These labels are then 
used to train a surrogate model to approximate the 
target classifier. In the gray box model, an adversary 
is expected to know the architecture of the target 
model but have no access to its parameters. A number 
of attack algorithms have been proposed to generate 
adversarial samples for the white-box threat model 
such as FGSM, L-BFGS, C&W attacks, JSMA, and 
DeepFool. These algorithms can be exploited in many 
black-box and gray-box settings due to the 
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transferability of the adversarial samples among the 
models (Liu et al., 2016; Papernot, McDaniel, & 
Goodfellow, 2016). However, there are two main 
methods of black-box attack: transferability-based 
methods (Hu & Tan, 2018; Papernot et al., 2017; 
Rosenberg et al., 2018) and GAN-based methods (Hu 
& Tan, 2017; Zhao et al., 2017). In this paper, we use 
GAN to construct adversarial examples to bypass a 
black-box malware detection system. 

 Cryptanalysts are in a battle with malware 
authors to develop countermeasures to solidify 
malware classification systems. Building a secure and 
robust machine learning-based detection model is 
considered to be an open research problem. GAN, 
unlike other gradient-based approaches, needs to 
reverse engineer the target classifier to 
mathematically prepare the adversarial examples. 
Therefore, we suggest using a heterogeneous 
ensemble classifier that combines classification and 
clustering to produce consolidated classification 
results. Many researchers have been focused on the 
use of supervised ML algorithms to detect malicious 
software. In this paper, we show that the combination 
of cluster and classifier ensembles can improve the 
malware detection rate. To the best of our knowledge, 
no study has investigated the combination of 
supervised and unsupervised models for malware 
classification. Our study makes use of the algorithm 
introduced in (Acharya et al., 2011), whose name is 
C3E (from the Consensus between Classification and 
Clustering Ensembles). This algorithm assumes that 
clusters can provide supplementary constraints that 
help to classify new data. The task of combining 
classification and clustering at the output level is 
mapped into an optimization problem. To classify 
new malware and legitimate files, we have used a 
C3E based on Squared loss, C3E-SL (Coletta et al., 
2015). This algorithm needs two hyper-parameters: 
the relative importance of the classifier and cluster 
ensembles (σ), and the number of iterations of the 
algorithm (N). 

The rest of this paper is organized as follows. 
Section 2 presents the related work, Section 3 
provides a detailed description of our methodology, 
Section 4 explains the implementation of our 
proposed method, Section 5 discusses the evaluation 
results, and Section 6 describes the future work and 
concludes the paper. 

2 RELATED WORK  

Classifying malware programs using ML-based 
algorithms instead of traditional techniques such as 

signature-based algorithms, heuristic-based methods 
and behavior-based methods has been studied 
intensively (Gibert et al., 2020). Several research 
papers have been proposed to use standalone 
classifiers for malware classification. Nevertheless, 
the findings show that using standalone classifiers is 
not adequate enough to generalize and identify the 
adversarial examples. For instance, deep learning is 
claimed to be vulnerable to the manipulation of its 
input (Szegedy et al., 2013). As a result, major recent 
research has been devoted to hardening the 
supervised learning algorithm by incorporating 
defensive techniques during the training phase. In this 
section, we initially review the most common papers 
that propose and investigate countermeasures and 
adversarial malware examples. Next, we briefly 
outline the ensemble learning techniques that 
combine either supervised models, unsupervised 
models, or both supervised and unsupervised models. 

Grosse and her colleagues (Grosse et al., 2016) 
showed how to successfully implement adversarial 
examples to bypass feed forward neural networks. 
They adopted a forward derivative-based approach 
(Papernot, McDaniel, Jha, et al., 2016) to craft the 
adversarial examples.  The reason for focusing on 
forward derivative approaches instead of gradient 
descent techniques is that the forward derivatives are 
applicable to both supervised and unsupervised 
models as well as allowing the adversaries to generate 
information for broad families of adversarial samples.  
This approach exploits the Jacobian Matrix which 
contains the forward derivative of the cost function of 
a trained classifier with respect of its input. These 
derivatives are used to estimate the direction in which 
a perturbation in the input sample can change the 
classifier’s output. The adversarial example is 
generated by adding a perturbation with a maximal 
positive gradient to the benign class to a malicious 
sample. Their results indicate that neural networks 
should not be used without hardening them against 
adversarial samples. 

Wang et al (Wang et al., 2017) proposed a 
Random Feature Nullification (RFN) which is an 
adversary resistant method that prevents attackers 
from creating adversarial samples by randomly 
nullifying features within the samples. Their 
techniques can be viewed as stochastically 
“dropping” or omitting neuronal along with their 
connections. The results show that the combination of 
RFN with Adversarial Training reaches the best level 
of resistance. 

On the other hand, Ngoc vi et al (Vi et al., 2019) 
proposes a solution to the malware classification 
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problem in a different way which is motivated by the 
significant success of a convolutional neural network. 
Their method is based on the gradient to attack image-
based malware classification systems by introducing 
perturbations to the resource section of PE files.  They 
apply the FGSM method to generate adversarial 
images by adding perturbations to the resource 
section of PE files. They conclude that training with 
the adversarial examples created by their method can 
improve the robustness of a malware classifier. 

Grosse et al. (Grosse et al., 2017) introduces two 
procedures to detect adversarial examples, namely 
statistical tests and training with an outlier class. The 
first procedure investigates the ability of a statistical 
test to distinguish between benign and adversarial 
data points. They claim that the distribution of 
original legitimate data is different from the 
distribution of adversarial examples. They 
empirically proved that statistical tests can be used to 
detect adversarial examples before they are fed into a 
ML model.  In the second procedure, they augment 
their ML model with an additional class to represent 
the adversarial examples and train the model to 
recognize adversarial examples as part of this new 
class. They expect that the integration of the two 
approaches will be beneficial. 

GAN (Goodfellow et al., 2014) has been used 
extensively to generate synthetic images to augment 
small datasets for DNNs models. Hu and Tan (Hu & 
Tan, 2017) exploited GAN to simulate attacks to 
evade a black-box malware detection system. The 
difference between their proposed algorithm – 
MalGAN- and the existing ones is that the adversarial 
examples are dynamically generated according to the 
feedback of the black-box detector. The generator 
transforms a malware binary feature vector into its 
adversarial version and then its output is fed to a 
black-box detector to label it. The substitute detector, 
also known as a discriminator, is used to fit the black-
box detector and provide the gradient information to 
train the generator. Both the generator and substitute 
detector are part of a multi-layer feed-forward neural 
network. 

AdvGAN (Xiao et al., 2018) has been proposed to 
generate adversarial examples using generative 
adversarial networks (GANs). Once AdvGAN is 
trained, the feed-forward generator can produce 
adversarial perturbations efficiently. The model is 
applied in both a semi-white-box and black-box 
settings with a high attack success rate. The 
adversarial examples generated by AdvGAN on 
different target models have achieved higher attack 
success rate under state-of-the-art defenses compared 
to other adversarial example generating methods. 

Jin et al. (Shen et al., 2017) proposed an 
adversarial perturbation elimination framework 
named APE-GAN to eliminate the perturbation of the 
adversarial examples before feeding it into 
classification networks. They evaluated their work 
under different settings and the results show that the 
error rates of the adversarial inputs are significantly 
decreased after its perturbation is eliminated by APE-
GAN. Unlike the previous GAN-based methods, AI-
GAN (Bai et al., 2021) presents a new variant of GAN 
to generate adversarial examples. In AI-GAN, the 
attacker is added to train the discriminator 
adversarially. The evaluation of AI-GAN’s attack 
ability is applied in white-box with different attack 
settings as well as a complicated dataset. AI-GAN 
achieves a high attack success rate with a low 
generation time in various settings as well as 
scalability to complicated datasets. 

Ensemble learning has been used for both 
unsupervised and supervised models and it has a 
better accuracy result than its individual components. 
Bagging, Boosting, XG-Boost, Rule Aggregation, 
Stacking, and an adaptive mixture of experts are state-
of-the-art supervised ensemble approaches derived 
from multiple base classifiers. These ensemble 
methods need a huge amount of labeled data and work 
at the raw data level. On the other hand, ensemble 
techniques in the unsupervised learning are mainly 
focused on generating more stable clustering results 
by combining multiple partitions or performing 
distribution computing under privacy or sharing 
constraints (Strehl & Ghosh, 2002). There have been 
very limited efforts that combine multiple base 
classifiers and clusters (Acharya et al., 2011; Ao et 
al., 2014; Chakraborty, 2017; Gao et al., 2011). Every 
attempt uses a different strategy to combine 
classification and clustering to refine the final 
classification results but all of them work at the meta-
output level without accessing the raw data. For 
malware classification, few studies have been 
conducted leveraging ensemble learning techniques 
to improve the malware detection rate (Chen et al., 
2017; Kong & Yan, 2013; Yan et al., 2018; Ye et al., 
2010). As far as we know, there is no study in the 
literature that has considered a heterogeneous 
ensemble classifier that merges classification and 
clustering as a malware classification system. 
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3 METHODOLOGY 

3.1 Problem Definition and 
Formalization 

Given the deployed malware classification system 
under the threat model described below, the adversary 
attempts to bypass this system to increase the 
misclassification rate of adversarial examples. In 
short, a substitute classifier is trained on a dataset that 
contains a thousand of binary legitimate and 
malicious vectors. Then, an adversarial malicious 
sample is generated iteratively by modifying the 
limited features of malicious sample until a 
misclassification occurs. Finally, the deployed 
malware classification system is evaluated under the 
attacks at test time. 

3.2 Threat Model 

We considered black-box attacks during the test time 
where the adversary does not know the targeted 
malware classifier’s architecture and parameters. Its 
knowledge is limited to the type of features and the 
predicted class of the target classifier. The adversary’ 
s goal is to find a sample x that is similar to an original 
sample x but classified differently. To achieve this, 
we used the MalGAN algorithm (Hu & Tan, 2017) to 
find the minimum perturbation to add to x to craft an 
adversarial example. MalGAN has three basic 
elements: the generator, the black-box detector, and 
the surrogate detector. 

The generator produces a perturbation vector O 
from a concatenation of malware feature vector m and 
a random noise vector z. Each element of z is a 
random number sampled from normal distribution 
with a mean of 0 and a standard deviation of 1. Since 
malware feature values are binary, binarization 
transformation is applied to O according to whether 
an element is greater than 0.8 or not. This process 
produces a binary vector O0. The final generated 
adversarial malware example can be expressed as:  

m0 = m|O0   where ”|” is the element-wise binary 
OR operation. 

Since m0 is a binary vector, this will make the 
gradients unable to back propagate from the surrogate 
detector to the generator. Therefore, a smooth 
function G is defined to receive gradient information 
from the surrogate detector as shown below:  

G(m,  z) = max (m, o)  where max(.,.) represents 
element-wise max operation such that : When an 
element of m is 1, the  result of  G will be 1 as well 
and this will prevent from back propagate the 
gradients. When an element of m is 0, the result of G 

is the neural network’s real number output in the 
corresponding dimension, and the gradient 
information can back propagate. 

The ground truth classes of training data are not 
used to train the surrogate detector. Alternatively, the 
black-box detector detects the training data that 
consisted of adversarial malware examples from the 
generator, and legitimate programs from an additional 
legitimate dataset to predict whether a program is 
benign or malware. Then the predicted labels from the 
black-box detector is used to train the surrogate 
detector. 

The surrogate detector distinguishes the 
adversarial malware samples from legitimate files. 
Practically speaking, the generator is trained to 
minimize the probability of generated adversarial 
malware examples being classified as false by the 
surrogate detector while the surrogate detector tries to 
maximize the probability of generated adversarial 
malware. The surrogate detector tries to mimic the 
predications of the black-box detector and provide 
gradient information to train the generator. The 
generator and the surrogate detector work together to 
deceive our heterogeneous ensemble classifier. 

GANs come in three popular loss functions: the 
original Jensen-Shanon divergence (Goodfellow et 
al., 2014), least squares GANs (LSGAN) (Mao et al., 
2017), and Wasserstein distance (WGAN) (Arjovsky 
et al., 2017). In this paper, we exploit two variants of 
GAN: vanilla GAN and WGAN. WGAN uses 
Wasserstein distance for the divergence between 
model distribution and target distribution and it has a 
smoother gradient which in turn helps to stabilize 
training. The MalGAN algorithm does not offer a 
mechanism to bound the number of feature 
modifications. In this paper, we will tackle this 
weakness to ensure the functionality of the 
adversarial malware examples. 

3.3 Victim Model 

The victim model is an ensemble classifier that 
combines both classification and clustering. In this 
paper, we are trying to verify our hypothesis which 
states that a heterogeneous ensemble classifier is 
robust against GAN attacks. We adopted the 
algorithm introduced by (Acharya et al., 2011) to 
build our ensemble classifier. Their algorithm (C3E) 
consists of three steps. 

1. An ensemble of r1 trained classifiers is applied 
to new data X = ሼxiሽi=1

n  The output of each 
constitute classifier for each xi is a k-
dimensional class probability vector πi .  From 
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the set of such vectors ൛i
q1ൟ

q1=1

r1  , an average 

vector can be computed for xi as:   
 

i  =
1
r1

෍ i
q1

r1

q1=1

 

2. A similarity (co-association) matrix S is 
computed after an ensemble of r2 trained 
clusters are applied on a new data X= ሼxiሽi=1

n  , 
Each entry in this matrix represents the 
similarity between two objects which is simply 
the fraction of the r2 cluster solutions in which 
the two objects lie in the same cluster. 

3. The consolidated result of C3E is achieved 
after finding the minimum solution of the 
following objective function. 
 
j = xL൫iyi൯ + σx𝑠௜jL ቀyi,yjቁ ሺ1ሻ i ∈ x ሺi,jሻ (1) 
 

• The quantity L(.,.) denotes a loss function. 
• The first term captures the dissimilarities 

between the class probabilities provided by the 
ensemble of classifiers and the output vectors ൛yiൟi=1

n  . 
• The second term encodes the weighted 

dissimilarity between all possible pairs (yi,yj). 
The weights of these pairs are assigned in 
proportion to the similarity values sij of matrix 
S. 

• σ is a hyper-parameter which controls the 
relative importance of the classifier and cluster 
ensembles. 

The problem of classifying the new data X can be 
approached as an optimization problem whose 
objective is to minimize J. In (Acharya et al., 2011), 
the authors state that any Bregman divergence can be 
used as the loss function L(.,.) in the last equation. 
Bregman divergences include a large number of 
useful loss functions such as the well-known squared 
loss, KL-divergence, logistic loss, Mahalanobis 
distance, and I-divergence. As in (Coletta et al., 
2015), we selected this to exploit a squared loss (SL) 
function, hence the optimization over ൛yiൟi=1

n  can be a 
closed form solution. The objective function in 
equation (1) is rewritten as 

 

j =𝑥‖௬೔ —೔‖మ + σx𝑠௜jL ቀyi,yjቁ ሺ2ሻ i ∈ x ሺi,jሻ  (1) 

By keeping ቄyjቅj=1

n ൛yIൟൗ  fixed and sitting ∂j

∂yI
 0, we 

get 

yi =  i  ା ∑ ௦೔ೕ௬ೕೕಯ೔ଵ ା  ∑ ௦೔ೕೕಯ೔      (3) 

 
Equation (3) can be computed iteratively, for all i ∈ {1,2,...,n}, until a maximum number of iterations is 

reached, in order to obtain posterior class probability 
distributions for the instances in X (Coletta et al., 
2015). The objective of combining unsupervised 
models is to provide supplementary constraints for 
classifying new data (Banerjee & Ghosh, 2008). This 
point of view presumes that the similar new data 
points in the test set that lie in the same cluster are 
more likely to share the same class label. Thus, we 
believe these constraints will improve the 
generalization capability of our ensemble classifier. 

4 DEFENSIVE MECHANISMS 

The most common defensive mechanisms mentioned 
in the literature are randomness (Biggio et al., 2010), 
preventing overfitting, feature selection (Xu et al., 
2016), distillation (Papernot, McDaniel, Wu, et al., 
2016), ensemble adversarial training (Chinavle et al., 
2009), denoising, random input transformation, non-
linearity (Šrndic & Laskov, 2013), and micro-
detectors (Saad et al., 2019). Our hybrid machine 
learning model introduces randomness to the 
classifier system through the ensemble of classifiers 
and clusters. This randomness prevents the 
adversaries accessing the parameters of the 
classification system. As a result, we believe this 
information hiding technique will be able to avoid 
GAN’s attacks. 

5 IMPLEMENTATION 

5.1 Dataset 

The dataset we used in our experiments was 
generated as a part of (Al-Dujaili et al., 2018) 
collected from Portable Execution (PE) files. This 
dataset contains 22,761 binary features. These binary 
features are the API calls extracted from malware and 
legitimate PE files. The PE format enfolds the 
information necessary for Windows OS to manage 
the wrapped code. The authors of (Al-Dujaili et al., 
2018) create a corpus of 38,000 malicious and 
legitimate PE files. Each PE file is represented as a 
binary indicator feature vector. Each index of the 
feature vector represents a unique Windows API call 
where ”1” represents the presence of the 
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corresponding API call. We divided the dataset into 
training, validation and test sets and the number of 
samples in each set is 22800, 7600, and 7600 
respectively. Since the dataset is a Boolean matrix, 
we can visualize its sparsity using the 
Matplotlib.spy() method in Python. As shown in 
Figure 1, the dataset is apparently sparse as the graph 
is mostly white. Thus, we decided to apply 
VarianceThreshold to remove the features with a 
variance of less than 20%. 

 
Figure 1: 2D plot to visualize the sparsity of our input 
matrix. 

5.2 Threat Model's Architecture 

As we mentioned in the methodology, we exploited 
MalGAN (Hu & Tan, 2017) to simulate evasion 
attacks against the proposed black-box detector. The 
architecture of MalGAN is presented in Figure 2. We 
used ANN with one hidden layer for both the 
generator and surrogate detector. To confirm our 
selection, we tried different architectures with 
different numbers of hidden layers. We found that 
using ANN with one hidden layer does not degrade 
the performance of both vanilla GAN and WGAN. 
On the contrary, it shows comparable results with 
ANNs with two and three hidden layers. We set the 
number of neurons in the hidden layer to 200 and 
added a dropout layer in the surrogate detector after 
the hidden layer to ensure it does not overfit the 
training set, and the L2 Regularizer applies the loss 
function of the generator. 

The black-box detector is a trained heterogeneous 
ensemble classifier that combines clusters and 
classifiers (C3E-SL). The surrogate detector uses the 
black-box detector as an oracle to label the 
adversarial malware and legitimate files. During 
training, the surrogate detector tries to fit the black-
box detector and push the generator to craft 
indistinguishable adversarial malware files. 

 The objective of GAN is to generate 
perturbations and add them to malware files to 
deceive our black-box detector system. In our 
experiments, we considered adding perturbations to 
modify the malware files because removing features 
may crack the malware files. In this paper, we want 
to show that crafting adversarial malware samples by 
GAN can transfer across different models. 

Nonetheless, they hardly bypassed our hybrid model 
and achieved a low fooling rate. 

 
Figure 2: Architecture of our proposed method. 

5.3 Restrictions on Adversarial 
Crafting 

We applied two restrictions to the perturbations 
generated by the MalGAN algorithm. First, in the 
original implementation of MalGAN, the number of 
modifications applied to the original malware files 
were not restricted. During the training of MalGAN, 
the API call is enabled if the corresponding 
dimension of the generator’s output has a value 
greater than 0.5. We believe that this threshold will 
change the malware application too much, hence it 
may not preserve its utility. We decided to increase 
this threshold to 0.8. Second, the number of epochs 
for training GAN model is a critical hyperparameter 
that should be selected carefully. GAN generally is 
exploited to synthesize new images that resemble real 
images. Thus, the GAN model should be trained for 
quite a long time to reach its intended purpose. 
However, this cannot be applied to malware files 
because we want the generator to enable API calls as 
little as possible to fool the discriminator. Therefore, 
we have tried a different number of epochs and 
discovered that 100 and 50 epochs are a reasonable 
choice for vanilla GAN and WGAN, respectively. 

5.4 Victim Model's Architecture 

As we discussed in the methodology, we consider 
randomness to be our defensive technique. This could 
be built using combination of classifiers and clusters. 
We leveraged (C3E-SL) to refine the initial class 
probabilities estimated by the ensemble of classifiers 
(Neural Network, SVM, Logistic Regression, and 
Random Forest) with the help of the ensemble of 
clusters (K-means, Mean-shift, and GMM). All the 
classifiers and clusters were trained on the reduced 
features set (199 dimensions) after applying 
VarianceThreshold. 

According to (IBM Support, 2020), Boolean data 
is not preferred with K-means. Thus, we converted 
our categorical features to continuous features using 
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PCA before feeding the training set to the K-means 
cluster. To evaluate the clustering results of the three 
clusters, we exploit Adjusted Rand index (ARI), 
which is a function that measures the similarity of two 
assignments - the one given by the clustering process 
and the other by the true label. Unfortunately, we do 
not have knowledge of the ground truth for clustering. 
Thus, we alternatively consider analyzing how 
similar the clustering results generated by K-means 
with GMM and Mean Shift are. More specifically, we 
used ARI to calculate the agreement score between 
K-means and (GMM and Mean Shift). The aim of this 
test was to verify two things. First, we want to 
indicate whether similar objects lie in the same 
group/cluster in all clustering models. Secondly, is 
the similar score going to differ if continuous features 
are used instead of categorical features in the GMM 
and Mean Shift models? After conducting this test, 
we found that using continuous features yields a 
higher agreement score by about 99% between the 
clustering models. 

6 EXPERIMENTAL SETUP 

This section discusses the empirical evaluation of our 
proposed method. Since it is infeasible that the 
authors of malware files and antivirus vendors collect 
the same dataset, the attack model (MalGAN) and the 
victim model (an ensemble of classifiers and clusters) 
were trained on different training sets. The number of 
samples in the dataset totaled 38,000 and this total 
was distributed according to 22800, 7600, 7600 
among the training set, validation set, and test set 
respectively. We split the training set into A (20%) 
for training the attack model and B (80%) for training 
the victim model. To avoid overfitting the standalone 
classifiers while tuning their hyper-parameters, we 
used the whole validation set. The Adam optimizer 
with a learning rate of 0.001 and RMSProp with a 
learning rate of 0.0001 were selected as the 
optimizers for vanilla GAN and WGAN, 
respectively. 

To validate the efficiency of the proposed method 
in terms of the malware detection rate, we conducted 
two experiments where in the first experiment the 
adversarial malware examples are crafted by the 
vanilla GAN and in the second experiment, they are 
crafted by WGAN. In both experiments, we 
compared its performance with SVM, RF, LR and 
ANN. To guarantee a compatible comparison 
between our hybrid model and the base classifiers and 
to prevent overfitting, we utilized two generalization 
techniques - dropout and L2 regularization. We added 

both techniques to the ANN model and L2 
regularization to LR and SVM. Dropout randomly 
drops hidden units (along with their connections) 
from the neural network during training. This 
enhances the model generalization and provides a 
way of approximately combining many different 
neural network architectures efficiently. L2 
regularization reduces the likelihood of ANN model 
overfitting by preventing the weight of any values 
from getting large in magnitude. This is done by 
adding a weight penalty to the cost function. 

Training both vanilla and Wasserstein GAN 
models is hard as they require a delicate balance 
between the generator and discriminator. We have 
spent a sufficient time tuning the hyper-parameters 
considering the constraints we imposed in Section 
4.3. We will discuss a few of the findings we noticed 
during the training of the threat model before giving 
our remarks about the empirical results. First, the 
user-defined parameter σ in the (C3E-SL) algorithm 
should be assigned a low value because values higher 
than 0.0001 will cause C3E-SL to be susceptible to 
adversarial attacks during testing. Second, the 
generator of WGAN starts to construct 
undiscriminating adversarial samples between epoch 
35 and epoch 50. Third, vanilla GAN suffers from 
gradient fluctuations, hence the loss of the plots 
obtained during training is not indicative of getting 
highly effective adversarial samples. Table (1) shows 
the detection rate of the adversarial malware files 
according to five models. As we can see, our model 
has achieved the highest rate of 42.8%. The 
combination of clusters and classifiers is evidenced to 
improve the malware detection rate. It is worth noting 
in Figure 3 that the generated adversarial examples 
are increasingly rejected by our model after epoch 60. 
This is evidence that the surrogate detector of vanilla 
GAN is not strong enough to stimulate the generator 
to craft adversarial examples that are hardly detected. 
On the other hand, the ANN model attained the 
second highest detection rate and this is due to a 
couple of reasons. First, the two generalization 
mechanisms dropout and L2 regularization has 
empowered the ANN model to expose 35.6% of the 
adversarial malware files. Second, both the attack and 
victim models use the same ML algorithm, hence the 
adversarial malware files are readily transferred from 
MalGAN to ANN. For Random Forest, Logistic 
Regression, and SVM, the TPR ranges from 26.8% to 
30%. 
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Figure 3: The change in the true positive rate of the training 
and test sets during the training of the GAN for 100 epochs. 
The black-box detector here is our heterogeneous ensemble 
classifier. 

One of the tedious issues of training vanilla GAN 
is instability, which leads to gradient fluctuations 
(Salimans et al., 2016). Wasserstein GAN (WGAN) 
overcomes this difficulty. The graphs with a learning 
curve and accuracy line for WGAN are presented in 
Figure 4. The top subplot shows the line plots for the 
average discriminator loss for both malware and 
legitimate samples (blue), and the generator loss for 
generated adversarial malware samples (orange). We 
can see that the discriminator loss is somewhat erratic 
in the beginning of the training before stabilizing 
around epoch 30. The loss remains stable after that, 
even though the variance between the generator and 
discriminator increases. 

 
Figure 4: Line plots of loss and accuracy for WGAN. 

Table (2) presents the detection rate of the 
adversarial examples constructed using WGAN 
against the proposed hybrid model. The figures 
dramatically decreased for all classification methods. 
WGAN-based attacks were able to fool our model 
and only 19.2% of adversarial examples were 
detected. We justify this result as the ensemble of the 
clusters was not able to cluster the adversarial 
examples correctly. This affected the final result of 

(C3E-SL). The convergence curve of TPR on the 
training set and test set is shown in Figure 5. For both 
the training and test sets, TPR starts to fall sharply 
near the epoch 35. This is due to WGAN starting to 
create indistinguishable adversarial examples that 
were hardly detected by our model. For the 
standalone classifiers, SVM obtained the highest 
detection rate at 18% and LR obtained the lowest at 
12.4%. 

Table 1: True positive rate of the adversarial malware 
examples when the attack model is vanilla GAN and the 
victim models are four standalone classifiers and our hybrid 
model trained on a different training set. 

Models Test set 
NN 35.6 % 
LR 26.8% 

SVM 30% 
RF 30.4% 

Hybrid model 42.8 % 

Table 2: True positive rate of the adversarial malware 
examples when the attack model is WGAN and the victim 
models are four standalone classifiers and our hybrid model 
trained on a different training set. 

Models Test set 
NN 16.4 % 
LR 12.4% 

SVM 18 % 
RF 15.2% 

Hybrid model 19.2% 
 

The differences in the detection rate of the 
malware samples in Tables (1) and (2) lead us to this 
observation. WGAN trains the discriminator more 
than the generator and in turn it pushes the generator 
to design indistinguishable adversarial samples. 
Thus, the highly effective adversarial samples were 
solely able to bypass the black-box detector systems. 

 
Figure 5: The change in the true positive rate of the training 
and test sets during the training of the WGAN for 50 
epochs. The black-box detector here is our heterogeneous 
ensemble classifier. 
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7 CONCLUSION AND FUTURE 
WORK 

In this paper, we have proposed a framework that has 
investigated the viability of heterogeneous machine 
learning model against GAN-based evasion attacks. 
These kinds of attack are rarely detected by ML-
based malware detectors that are not backed by 
defensive techniques. For instance, 87.6% of 
adversarial malware examples constructed by 
WGAN bypass the Logistic Regression classifier. 
The presented empirical results have proven that 
combining supervised and unsupervised models can 
thwart roughly 42.8% of vanilla GAN-based attacks 
and 19.2% of WGAN-based attacks. 

There are several aspects that can be investigated 
in the future. First, there is the impact of increasing 
the number of clusters and classifiers in C3E-SL to 
improve the malware detection rate. Second, there is 
changing the squared loss in equation (1) for another 
Bregman divergence. The third is by applying our 
model in different application examples such as spam 
and intrusion detection to definitely verify our claims 
about the hardness of our proposed method. Fourth is 
injecting adversarial examples in the training set and 
retraining the hybrid model. We believe that 
adversarial retraining will improve the heterogeneous 
model’s robustness and encourage it to generalize 
well to unseen data. 
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