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Abstract: Cache-based side-channel attacks can cause security breaches like extraction of private keys from various en-
cryption algorithms. Static cache partitioning protocols are widely known to prevent such side-channel attacks.
However, because static partitioning protocols exhibit poor program performance, dynamic partitioning tech-
niques are preferably used in modern systems. This work exposes the vulnerability of dynamic partitioning
protocols such as UCP (Utility-based Cache Partitioning) and SecDCP (Secure Dynamic Cache Partitioning)
to well-known side-channel attacks. We then propose PASS-P protocol which prevents such side-channel at-
tacks without compromising on performance. PASS-P, when implemented to secure the widely used UCP
protocol, results in an average performance drop of only 0.35%. Compared to the inherently secure static
partitioning protocol, PASS-P improves performance by up to 29% (33.4%) and on an average 7.2% (10.6%)
in pairs of memory-intensive benchmarks when implemented on the shared L3 (L2) cache.

1 INTRODUCTION

With increasing utilization of computing systems in
all domains, security of the systems which handle
people’s private data and communication has become
vital. Extensive research is being carried out to iden-
tify security flaws across the stack from hardware
to software, and then to come up with novel ideas
to fix them.While several ideas have been proposed
to to mitigate the exposed vulnerabilities, we limit
ourselves to discussion of hardware security in the
present work.

Prior work in the field of hardware security has
shown the security vulnerabilities in such systems,
particularly in the form of side-channel attacks (Per-
cival, 2005; Wang and Lee, 2007; Kong et al., 2008;
Ashokkumar et al., 2016; Tromer et al., 2010; Bo-
ran et al., 2021). In such attacks, the attacker pro-
gram exploits specific unintended effects of the vic-
tim program. For instance, by using the technique in
(Bernstein, 2005), it was shown that an attacker can
deduce the private encryption key of the AES (Ad-
vanced Encryption Standard) protocol. It did so by
exploiting the fact that the total execution time of the
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algorithm is input-dependent. The different modes
in which an attack can be mounted are referred to as
‘channels’. These channels include analysis of execu-
tion time, memory accesses, power consumption and
electromagnetic radiation of the hardware resources
being used by the victim program. PASS-P, in par-
ticular deals with the kind of attacks in which the at-
tacker tries to analyze the memory accesses made by
the victim to find out which parts of the victim pro-
gram have been executed. Flush+Reload (Yarom and
Falkner, 2014) and Prime+Probe (Liu et al., 2015) are
side-channel attacks that use differential cache access
timing-analysis on lines modified by the victim pro-
cess. The Flush+Reload technique flushes specific
lines from each cache set and then tries to reload the
flushed addresses, while the Prime+Probe technique
fills the cache sets with the attacker’s data and then
tries to access the filled data. Because of the differ-
ence in memory access latency in cases of cache hit
and cache miss, the attacker can deduce the addresses
accessed by the victim.

Some recent work (Yao et al., 2019; Yan et al.,
2016) has shown novel ways for such attacks to be
detected by the system at run-time. COTSknight (Yao
et al., 2019) tries to capture the cache occupancy pat-
terns of running processes to identify suspicious ap-
plications that could pose a security risk. ReplayCon-
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fusion (Yan et al., 2016) replays a program’s execu-
tion with a different cache address mapping to discern
cache miss patterns.

 0

 0.2

 0.4

 0.6

 0.8

 1

b
z
ip

-m
ilc

g
c
c
-m

ilc

g
c
c
-lb

m

g
c
c
-s

o
p
le

x

a
s
ta

r-lib
q

g
c
c
-lib

q

le
s
lie

-a
s
ta

r

le
s
lie

-s
p
h
in

x

b
z
ip

-lb
m

lib
q
-m

ilc

o
m

n
e
tp

p
-lib

q

w
rf-b

w
a
v
e
s

m
c
f-z

e
u
s
m

p

c
a
c
tu

s
a
d
m

-s
o
p
le

x

g
m

e
a
n

P
e
rf

o
rm

a
n
c
e
 n

o
rm

a
liz

e
d
 t
o
 U

C
P

Figure 1: Speedup of static partitioning scheme normalized
to UCP for memory-intensive benchmark pairs (for Config-
uration 1 of Table 1).

On the other hand, there has also been exten-
sive research on mitigating such cache-based side-
channel attacks. Approaches to cache security can
be broadly classified into two types: cache parti-
tioning and cache randomization (Wang and Lee,
2007). PASS-P follows the first kind of approach.
One of the naı̈ve partitioning techniques proposed to
do this is static partitioning (Page, 2005). Within
each cache set, it enforces a fixed partitioning of the
lines amongst the simultaneously running processes.
Since no cache resources are shared by processes in
this technique, it guarantees security against cache-
based side-channel attacks. However, static partition-
ing comes with a heavy performance penalty because
many lines in the cache set remain under-utilized
(Wang et al., 2016). Cache access behavior of a pro-
gram can change during run-time, and static partition-
ing fails to adapt to this change. To improve perfor-
mance in a multi-processor system, several dynamic
cache partitioning (DCP) methods (Wang et al., 2016;
Qureshi and Patt, 2006; Domnitser et al., 2012a;
Sanchez and Kozyrakis, 2012; Xie and Loh, 2009)
have been proposed. Utility-based Cache Partition-
ing (UCP) (Qureshi and Patt, 2006) dynamically par-
titions the LLC in order to maximize the total util-
ity of cache lines for all the running processes. Our
evaluation (Figure 1) shows that the static partitioning
suffers an average performance degradation of 8.3%
with respect to UCP for memory intensive benchmark
pairs. Figure 1 also shows that UCP performs better
than static partitioning in all experiments.

While these DCP protocols have significant per-
formance advantages, we will show in Section 3 that
they are susceptible to cache-based side-channel at-
tacks. For mounting any side-channel attack, the fol-

lowing conditions (Wang and Lee, 2007) must be sat-
isfied: 1) attacker and victim processes must share a
resource; 2) both should be able to change the state
of the shared resource; and 3) the attacker should be
able to detect the changes made by the victim in the
shared resource. The LLC is typically shared amongst
all running processes. Since LLC lines are reallocated
periodically by UCP, all of these conditions are satis-
fied and an attack can be mounted through the shared
LLC. Thus, our goal is to provide security to DCP
schemes without incurring a significant performance
penalty.

The current work proposes the following contri-
butions:

• We describe a security vulnerability in DCP pro-
tocols and SecDCP (Wang et al., 2016) via the
shared last level cache. The vulnerability allows
an attacker to determine memory accesses made
by ‘victim’ process while running simultaneously
on the same core or on another core in multi-core
system.

• We propose PASS-P, a protocol that mitigates this
vulnerability by invalidating cache lines.

• To recover the performance loss due to invalida-
tion, PASS-P uses the novel Modified-LRU re-
allocation policy. Our detailed evaluation shows
that PASS-P regains the performance lost and per-
forms comparably to UCP.

While this work focuses on how PASS-P can be
used to make UCP secure, we believe that our tech-
niques can benefit most DCP schemes which are sus-
ceptible to the threat model described in Section 3.1.

The rest of the paper is organized as follows: Sec-
tion 2 summarizes the relevant prior work in this field.
Section 3 gives a brief outline of the UCP protocol,
and describes how it is susceptible to side-channel
attacks. Section 4 discusses the proposed PASS-
P method. Section 5 compares the performance of
PASS-P with static partitioning and vanilla UCP. Sec-
tion 6 concludes our work.

2 PRIOR WORK

Prior work for mitigation of cache-based side-channel
attacks can be broadly classified into two approaches:
(1) cache randomization and (2) cache partitioning
(Wang and Lee, 2007). In the first approach (Wang
and Lee, 2007; Qureshi, 2018), the address mapping
from main memory to the cache subsystem is ran-
domized so that no process can precisely detect the
accesses made by any other process. RPCache (Wang
and Lee, 2007) achieves this using a permutation table

SECRYPT 2022 - 19th International Conference on Security and Cryptography

444



to achieve this randomization. In CEASER (Qureshi,
2018), a low-latency block cipher is used to encrypt
the address used to access cache. In the second ap-
proach, the side channel is sealed by partitioning the
cache system amongst the running processes, such
that no process can access the cache lines of any other
process. PASS-P is based on this second kind of ap-
proach.

As discussed in Section 1, the method of static
partitioning (Page, 2005) ensures security against all
cache-based side-channel attacks. However, it comes
with a significant performance degradation because of
its inefficient use of the cache system. On the other
hand, dynamic cache partitioning (DCP) protocols,
which were developed to improve performance, are
insecure. Prior research has recognized this insecu-
rity and tried to mitigate the vulnerability.

SecDCP (Wang et al., 2016), a recent work, classi-
fies processes as confidential and public. It follows an
asymmetric security policy: it aims to secure only the
confidential applications from a side-channel attack,
and assumes that the mechanism for classification of
processes is not insecure. Though it claims to provide
security to the confidential process, we show in Sec-
tion 3.1 that it is still vulnerable to the Flush+Reload
attack.

Prior work like COTSknight (Yao et al., 2019)
and DAWG (Kiriansky et al., 2018) also address sim-
ilar security concerns. However, unlike PASS-P, both
of these require software and OS support and incur
higher performance penalties. COTSknight makes
novel use of cache monitoring technology (CMT) and
cache allocation technology (CAT) features of mod-
ern processors to identify and isolate suspiciously
behaving processes. However, it does not consider
Flush+Reload attacks. Compared to an insecure LRU
baseline, COTSknight shows a slowdown of up to 5%.
DAWG proposes a generic mechanism for secure way
partitioning to isolate cache accesses and metadata.
Compared to an approximate LRU baseline, DAWG
exhibits slowdown between 0% and 15% for different
experiments. PASS-P, on the other hand, shows an av-
erage slowdown of 0.35% and a maximum slowdown
of 2.2% compared to insecure UCP baseline. Consid-
ering that UCP gives a 10.96% higher performance on
average compared to LRU (Qureshi and Patt, 2006),
we expect PASS-P to also perform favorably when
augmented to UCP.

NoMo (Domnitser et al., 2012b) is an L1-
cache security system which presents a performance-
security tradeoff that can be tuned. Like PASS-P, it
requires no software support and requires only simple
changes to existing cache replacement logic. How-
ever, the NoMo configuration which gives complete

security is identical to static partitioning and may de-
grade performance. Compared to an LRU baseline,
this configuration gives a performance degradation of
up to 5% and 1.2% on average.

Our goal is to devise a method that is completely
secure like static partitioning, yet achieves the perfor-
mance offered by dynamic partitioning schemes.

3 VULNERABILITY IN
DYNAMIC PARTITIONING

Dynamic cache partitioning (DCP) protocols are run-
time algorithms that dynamically distribute cache
lines amongst running processes. UCP (Qureshi and
Patt, 2006), for example, periodically partitions the
cache lines in each set in order to maximize the total
utility of caches for all running processes. The guid-
ing principle behind UCP is that the process that has a
higher ‘utility’ for cache lines should be allotted more
number of cache lines in each set. Utility of a cache
line for a process is defined as the increase in cache
hit-rate if the process was given an additional cache
line. At the beginning of each phase (1 million cy-
cles in our study), UCP computes the optimum parti-
tioning based on the utility behaviour of the processes
in the previous phase and re-partitions the cache sets.
To enforce the new partitioning, UCP may need to
reallocate cache lines amongst processes. Previous
DCP protocols including UCP are designed such that
if some lines are reallocated from a process P1 to a
process P2, then P1 can still access those lines un-
til P2 overwrites them (Wang et al., 2016). This was
done in order to avoid unnecessary cache misses on
reallocated lines in each phase. The prime reason for
a side-channel attack on UCP, or in general on any
DCP scheme, is the reallocation of cache lines from
one process to another.

3.1 Threat Model

Dynamic cache partitioning schemes can be vulnera-
ble to Flush+Reload (Yarom and Falkner, 2014) and
Prime+Probe (Liu et al., 2015) attacks, especially in
cases where an attacker application can influence the
cache partitioning decisions. In UCP, for example, an
attacker program can artificially increase or decrease
its utility to cause reallocation of cache lines to and
from itself respectively. Moreover, to mount these at-
tacks, the attacker process does not need any elevated
privileges. The mechanism of the Flush+Reload at-
tack is described ahead and shown in Figure 2.
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1. Flush: The attacker takes all but one cache lines
of every set by increasing its utility and flushes
them as shown in step (a) in Figure 2.

2. Execute: The attacker returns all the flushed lines
to the victim by decreasing its utility. It then waits
for the victim to execute as shown in steps (b) &
(c).

3. Reload: Attacker takes all but one lines by in-
creasing its utility again and reloads addresses of
interest as shown in step (d). A cache hit or miss
on these addresses is indicative of the victim’s
memory accesses.

Figure 2: Mechanism for Flush+Reload attack. (a) Attacker
takes lines and flushes them. (b) Attacker returns these
lines. (c) Victim program executes. (d) Attacker takes these
lines back and reloads targeted addresses.

Similarly, the following steps show how an at-
tacker could mount the Prime+Probe attack. It is also
shown pictorially in Figure 3.

Figure 3: Mechanism for Prime+Probe attack. (a) Attacker
takes lines and primes them. (b) Attacker returns these
lines. (c) Victim program executes. (d) Attacker takes these
lines back and probes addresses A1 through A6.

1. Prime: The attacker takes all but one cache lines
of every set by increasing its utility and primes
them with its own data as shown in step (a) in the
Figure 3.

2. Execute: The attacker returns all the flushed lines
to the victim by decreasing its utility. It then waits
for the victim to execute as shown in steps (b) &

(c) in Figure 3.

3. Probe: Attacker takes all but one lines by increas-
ing its utility and reloads the addresses that were
previously primed as shown in step (d). A cache
hit or miss on these addresses is indicative of the
victim’s memory accesses.

While the attacker and victim must share the
code library for Flush+Reload to be mounted, there
is no such requirement for Prime+Probe. For
Flush+Reload, this ensures that the attacker is able to
get a cache hit in the Reload step for addresses fetched
by the victim in the Execute step.

Note that in most dynamic partitioning protocols,
no process is permitted to possess all cache lines of
a set, in order to prevent starvation of the other pro-
cesses. Despite this, the attacker can extract critical
information from the victim, especially over multiple
iterations of the attack.

To facilitate a more granular analysis of victim’s
memory accesses, it is typical for the attacker to use
well-known methods to slow down victim’s execution
considerably. For example, as described in (Gullasch
et al., 2011) an attacker can achieve this by mounting
a denial of service (DoS) attack on the completely fair
scheduler (CFS) that is used in Linux to divide CPU
time amongst running processes.

SecDCP (Wang et al., 2016), a recent work, clas-
sifies processes as confidential and public. It aims to
secure only the confidential applications from a side-
channel attack. Though it claims to provide security
to the confidential process, we show that it is still vul-
nerable to the Flush+Reload attack. SecDCP only in-
validates the lines that are reallocated from a public
application to a confidential application, if and only if
they were fetched by the public application. The lines
which are taken back by the public attacker applica-
tion in Reload step are not invalidated.

Therefore, the attacker can infer about the victim’s
accesses, thus making SecDCP insecure. Moreover,
the partitioning decisions made by SecDCP do not
factor in the demand of the confidential application,
thus leading to a sub-optimal partitioning and conse-
quent performance drop.

4 PASS-P

Performance and Security Sensitive Partitioning
(PASS-P), invalidates cache lines to secure the LLC,
as described in Section 4.1. Section 4.2 then describes
the Modified-LRU reallocation policy that is adopted
by PASS-P for an improvement in performance.
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4.1 Security with Invalidation

To mitigate the side-channel vulnerability described
in Section 3, the attacker must be prevented from suc-
cessfully performing differential timing analysis on
the reallocated lines. To stop the access of shared
resources of other program, PASS-P invalidates all
cache lines that are reallocated from one process to
another. Because of this preemptive invalidation of
lines, no process is able to cause eviction of lines
of any other process. Side-channel attacks cannot be
mounted in such a system, for the reasons described
below.

1. Flush+Reload: All lines reallocated to the at-
tacker after the Execute step are invalidated and
the attacker gets a miss for every targeted address
in Reload step.

2. Prime+Probe: The lines primed by the attacker in
the Prime step are invalidated when they are real-
located to the victim. Hence, in the Probe step the
attacker will get a cache miss for all these invali-
dated lines.

The attacker’s differential timing analysis fails be-
cause all addresses that the attacker attempts to fetch
result in the same cache behavior.

4.2 Modified-LRU Reallocation Policy
for PASS-P

The invalidation of the cache lines in PASS-P results
in a performance loss. We identify two reasons for
this:

1. In UCP, when a process P1 gives up some lines of
the shared LLC to another process P2, it can still
access the cache lines until P2 overwrites them
with its data. However, in PASS-P, due to inval-
idation of all reallocated lines, P1 will incur ad-
ditional cache misses. As invalidation is critical
for security, the performance drop is inevitable.
We propose a modification in the LRU (Least re-
cently used) reallocation policy to address the sec-
ond reason (given below) and regain most of the
lost performance.

2. Our experiments show that 32% of all reallocated
lines are dirty in nature. These must be written to
the main memory before their invalidation in the
LLC. We observe that this invalidation can lead
to a surge in memory traffic at the start of each
UCP phase, as many lines may have to be written
back at once. Hence, the running processes face
additional delays while handling any new cache
misses.

UCP uses the conventional LRU policy to choose
the lines belonging to one process that should be real-
located to other processes. The LRU policy does not
adequately address the above causes of poor perfor-
mance. To ameliorate the effects of the second rea-
son, PASS-P employs the Modified LRU reallocation
policy.

Figure 4: Flow Diagram of PASS-P’s Reallocation Policy.

According to this policy, PASS-P preferentially
reallocates clean lines over dirty lines from a set, if
the clean lines are not recently used, so as to still re-
spect the recency order. This reallocation policy re-
duces the number of writebacks to the main memory.
We define a ‘threshold fraction’ f ∈ [0,1]. Our real-
location policy is defined as: Reallocate LRU-Clean
line from a set if one exists and only if the clean line
is in the f fraction of the least recently used lines
allocated to the process, else reallocate the (dirty)
LRU line. For instance, consider that a process has
to choose a line for reallocation to another process
among its 8 lines in a cache set, given f = 0.75. The
Modified-LRU policy will inspect the 6 (= 8∗ f ) least
recently used lines and reallocate the least recently
used clean line amongst them. If all of these 6 lines
are dirty, our policy simply reallocates the least re-
cently used line.

Algorithm 1 describes the selection of lines for re-
allocation and the entire replacement policy is shown
in Figure 4. In this figure, ’N’ denotes the number
of cache lines to be reallocated at the end of the UCP
phase, as determined by the partitioning algorithm.

PASS-P: Performance and Security Sensitive Dynamic Cache Partitioning

447



Algorithm 1: Choosing a line for reallocation.

Function ReplacementIndex (In: List L
< blockIndex, dirtybit >, f , associativity n;
Out: blockIndex)

l = getIndexLRUCleanLine(L) if (l ! = null &&
l ≤ f ∗n) then

return l
else

return 0; //LRU line

Note : getIndexLRUCleanLine(L) gives index o f
LRU clean line

To find the best value of f , we evaluated the per-
formance of a few pairs of memory intensive bench-
marks for different values of f . Figure 5 compares the
geometric mean of speedup obtained with respect to
static partitioning for these different values of f .
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Figure 5: Geometric means of speedups of PASS-P for
memory-intensive benchmark pairs with respect to static
partitioning for different values of f . (For Configuration
1 in Table 1).

This graph shows that f = 0.75 performs the best,
giving the highest speedup of 10%. The value of
the f = 0 corresponds to the standard LRU realloca-
tion policy, resembling the one conventionally used
by UCP. The graph clearly shows that the LRU policy
is not well-suited for PASS-P. f = 1 indicates a policy
that always reallocates clean lines even if it is at MRU
(Most recently used) position whenever such a clean
line exists.

5 EVALUATION

We examine the performance of two benchmarks run-
ning simultaneously on two separate cores. We eval-
uate the performance of the two different configura-
tions shown in Table 1 using the cycle-accurate Sniper
simulator. In each experiment, two benchmarks run
simultaneously on two separate cores. The PASS-P
and UCP algorithms run with a phase length of 1 mil-
lion cycles.

We measure performance using ‘weighted
speedup’ metric that is the most appropriate for such
multi-core systems (Qureshi and Patt, 2006).

WeightedSpeedup = ∑
ith process

(IPCi/SingleIPCi) (1)

where IPCi is the IPC of the ith process in the
multi-process system, and SingleIPCi is its IPC when
run independently on a single core.

We show the results for twenty-five pairs of
benchmarks selected from the diverse set present
in the SPEC CPU2006 benchmark suite. In the
first eighteen pairs, both benchmarks are memory-
intensive (Navarro-Torres et al., 2019) (‘MM’ pairs).
In the remaining seven pairs, the first benchmark
is memory-intensive, while the second is compute-
intensive (‘MC’ pairs) (Navarro-Torres et al., 2019).
MM pairs are of special interest to us, because both
benchmarks contend aggressively for cache lines and
the optimum partitioning for UCP changes more fre-
quently. Hence, higher number of re-allocations and
invalidations take place in the course of their execu-
tion, posing a bigger challenge for the performance of
PASS-P. Since compute-intensive benchmarks are not
sensitive to the cache replacement policies, it is not
insightful to study pairs with both compute-intensive
benchmarks. In our experiments, we observed that
the percentage of reallocated lines which were dirty
dropped to around 22% for PASS-P in comparison to
UCP’s 32%.
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Figure 6: Comparison of Speedup of PASS-P ( f =0.75)
normalized to Speedup of Static partitioning for different
benchmark pairs for Configuration 1 of Table 1.

Figure 6 shows the performance gain of PASS-P
with respect to static partitioning. Our method with
L3 as LLC gives a considerable performance gain of
up to 29% and 7.2% on average for MM pairs of
benchmarks. The overall average performance gain
for all type of combinations is 5.8%. The lower
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Table 1: Core configurations.

Configuration 1 Configuration 2
Last Level Cache (LLC) L3 L2
LLC size, associativity 4 MB, 16 way 256 KB, 8 way

speedup for the combination of MC pairs of bench-
marks is expected, because compute-intensive pro-
grams do not have a high utility of the cache. The
choice of the cache partitioning protocol does not
affect compute-intensive programs’ performance as
much.

For ‘Configuration 2’ mentioned in Table 1, the
performance gain is up to 33.4% and 10.6% on aver-
age as shown in Figure 7. The L2 cache, which has
lower associativity (compared to L3 cache), benefits
more from the proposed PASS-P policy. The higher
gain in this case is because of more efficient utiliza-
tion of the cache sets.
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Figure 7: Comparison of Speedup of PASS-P ( f =0.75)
normalized to Speedup of Static partitioning for different
benchmark pairs for Configuration 2 of Table 1.

Figure 8 shows the performance of PASS-P (with
f = 0.75) for all benchmark pairs with respect to UCP.
There is a performance drop of 0.50% in case of the
eighteen MM pairs, while the value is even lower at
0.12% for the seven MC pairs. Overall geometric
mean value for the performance drop is 0.35%. Thus,
PASS-P has only a marginal drop in performance with
respect to UCP.

6 CONCLUSION

Through this work, we have shown that side-channel
attacks like Flush+Reload and Prime+Probe can be
mounted on dynamic cache partitioning (DCP) proto-
cols. While static partitioning can mitigate these at-
tacks, it has a huge performance penalty. Through
cache line invalidation and the Modified-LRU real-
location policy, we are able to overcome the secu-
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Figure 8: Comparison of Speedup of PASS-P ( f = 0.75)
normalized to Speedup of UCP for different benchmark
pairs for Configuration 1 of Table 1.

rity vulnerability in DCP protocols like utility-based
cache partitioning (UCP), while gaining a speedup of
up to 29% and on average 7.12% compared to static
partitioning. We also show that this technique has
a marginal performance cost of only 0.35% with re-
spect to UCP on average. PASS-P can be applied
on shared levels of cache for all dynamic partitioning
protocols. Thus, it is an effective method for mitiga-
tion of side channel attacks. Extension of PASS-P to
provide security against newer attacks like Meltdown
(Lipp et al., 2018) and Spectre (Kocher et al., 2019)
is left for future work.
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