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Abstract: The paper is devoted to the development of an adaptive approach to the fault detection and isolation of input 
and sensor failures of armature-controlled direct current motors. The proposed detection method is based on 
the full state Luenberger observer. Isolation scheme uses the directional residual set and relationships between 
fault directions and residual vector. Adaptability is provided by dynamic regressor extension and mixing 
approach for online estimation of parameters. Proposed scheme allows to isolate following faults: 
unaccounted load acting on the rotor, input voltage disturbance, failures of velocity and current sensors. 
Simulation results confirm performance of the proposed approach. 

1 INTRODUCTION 

The development of technologies leads to use of 
process automation systems in various fields of 
human activity: industrial manufacturing, 
autonomous cars and aircrafts, HVAC, etc. These 
systems typically have a complex structure that 
includes interconnected sensors, actuators and 
passive elements. Failures of system parts may cause 
sufficient consequences. Therefore, timely fault 
detection and isolation is of particular importance, 
especially for safety-critical systems. Such function 
allows to increase reliability, perform predictive 
maintenance, effective reconfiguration and quick 
failure elimination. According to Wunnenberg (1990) 
faults can be classified as follows: com- ponent fault 
(deviation of a plant parameters from its nominal 
values); sensor fault (sensor measurement doesn’t 
corresponds to real physical value); actuator fault 
(deviation of control signals from the desired values). 

The most common methods of fault detection are 
observer based approaches, parity relations, 
parameter identification based algorithms and 
machine learning approaches (Chen & Patton, 1999). 
Parity relation methods rely on hardware or temporal 
redundancy. Hardware duplication is effective and 
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does not require system model but demands 
additional financial costs for adding sensor and 
maintenance (Ray & Luck, 1991). Another drawback 
of a sensor duplication is a confines imposed by 
technological restrictions. Temporal redundancy 
requires accurate plant model, but doesn’t need 
additional hardware devices. Both approaches have a 
good performance for sensor faults detection in linear 
systems and are applicable for DC motors. 

Observer based approaches use difference 
between estimated and measured state variables 
(residual) for fault detection. Isolation problem can be 
solved with structured and directional residual sets or 
fault detection filters (Patton & Chen, 1997). The 
structured set method is based on synthesis of specific 
residual generator sensitive for only one or all-but-
one corresponding fault. The main idea of directional 
generators set is changing of residual signals in only 
one direction that corresponds to the specific fault in 
a residual space. Fault direction filters approaches use 
special procedures of observer synthesis to make it 
sensitive to the specific failures. Mentioned above 
methods are effective for actuator and sensor fault 
detection and isolation (Chung & Speyer, 1998). 

Problem of robustness with respect to the 
parametric uncertainties, disturbances, noises and 
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additive nonlinearities can be solved with the use of 
unknown input observers (Chen, Patton & Zhang). 
However, the synthesis procedure for these 
algorithms has solution only for a class of linear 
systems with sufficient limitations on plant matrices. 
Model of DC motor with measured velocity or current 
doesn’t satisfy the necessary conditions 
(Wunnenberg, 1990). 

Identification approaches use online parameters 
estimation algorithms (for example, gradient descent 
or least squares). These methods provide detection 
and isolation of component faults on the base of 
deviation between nominal and estimated parameters 
(Isermann, 1997). 

Last researches propose to use artificial 
intelligence and neural networks to detect and isolate 
faults. In (Santos et all, 2018) the fault detection and 
classification schemes are proposed. The fault is 
detected by a classical Luenberger observer. The 
classification is based on a representation which 
combines the subctrative clustering algorithm with an 
adaptation of particle swarm clustering. DC motor 
fault detection, isolation and identification based on a 
neural networks approach is presented in (Adouni, 
Abid & Sbita, 2016). However, this method requires 
a lot of computational power and don’t guarantee 
results. Experimental researches of fault detection 
and diagnosis methods for DC motor drives are 
analyzed in (Isermann, 2006). 

This paper is devoted to the actuator and sensor 
adaptive fault detection and isolation for armature 
controlled direct current motors. Unknown input 
observers don’t exist in the cases of sensor and 
actuator faults occurring in mechanical and electrical 
parts (equations for its synthesis have no solution 
(Wunnenberg, 1990)). Proposed research describes 
easy for computation and application method of fault 
detection and isolation. The Motor is assumed to be 
equipped with a velocity and current sensor. Fault 
detection is based on full order state observer. 
Isolation algorithm is provided by online parameters 
identification with the use of dynamic regressor 
extension and mixing. The proposed approach is an 
adaptive extension of previous authors’ research 
(Margun, Kremlev & Vlasov, 2021; Nguev, Vlasov, 
Margun & Kirsanova, 2021;Margun,) where DREM 
is used for components fault detection and isolation. 
Simulation results confirm performance of the 
proposed approach. 

The paper is organized as follows. Section II 
describes a mathematical model of the motor under 
faults and problem statement. General detection and 
isolation scheme, algorithms of observers calculation 

and residual directions are shown in Section III. 
Simulation results are shown in Section V. 

2 PROBLEM STATEMENT 

Consider a model of DC motor. Its dynamic is 
described by equations 

,
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where L is an inductance, R is an armature 
resistance, i is a current, u is an input voltage, Eb is a 
back electromagnetic force, ω is a rotor angular 
velocity, J is a rotor and load inertia, M is a motor 
torque, Mf is a friction momentum, 

,

,

,

b b

m

f f

E k

M k i

M k

φω
φ
ω

=
=
=

(2)

where kb, km and kf are constants, φ  is a magnetic 

flux assumed to be constant. 
If motor is equipped with a velocity and current 

sensor then the dynamic in state space representation 
takes the form: 
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Consider the model (3) under following faults: 
external torque applied to the rotor (this failure can be 
caused by wear-out of bearing or any unaccounted 
load); input voltage disturbanc; velocity sensor fault; 
current sensor fault. Torque and voltage are classified 
as actuator faults because of they are directly acting 
on state vector derivatives. 

A motor model under the above faults is described 
by equations 
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(4)

where fa1 is a torque fault, fa2 is a voltage fault, fs1 
is a velocity sensor fault, fs2 is a current sensor fault 
signals assumed to be unknown. 

The goal of the research is to develop an adaptive 
scheme for actuator and sensor faults detection and 
isolation that remains operability under uncertain or 
non-stationary parameters. First, consider the case of 
known motor parameters. Next, an adaptive 
modification is proposed for the case of parametric 
uncertainties. 

3 FAULT DETECTION AND 
ISOLATION SCHEME 

The basis of the proposed approach is the use of bank 
of full order Luenberger state observers for fault 
detection (Clark, 1979): 

	 (5)

where ݔො  is an estimate of state vector, ܭ =൤݇ଵ ݇ଶ݇ଷ ݇ସ൨ an observer design matrix specific for i-th 

fault. 
Residual signal is chosen as the difference 

between sensor measurements (4) (ݐ)ݕ and observer 
output ݕො(ݐ) (5): 

(6)

where ݁(ݐ) is a state estimation error. 
The dynamic of considered faults residual is 

described by equations: 

(7)

where vector ݈௜  defines fault direction in two-
dimensional residual space, ௜݂ is an i-th fault signal. 

It is necessary to develop a K synthesis algorithm 
for each considered faults. The matrix should satisfy 
following condition to provide isolability property 
(Chen & Patton, 1999): 

;ሾ݈௜݇݊ܽݎ (1 ܣ) െ ௜ሿ݈(ܥܭ = 1  to provide 
unidirectional residual for faults in residual 
space; 

2) (A − KC) should be stable to provide stability 
of the observer; 

3) all vectors ݈ܥ௜ should be linearly independent 
for faults separability. 

Additionally, mutual faults are separable if above 
conditions are satisfied for all occurred failures.   

Hence, it is necessary to design observer synthesis 
algorithm for each of failures and develop an isolation 
scheme on the base of residual signals (fig. 1). Let’s 
analyze motor behavior under actuator and sensor 
faults.  

 

Figure 1: Fault detection and isolation scheme. 

3.1 Torque Fault Detection 

Some unaccounted force acting on the rotation of 
mechanical parts causes torque fault. Error dynamic 
takes the form 

(8)

where ௔݂ଵ is an external force momentum acting 
on rotor. 

Consider condition 1: 

(9)

It holds if we choose ݇ଷ = ܽଷ: 
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Consider condition 2. Characteristic polynomial 
of error model (8) takes the form: 

 (11)

where s is a complex variable, 

(12)

Characteristic polynomial doesn’t depend on ݇ଶ, 
because of ݇ଶ݇ଷ = ܽଷ݇ଶ  and ܽଶ݇ଷ = ܽଶܽଷ . So we 
can define ݇ଶ = 0. One can choose positive n, m to 
provide desired observer behaviour and complete K 
calculation by solution of equations (12) with respect 
to the k1, k4 with known k2, k3 and n, m chosen by the 
designer. 

Condition 3 is satisfied because we have only one 
fault direction vector. 

3.2 Voltage Fault Detection 

A voltage fault occurs due to some failure in 
electronic circuits and disturbances of input voltage 
(for example, the crash of the transistor in motor 
driver or influence of powerful non-stationary 
external magnetic field). Error dynamic takes the 
form 

(13)

where fa2 is an additive voltage applied to the 
motor input. 

Consider condition 1: 

(14)

It holds if we choose k2 = a2: 

(15)

Consider condition 2. Characteristic polynomial 
of error model (13) is the same as in for force fault 
case (12). It doesn’t depend on k3 because all terms 
with k3 are rejected due to k2 = a2. So we can define 
k3 = 0. In the same way as in previous subsection one 
can choose positive n, m to provide desired observer 
behaviour by pole placement procedure and complete 

K calculation by solution of equations (12) with 
respect to the k1, k4. 

Condition 3 holds because residual directions la1 
and la2 are orthogonal. 

3.3 Velocity Sensor Fault Detection 

This fault occurs due to mechanical or electronic 
failure in velocity sensor or its data channels. 
Multiply or stuck measurement value are the most 
common types of the failures. Taking into account 
(4), error dynamic takes the form 

(16)

where fs1 is velocity sensor fault signal. 
Residual directions la1 and la2 are basis vectors in 

two dimensional residual space. Therefore, it is 
impossible to build linearly independent ls1 with 
respect to la1 and la2 in the same time. Let us choose 
the following residual direction ݈௦ଵ் = ሾ݇ଵ	݇ଷሿ =ሾ1		1ሿ. If the residual signal is along this direction, 
then this fault will be more likely. Moreover, we can 
provide mutual isolability with one of actuator faults. 

Consider condition 1: 

(17)

It is impossible to design such k2 and k4 that the 
columns will be linearly dependent like in actuator 
faults case because one of observer poles will be 
equal to zero. Let rows will be linearly dependent to 
satisfy the condition. Therefore: 
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One can find k2 as a solution of (18): 
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The last coefficient k4 is chosen to satisfy 
condition 2 with use of characteristic polynomial 
(12). 

It is impossible to provide condition 3 for all 
simultaneous faults, but proposed scheme allows to 
isolate a velocity sensor fault with one of actuator 
faults. 
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3.4 Current Sensor Fault Detection 

Reasons for current sensor faults are the same as for 
velocity sensor. Error dynamic is described by 
equations 

(20)

where fs2 is a velocity sensor fault signal. Choose fault 
direction as ݈௦ଶ் = ሾ݇ଶ		݇ସሿ = ሾ2		 െ 1ሿ. This direction 
is isolable from one of previous faults (condition 3 is 
partially satisfied). Consider condition 1: 

(21)

Similarly to previous subsection: 

(22)

Therefore, k3 is a solution of (22): 

(23)

The last coefficient k1 is chosen to satisfy 
condition 2 with use of the characteristic polynomial 
(12). 

3.5 Fault Isolation Scheme 

Faults directions in residual space are illustrated in 
figure 2.  

 

Figure 2: Fault directions in residual space. 

However, it is impossible to provide explicit 
separation of all simultaneous faults because two of 
its directions define basis of two dimensional residual 
space. But we can propose a scheme that allows faults 
detection and isolation with the use of directional 
relationship similarly to (Chen et all, 1996). 

Introduce directional relationship Z between 
residual vector r and fault direction li 
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Coefficient Zi denotes normalized value of 
residual projection on the i-th fault direction. If Zi > 
Zj then fault i is more likely then j. The most likely 
fault corresponds to max(ܥ௜), i = {݈௔ଵ, ݈௔ଶ, ݈௦ଵ, ݈௦ଶ}. 

Robustness with respect to the noises can be 
provided by use of threshold: 
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Problem of insensitivity to parametric 
uncertainties can be overcome with the use of 
identification algorithms. However, observer matrix 
becomes depending on estimates of plant parameters 
to perform all necessary detection conditions. 

It should be noted, condition 3 is not satisfied for 
all possible mutual faults. Hence, proposed scheme 
may lead to isolation errors in cases of multiple faults. 
For example, two simultaneous actuator failures can 
cause increasing of the residual vector in sensor fault 
direction. However, such situation is unlikely in 
practice and detection algorithm remains its 
performance. 

4 ADAPTIVE MODIFICATION 

Combine proposed method with the method of 
dynamic regressor extension and mixing (DREM) 
(Aranovskiy, Bobtsov, Ortega & Pyrkin, 2016; 
Aranovskiy, Belov, Ortega, Barabanov & Bobtsov, 
2019) for online estimation of parameters to ensure 
FDI operability under uncertainties and non-
stationarity. 

4.1 Plant Parameterization 

It is necessary to transform (3) to the autoregressive 
model for use of DREM. Rewrite plant (3) in transfer 
function representation. Transfer functions with 
current and velocity outputs take the form: 
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where 
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There are unmeasured derivatives of i(t) and ω(t) 
that prevents transformation to the autoregressive 
model. 

Rewrite (26), (27) as differential equations: 
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Apply second order stable linear filter with 
characteristic polynomial (ݏ)߉ 	= 	 ଶݏ 	+ 	ݏ2	 + 1  to 
the left and right parts of (28) according to Ioannou & 
Sun (2012): 
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Coefficients λ0, λ1 do not affect convergence time, 
but appropriate choice allows to filter measurement 
noises. 

Equations (29) can be represented in desired form 
with measured signals: 
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and ηi,	ηω are transfer function unknown parameters 
vectors to be identified.  

4.2 Identification Algorithm 

Let us use DREM method for DC motor parameters 
online identification (Aranovskiy et all, 2016). This 
approach provides independent estimation of plant 
parameters and convergence speed tuning. 

According to Margun et all (2021) and Nguev et 
all (2021), apply different stable linear filters to (30) 
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where λi are unique positive constants. Algorithm 
for λi selection doesn’t exists. However, there are 
following heuristics can be used: large differences 
between filter’s parameters decrease convergence 
time; too large or small λi can sufficiently increase 
computation complexity; it is good practice to choose 
filters parameters that are ten times different. 

Obtain an extended system which includes (30) 
and (32) in matrix representation: 

, ,i i iY Q Y Qω ω ωη η= = 	 (33)

where ௜்ܻ = ;௙௜ݕൣ ௙௜ଶݕ ; ௙௜ଷݕ ; ௙௜ସݕ ൧, ௜்ܻ = ;௙ఠݕൣ ௙ఠଶݕ ; ௙ఠଷݕ ൧ 
Multiply both equations (33) from the left by 

adjoint matrix of Qi,	Qω respectively. Yields 
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where φi and φω are determinants of matrices Qi	
and Qω respectively. 

Multiplication of (33) by adjoint matrix provides 
independent regressors for parameters estimation 
(one separate regressor for each unknown plant 
parameter). This allows to design an independent 
scalar identification algorithm for each parameter 
similar to the classical gradient descent approach with 
simplified tuning and fast convergence: 

( )2 ,ˆ ˆ
n n nn n тη ξ ϕ ϕ ηγ −= 	 (35)
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where γn	>	0 is a design parameter that allow to tune 
the convergence speed, ̂ߟ௡  is an estimate of the 
corresponding parameter n. Separate parameters 
identification and convergence speed tuning are main 
advantages of DREM. One parameter change doesn’t 
influence on others parameters estimates. This fact 
provides the robustness of fault isolation in 
comparison with gradient descent and least squares 
approaches. 

4.3 Adaptive Fault Detection and 
Isolation 

To ensure the adaptability of fault isolation scheme it 
is necessary to combine it with a parameters 
identification algorithm. It should be noted, that the 
observer matrices depend on the identifier outputs. 
This leads to the fact that during transient processes 
the values of the observer matrices will have 
significant errors in comparison with the desired 
values. This may lead to false faults detections. We 
need to update values of observers matrices only after 
the end of identification algorithm transients to 
overcome this drawback. It can be performed with the 
use of sliding window: 

݂݅	 ׬ (ݐ)ߟ̅) െ ௧௧ି்(߬݀	(߬)ߟ̂ ܶ ൑ ,ߟ∀		ଵ߂ ݁ݐܽ݀݌ݑ	 ܭ (36)

where ̅ߟ = ׬ ௧்ି்ߟ (߬)݀߬/ܶ  is a mean value on 
period (ݐ	 െ 	ܶ; 	ܶ),  . is a threshold value	ଵ߂

Moreover, detection scheme should be insensitive 
to the noises, small disturbances and deviations. This 
problem can be solved with a residual deadzone 
condition: 	݂݅			ܼ௜ ൑ ∆ଶ ܼ௜ = 0 (37)

5 SIMULATION RESULTS 

Consider motor with following plant 
Observers matrices Ka1,	Ka2,	Ks1,	Ks2 are updated 

after parameters estimation transient time. Their 
initial values can be calculated for nominal plant. 
Characteristic polynomial for plants (26), (27) 
parameterization is (ݏ)߉ 	= 	 ଶݏ 	+ 	ݏ2	 + 1. 
Parameters of DREM filters are chosen as follows: 
for current output transfer function ߣଶ = 0.1, ଷߣ = ସߣ,1 = 10; for velocity output transfer function ߣଷ =	0.1, ଺ߣ 	= 	1.  Threshold values are ߂ଵ = ଶ߂,0.05 = 0.1,  all ߛ  values equal to one, ݑ (ݐ0.1)݊݅ݏ	10= + sin(ݐ)	 to satisfy the persistent 
excitation condition. 

Identification algorithm results are shown figure 
3. Parameters estimate converges to the true value of 
six seconds. Observers matrices tend to the following 
values: 

Figure 4 illustrates fault isolation algorithm 
output during external momentum acting on rotor 
shaft from 10 to 15 seconds. Fault signal is a constant 
that increases velocity. The largest value of 
directional relationships Ca1 corresponds to the 
failure. 

 

Figure 3: Plant parameters identification. 

 

Figure 4: Directional relationships with force momentum 
fault from 10 to 15 seconds. 

The case of voltage fault is illustrated in figure 5. 
The fault signal is an additional voltage applied to the 
motor input. The directional relationship allows to 
isolate this fault. 

The case of sensor fault is illustrated in figure 6. 
The fault is a current sensor zero shift that may be 
caused by corruption of information bites. Proposed 
scheme allows to isolate this sensor fault. 

 

Figure 5: Directional relationships with voltage fault from 
10 to 15 seconds. 
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Figure 6: Directional relationships with current sensor fault 
since 10 seconds. 

6 CONCLUSION 

Actuator and sensor adaptive fault detection and 
isolation scheme for direct current motor is proposed. 
The motor is assumed to be equipped with velocity 
and current sensors. Detection algorithm is observer 
based. Isolation scheme uses directional relationship 
between residual and fault directions. 

Adaptability is provided by DREM approach. 
Proposed solution allows to isolate torque fault, input 
voltage fault, velocity sensor fault and current sensor 
fault. Simplicity of observers and residual generators 
synthesis and its trivial computation are advantages 
of the scheme.  

Robustness with respect to the noise is obtained 
by use of threshold. Insensitivity to uncertainties is 
provided by the DREM approach and switching 
techniques for the tracking of estimation end. 
Simulation results confirm the effectiveness of the 
proposed approach. 
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