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Abstract: This work presents a coupled Proportional-Integral-Derivative and State-Dependent Riccati Equation (PID-
SDRE) controller. PID angular position controller coupled to nonlinear infinite-time SDRE controller for 
speed stabilization is proposed. For the quadrotor modelling a full 6 degree of freedom (DoF) model is 
considered and described by nonlinear state-space approach. Also, a stable state-dependent parameterization 
(SDP) necessary for solution of the SDRE control problem is proposed. Solution of the SDRE control problem 
with adequate defined weighting matrices in the performance index shows the possibility of fast and precise 
quadrotor positioning with optimal stabilization of speeds. Two methods of optimal SDRE-based stabilization 
are proposed, tested, and compared. 

1 INTRODUCTION 

Todays, Unmanned Aerial Vehicles (UAVs) have 
become an object of interest of industrial, businesses 
and governmental organizations. They are being 
adopted worldwide, especially by following sectors: 
military, commercial, personal and future technology. 
Briefly speaking, in places where man cannot reach 
or is unable to perform in a timely and efficient 
manner especially including danger zones and places. 

Due to the development of UAV application, 
quadrotors has drawn full attention due to its 
advantages of flexibility, portability, versatility. The 
heart of each UAV is a control system, a brain which 
has to be optimal, robust, and intelligent (Chipofya, 
2017; Sadeghzadeh, 2011; Sheng S, 2016; Stepien, 
2019; Voos, 2006; Zhang, 2009).  

Flight control of multi-role UAV is viewed as a 
difficult area of aerospace engineering (Hoffmann, 
2007; Kim, 2020). Moreover, each flight control 
system of a quadcopter is nonlinear and coupled. The 
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controller should be an independent system, which 
aims to create the best autopilot hardware. Most of 
now existing controllers are based on PID controllers 
(Chodnicki, 2018).  

Modern optimal control theory proposes high 
performance and a rapidly emerging control 
technique called infinite-time state-dependent Riccati 
equation (SDRE) (Banks, 2007; Cloutier, 1996; 
Korayem, 2015). This is a suboptimal control 
methodology for nonlinear systems. The technique 
uses direct parameterization to bring the nonlinear 
system to a linear structure having state-dependent 
coefficients (SDC). The SDRE is then solved 
accordingly to the change of  state trajectory to obtain 
a nonlinear feedback controller matrix, which 
coefficients, in other feedback gains, are the solution 
(Cimen, 2010; Heydari, 2015; Mracek, 1998). 

Many practical implementations of quadrotor 
controllers are limited. When using a PID controllers 
to angular or linear positioning, for instance, there is 
no guarantee that angular or linear speeds became 

524
Chodnicki, M., Stecz, W., Giernacki, W. and Stępień, S.
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controlled to constant or zero. Then a combination of 
the PID with another controller (or sub-controller) 
should be provided to control the speed vector toward 
zero (Sadeghzadeh, 2011; Chodnicki, 2018).  

The main contribution of this research is to 
develop the PID-SDRE closed-loop control system 
employing the 6 DoF UAV model. The PID as the 
main controller is used for angular position control. 
The internal speed sub-controller SDRE is used to 
stabilize of angular and linear speed control. The 
modelling and control design methodology presented 
is the concept proposed to design a high-performance 
and optimal flight controller for UAV. The nonlinear 
model of the drone and solution of the infinite-time 
suboptimal speed control problem is applied, 
analyzed and compared employing two SDRE-based 
methods (Banks, 2007; Cloutier, 1996; Stepien, 2019; 
Voos, 2006).        

2 QUADROTOR DYNAMICS 

The rigid body equations of motion are the 
differential equations that describe the evolution of 
basic states of a quadrotor. The quadrotor model 
presents Fig. 1.   

 

Figure 1: Quadrotor model. 

The quadrotor dynamics is generally defined 
using Newton’s force and moment equations 
(Hoffmann, 2007; Kim, 2020; Chodnicki, 2018; 
Zhang, 2009). The force equation is following 

ࡲ  = ሶ࢜)݉ + ࣓ ×  (1) ,(࢜

where ࢜  is the UAV linear speed vector, ࣓  is the 
angular speed vector, m  is the UAV mass and ࡲ 
denotes the force vector. The moments equation 
describes all the moments acting on the UAV, equal 
to the rate of change of angular moment vector  

ࡹ  = ૑ሶࡵ + ૑ ×  ૑, (2)ࡵ

where ࡵ is an aircraft symmetrical inertia matrix and ࡹ  denotes moment vector. Considering vector ࢜ 
defined for all components in x, y and z direction and ࣓ for roll φ, pitch θ and yaw ψ angle 

 ൜࢜ = ሾݑ ݒ ሿ்࣓ݓ = ሾ݌ ݍ ሿ்ݎ  , (3) 

then equations of quadrotor aerodynamics can be 
defined for linear and angular speeds. In addition, 
because of a quadrotor symmetry, so in the inertia 
matrix the off-diagonal entries become zero, then 

ࡵ     = ,௫ܫ)݃ܽ݅݀ ,௬ܫ  ௭). (4)ܫ

The system of nonlinear equations that describes 
aircraft flight dynamics, considering gravity forces ݃ 
and force due to the thrust ்ܨ, is following 

൥ݑሶݒሶݓሶ ൩ =
ێێێۏ
ۍ ݒݎ − ݓݍ + ߠ݊݅ݏ݃ + ଵ௠ ஽௫ܨ) + ݓ݌(௫ܨ − ݑݎ − ߠݏ݋ܿ∅݊݅ݏ݃ + ଵ௠ ൫ܨ஽௬ + ݑݍ௬൯ܨ − ݒ݌ − ߠݏ݋ܿ∅ݏ݋ܿ݃ + ଵ௠ ஽௭ܨ) + ்ܨ + ۑۑۑے(௭ܨ

ې
 ,   (5) 

 ൥ݍ݌ሶݎሶሶ ൩ = ൦൫−൫ܫ௭ − ݍݎ௬൯ܫ ௫ܫ)−௫൫ܫ/௫൯ܯ+ − ݎ݌(௭ܫ ௬ܫ௬൫−൫ܫ/௬൯ܯ+ − ݍ݌௫൯ܫ +  ௭൪, (6)ܫ/௭൯ܯ

where ܨ஽௫, ܨ஽௬, ܨ஽௭ denotes drag forces and ܯ௫, ܯ௬, ܯ௭ are applied angular moments. It is assumed that 
the torque and thrust caused by each rotor act 
particularly in the z axis of the quadrotor frame. 
Moment results from the thrust action of each rotor 
around the center of mass which induces a pitch and 
roll motion.  

The relationship between the body-fixed angular 
speed vector ሾ݌ ݍ ሿ୘ݎ  and the rate of change of 
the Euler angles ሾ߶ሶ ሶߠ ሶ߰ ሿ୘ can be determined by 
resolving the Euler rates into the body-fixed 
coordinate frame. Hence, to describe the orientation 
an Euler angle relationship is used from the 
transformation from the local horizontal to the body 
axes. The resulting kinetic equations are 

    ቎߶ሶߠሶ߰ ሶ ቏ = ൥1 sin߶tanߠ cos߶0ߠ݊ܽݐ cos߶ −sin߶0 sin߶secߠ cos߶secߠ൩ ቈݎݍ݌቉ , (7) 

where ϕ is a roll angle, θ is a pitch angle, and ψ is a 
yaw angle and secθ = 1/cosθ. 
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3 PID-SDRE CONTROL 

Quadrotor is an unstable system. Therefore, a control 
and stabilization system in design should allow one to 
control the orientation in the system. Then, not only 
control of the space orientation, but also angular and 
linear speeds should be stabilized. Thus, two blocks 
of controllers are used: one for controlling space 
orientation by the angular position, and the next for 
stabilizing the angular and linear speeds. 

This paper deals with coupled Proportional-
Integral-Derivative and State-Dependent Riccati 
Equation (PID-SDRE) controller dedicated to 
orientation control and stabilization. The control 
system schema is presented in Fig. 2. 

 

Figure 2: PID-SDRE control schema of quadcopter. 

It consists of two control units. The orientation 
control system is realized in outer closed-loop 
systems using PID controller, but the speed 
stabilization problem is performed by the inner 
closed-loop subunit with feedback compensator 
employing infinite-time SDRE control technique. In 
this case, a thrust force ்ܨ  is set as constant and 
allows one to get desired altitude. The other variables 
contained in the Fig. 2 denote: ࢞ =ሾݑ ݒ ݓ ݌ ݍ  ሿ் – state vector of the 6 DoFݎ
model, ࢛ = ሾܨ௫ ௬ܨ ௭ܨ ௫ܯ ௬ܯ ௭ሿ்ܯ  – 
attitude control vector and error vector of the attitude 
angles ࢋ = ሾ߶௥௘௙ − ߶ ௥௘௙ߠ − ߠ ߰௥௘௙ − ߰ሿ்.  

3.1 PID Attitude Controller 

The closed-loop control system used to quadrotor 
space positioning consists of three independent 
controllers for roll, pitch and yaw angles.  

The output of a PID controller is following ࢛௉ூ஽ = ሾܯ௫௉ூ஽ ௬௉ூ஽ܯ ௭௉ூ஽ሿ்ܯ , and is equal to 
the PID control input to the plant, is calculated in the 
time domain from the feedback error as:  

௉ூ஽࢛  = ࢋ௉࢑ + ூ࢑ ׬ ݐ݀ࢋ + ஽࢑ ௗࢋௗ௧. (8) 

The error signal e is a three-element vector fed to the 
PID controller, which computes proportional, 
derivative and integral of this error signal with respect 

to time. k୔ , k୍ , kୈ  are proportional, integral and 
derivative gain diagonal matrices: 

௉࢑  = ,௉థ࢑)݃ܽ݅݀ ,௉ఏ࢑       ,(௉ట࢑
ூ࢑  = ,ூథ࢑)݃ܽ݅݀ ,ூఏ࢑  ூట), (9)࢑
஽࢑  = ,஽థ࢑)݃ܽ݅݀ ,஽ఏ࢑  .(஽ట࢑

The integral matrix gain ࢑ூ times the integral of 
the error vector plus the derivative matrix gain ࢑஽ 
times the derivative of the error vector are computed 
using its approximation and creating digital form of 
the PID. A standard formulation of digital PID that 
uses bilinear transformation of continuous integral 
and derivative action is employed (Kim, 2020; 
Sadeghzadeh, 2011).  

3.2 SDRE Speed Compensator –    
Classic Approach 

The state-dependent Riccati equation (SDRE) 
suboptimal control method is an efficient tool for 
control of the nonlinear 6 DoF quadrotor model. The 
technique with a further improved and modified 
approach is widely described in recent literature  
(Banks, 2007; Cimen, 2010; Mracek, 2006; Voos, 
2006). The SDRE approach is used in the context of 
the nonlinear controller problem with a quadratic 
objective function defined as the sum of energy lost 
and delivered to the system, what is compatible with 
practical applications.    

The infinite-time control problem consists of 
finding optimal control law that minimizes the 
following objective function defined for infinite 
control time: 

(࢛)ܬ  = ଵଶ ׬ ࢞ࡽ்࢞) + ஶ଴ݐ݀(࢛ࡾ்࢛ , (10) 

subject to nonlinear dynamics for affine systems 

ሶ࢞  = (࢞)۴ +  (11) .࢛(࢞)࡮

Nonlinear UAV dynamics (11) can be written 
using the state-dependent coefficient (SDC) form 
(Banks, 2007) 

ሶ࢞  = ࢞(࢞)ۯ +  (12) ,࢛(࢞)࡮

where (࢞)ࡽ  is symmetric, positive semi-definite 

weighting matrix for states, (࢞)ࡾ is the symmetric, 
positive definite weighting matrix for control inputs. 
Equation (11) includes ۴(࢞)  vector, which is 
piecewise continuous in time and smooth with respect 
to their arguments, which satisfy the Lipschitz 
condition. Considering (12), if the pair ሼ(࢞)ۯ,  ሽ(࢞)࡮
is a stabilizable parameterization of the system, then 
to check controllability of the affine system, this pair 
in the linear sense should be controllable for all ࢞.  
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Employing Hamiltonian theory (Cimen, 2010) the 
optimal control law is  

ௌ஽ோா࢛  =  (13) ,࢞(࢞)ࡷ்(࢞)࡮ଵି(࢞)ࡾ−

where (࢞)ࡷ  is a state-dependent feedback 
compensator which can be obtained from solution of 
a state-dependent algebraic Riccati equation 
(SDARE)  

(࢞)࡭(࢞)ࡷ  + (࢞)ࡷ்(࢞)࡭ (࢞)ࡷ்(࢞)࡮ଵି(࢞)ࡾ(࢞)࡮(࢞)ࡷ− + (࢞)ࡽ = ૙. (14) 

Equation (14) is in the form of algebraic SDRE 
(SDARE) for affine systems. Solution of the equation 
exactly results in suboptimal control because it 
neglects so-called “SDRE necessary condition for 
optimality” which tends to zero (Banks, 2007; 
Korayem 2015). The 6 DoF quadrotor model (5)-(6) 
in the form of (11) can be successfully rewritten in the 
SDC form (12) by finding stable parameterization for (࢞)࡭ . Then solution of the infinite-time SDRE 
problem seems to be formality in the context of UAV 
stabilization.  

In practical implementations, when the dynamics 
of the system become complicated it seems to be 
difficult to obtain a solution quickly, due to controller 
sampling time. It becomes necessary to approximate 
the solution. However, by employing advanced signal 
processors and dedicated solution algorithms based 
on Taylor series methods or interpolation methods 
(Banks, 2007), the control technique can be 
successively realized in practical implementation. 
The computational effort can be also reduced by 
implementing modified technique, proposed bellow.          

3.3 SDRE Speed Compensator – 
Modified Approach 

In the proposed modified approach, the controller is 
formulated as in the classic SDRE form (11), but the 
SDC parameterized form uses a separated form of 
matrix (࢞)࡭: 
ሶ࢞  = ૚࡭) + ࢞((࢞)૛࡭ +  (15) ,࢛࡮

where ࡭૚ is a state-independent and ࡭૛(࢞) is a state-
dependent part of (࢞)࡭, respectively. Then feedback 
compensator can also be defined as sum of state-
independent (constant) and state-dependent parts (࢞)ࡷ = ૚ࡷ +   what results in a control law as ,(࢞)૛ࡷ

ௌ஽ோா࢛  = ૚ࡷ)ࢀ࡮૚ିࡾ− +  (16) .࢞((࢞)૛ࡷ

As described in the paper (Stepien, 2019), the 
procedure for solving SDARE (14) can be simplified. 
The modified approach makes possibility solving 

algebraic Riccati equation SDARE for ࡷ૚ and ࡷ૛(࢞) 
employing Moore-Penrose pseudoinverse (Barata, 
૚ࡷࢀ૚࡭  .(2013 + ૚࡭૚ࡷ − ૚ࡷࢀ࡮૚ିࡾ࡮૚ࡷ + ࡽ = ૙, (17) 

(࢞)૛ࡷ  = ሾିࡾ࡮ଵ்࡮ሿା࡭૛(࢞), (18) 

Equation (17) is state-independent, hence it needs 
to be solved only once whole the control process. 
Thanks to this simplification, in comparison to the 
classic SDRE approach, the computational effort is 
strongly reduced. Then control law implementation 
may become much easier in a real control system.  

4 SIMULATIONS 

The nonlinear 6 DoF quadrotor model is applied to 
check the described infinite-time SDRE control for 
positioning and stabilization when the UAV try to 
find desired position during flight or take-off. 
Governing equations that describe the UAV 
aerodynamics are given by (5)-(6), but for the control 
purpose, state-dependent parameterization SDC is 
necessary. When considering the UAV flight 
dynamics, parametrized model (12) based on system 
(5) and (6) with gravity and drag compensation, can 
be described in SDC form 

ێێۏ
ሶሶݎሶݍ݌ሶݓሶݒሶݑۍێێ ۑۑے
ېۑۑ =

ێێۏ
ێێێ
ۍ 0 ݎ ݎ−ݍ− 0 ݍ݌ ݌− 0 0 											0 																						0												0 											0 																						0												0 											0 																						0												0 			0 			00 			0 			00 			0 			0 0 0 ൫ܫ௭ − ௫0ܫ/ݍ௬൯ܫ 0 ௫ܫ) − ௬0ܫ/݌(௭ܫ ൫ܫ௬ − ௭ܫ/݌௫൯ܫ 0 ۑۑے

ۑۑۑ
ې
ێێۏ
ݎݍ݌ݓݒݑۍێ ۑۑے
ېۑ +	

ێێۏ
ێێێ
ێێێ
ۍ ଵ௠ 0 00 ଵ௠ 00 0 ଵ௠

0 0 00 0 00 0 0
0 	0 00 	0 00 	0 0

ଵூೣ 0 00 ଵூ೤ 00 0 ଵூ௭ۑۑے
ۑۑۑ
ۑۑۑ
ې

ۈۉ
ۈۈۈ
ۇ
ێێۏ
ۍێێ
ۑۑے௭ܯ௬ܯ௫ܯ௭ܨ௬ܨ௫ܨ
ېۑۑ −

ێێۏ
ێێێ
ۍێ ߠ݊݅ݏ݃− + ଵ௠ ߠݏ݋ܿ∅݊݅ݏ஽௫݃ܨ + ଵ௠ ߠݏ݋ܿ∅ݏ݋஽௬݃ܿܨ + ଵ௠ ஽௭ܨ) + 000(்ܨ ۑۑے

ۑۑۑ
ېۑ
ۋی
ۋۋۋ
 (19)	,ۊ

where control vector generally consists of rolling, 
pitching, yawing moments and force vector with trust 
generated from UAV rotors.  

As defined in (19) and shown in Fig. 2, the thrust 
acts positively along the positive body z-axis. A 
quadcopter can either hover or adjust its altitude by 
applying equal thrust to all four rotors, where two of 
these motor spin clockwise, while the other two spin 
counter clockwise. To adjust its yaw, or make it turn 
left or right, the quadcopter applies more thrust to one 
set of motors generating yawing moment. To pitch it 
and roll it, on the other hand are adjusted by applying 
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more thrust on one rotor and less to the other 
opposing rotor generating pitching and rolling 
moments.  

Accordingly to the control schema proposed in Fig. 
2, the control applied to the quadrotor ࢛ =ሾܨ௫ ௬ܨ ௭ܨ ௫ܯ ௬ܯ ௭ሿ்ܯ  is a sum of PID 
control and SDRE stabilization, where controller 
outputs are rolling, pitching and yawing moments, as 

࢛  = ൤ ૙࢛௉ூ஽൨ −  ௌ஽ோா, (20)࢛

where ܨ௫ ௬ܨ ,  ௭ obtained from SDRE controller areܨ ,
assumed to be zero. The UAV properties used with 
certain assumptions and indicated values to be able to 
perform further calculations in the chapter due to the 
model (5)-(6) and (19) are following: ݉=5,35 kg, ܫ௫= 
0,04 kg⋅m2, ܫ௬= 0,14 kg⋅m2, ܫ௭= 0,17 kg⋅m2. 

Employing described quadrotor model, the PID-
SDRE control technique is applied to control the 
UAV attitude, considering infinite-time horizon 
SDRE control for stabilization. The control speed and 
final positioning error depend on PID gains, but 
stabilization is optimal and works accordingly to the 
SDRE technique.  

The PID-SDRE method is chosen, because the 
UAV should rapidly answer for user commands, 
moreover the path of flight must be sometimes 
rapidly stabilized when unexpected external forces 
try to change its position and orientation during flying 
action. Considering above, the control problem 
consists of finding UAV state dynamics and PID-
SDRE controls for prescribed orientation ߠ௥௘௙=45°, ߶௥௘௙=30°, ߰௥௘௙=15° during take-off with reference 
speed ࢌࢋ࢘࢞ =  ሾ0 0 0 0 0 0ሿ்  and initial 
speed ࢞૙ = ሾ0 0 0 0 0 0ሿ். 

In association with the dynamics (19), the PID 
controller gains are: 

௉࢑  = ݀݅ܽ݃(0.3; 0.3; 0.3),      
ூ࢑  = ݀݅ܽ݃(0.1; 0.1; 0.1), (21) 
஽࢑  = ݀݅ܽ݃(0.001; 0.001; 0). 
and quadratic cost functional weighting matrices in 
(10) are chosen as 

ࡽ = 2 ∙ ێێۏ
100ۍێێ 0 100 100 010 0 100 	0 			0 			0		0 			0 		0	0 				0 		00 					0 					00 					0 					00 					0 					0 1 0 0.20 1 0.20.2 0.2 2 ۑۑے

ࡾ and  ېۑۑ = 0.5 ∙  ૟×૟ . (22)ࡵ

Simulations are done to show the performance of 
the control designed in section 3. The quadrotor state 
dynamics, in other words, UAV response including 
its orientation to the desired angle position is shown 

below. Firstly simulations are performed for the UAV 
controlled by PID only, neglecting SDRE stabilizer.  

Next, simulation is performed for the full PID-
SDRE controller (Fig. 2) to show how the UAV can 
be stabilized in the context of angular and linear 
speeds. To check and compare described in previous 
section SDRE-based methods: classic and modified, 
simulations are performed for both proposed SDRE 
stabilizers. 

 

Figure 3: Angular position response, PID control. 

 

Figure 4: Angular speed response, PID control. 

 

Figure 5: Linear speed response, PID control. 

Figs. 3-5 show the closed-loop response of the 
PID controller of the quadrotor. Simulations are 
performed for angular positioning with ߠ௥௘௙ =45°, ߶௥௘௙=30°, ߰௥௘௙=15°, programmed sequentially at 1, 
2 and 3 sec. When look at Fig. 3, the quadrotor is 
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successively controlled with a small overshot by PID 
reducing angular speed toward zero (Fig. 4). 
However, control system does not consider linear 
speeds, and the UAV moves in airspace. 

 

Figure 6: Angular position response, PID-SDRE control. 

 

Figure 7: Angular speed response, PID-SDRE control. 

 

Figure 8: Linear speed response, PID-SDRE control. 

When considering proposed PID-SDRE control, 
Fig. 6-8 shows that quadrotor can be successfully 
controlled to referenced angles zeroing angular speed 
and reducing overshoots. It allows to operate with 
different UAV orientation at non-zero linear speed 
stabilizing angular positioning task. The PID-SDRE 
technique is examined for classic and modified SDRE 
approach. Simulation results are the same. It proofs 
the usefulness and correctness of the methods 
presented and used.   

5 CONCLUSIONS 

The hybrid PID-SDRE control technique for the 
UAV-quadrotor infinite-time control problem is 
formulated and solved. The UAV nonlinear 6 DoF, 
state-dependent parametrized model is proposed. The 
PID fine-tuned control methodology with an optimal 
nonlinear feedback speed stabilizer, performing 
attitude control and stabilization task is analyzed. The 
effectiveness of the presented technique is 
demonstrated on numerical example where the UAV 
response is found using two different SDRE-based 
techniques.  

The results presented demonstrate that in the 
future, the proposed control technique will be 
successively applied to real-time UAV flight control 
systems. Moreover, an approach based only on SDRE 
technique, neglecting PID, will be strongly developed.   
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