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Abstract: Web server-based fingerprinting is a type of fingerprinting that allows security practitioners, penetration
testers, and attackers to distinguish between servers based on the set of information these servers disclose.
A common approach to hide this information is to apply fingerprinting mitigating techniques. In this work,
we present a new approach for fingerprinting web server software irrespective of the applied fingerprinting
mitigation techniques. The premise of our approach is based on the simple insight, i.e., web servers handle
different types of HTTP requests differently. We use the fuzzing approach for intelligent and adaptive selection
of HTTP requests that are able to provoke servers to disclose their service-level information.

1 INTRODUCTION

Web services are pervasive in the modern Internet, so
are the attacks on web applications. The attacks on
the underlying web server technology or web appli-
cations often leverage the server’s misconfigurations
or security flaws of web application software. The
presence and the extent of security misconfigurations
are typically uncovered through web server finger-
printing process that allows to determine type, version
of server software, used libraries, and application-
related vulnerabilities.

Fingerprinting web technology installed on the
server is routinely used by network security admin-
istrators for security assessment (Abdelnur et al.,
2008), security analysts for penetration testing, and
by researchers for research purposes (Li et al., 2009;
Shamsi and Loguinov, 2017).

Web server fingerprinting is also a common ap-
proach that enables the adversaries to explore the ex-
isting configurations, collect information, and prepare
for a more sophisticated compromise.

The arsenal of server fingerprinting techniques
falls into two groups: passive and active techniques.
Passive fingerprinting techniques rely on sniffing
mechanisms to infer the web server applications. Al-
though stealthy, they are known to be less accurate.
On the other hand, active fingerprinting can achieve
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higher accuracy, but requires active and often aggres-
sive probing of a remote server.

The classical approach to an active web server fin-
gerprinting relies on banner grabbing through HTTP
protocol that involves sending crafted requests to
server to illicit a response. The information available
in a returned banner often contains specific markers
that can be associated with the web application tech-
nology. Unless modified, these markers remain sta-
ble and can be easily matched with application fin-
gerprints. Hence, a common mitigation approach fol-
lowed by practitioners is to manipulate or obfuscate
the identifiable information preventing fingerprinting.
The existing fingerprinting countermeasures typically
aim to modify banner information (Apache, 2022;
Microsoft, 2009) or introduce variations in the server
response to render automatic fingerprinting ineffec-
tive (Yang et al., 2010). In spite of the long history
of fingerprinting countermeasures, their effectiveness
against fingerprinting techniques has not been stud-
ied.

In this work, we present a first study that inves-
tigates this. Specifically, we explore the capabilities
of prevalent web server fingerprinting tools in a pres-
ence web server identity masking. We explore eight
available server fingerprinting mechanisms, primarily
open-source and widely used in practice, on the exam-
ple of four popular web servers: Apache, Microsoft
IIS, Nginx and Lighttpd. We discover that most of the
fingerprinting mechanisms fail even in the presence
of not sophisticated mitigation measures.
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To this extend, we propose a new method for fin-
gerprinting web server applications irrespective of ap-
plied fingerprinting mitigation techniques. We design
HTTPFuzz approach that leverages random mutation
fuzzing.

Coming from software testing, fuzzing is a well
known technique that allows to generate massive
amounts of erroneous, unexpected, or random test
cases to observe their effects on the target program
aiming to identify cases that can trigger software
problems or bugs. In our context, we leverage fuzzing
approach to generate unexpected HTTP requests that
may consequently illicit unexpected response reveal-
ing the true identity of a web server. Note that while in
a traditional setting fuzzing often aims to crash a tar-
get application or a system, in our context, this is an
undesirable outcome. Our goal is to determine a set
of HTTP requests that produce server responses that
can most accurately expose web server technology.

As opposed to fuzzing that generates massive
amounts of cases, most modern servers are equipped
to rate-limit the amount of incoming traffic, hence re-
stricting the number of requests that can be poten-
tially sent to a server for fingerprinting. We thus fur-
ther design fuzzing-guided heuristics to select HTTP
requests agnostic to the applied fingerprinting mea-
sures.

Our contributions in this work are as follows:

• We present an effectiveness analysis and dis-
cuss limitations of fingerprinting countermeasures
against prevalent in industry web server finger-
printing techniques.

• We propose a new method called HTTPFuzz for
fingerprinting web server applications agnostic to
the applied fingerprinting mitigation techniques.

• We explore the proposed HTTPFuzz approach in
practice by performing a fingerprinting of over
100K unknown servers.

We offer a prototype of HTTPFuzz to the security
community in an effort to facilitate research in this
area1.

2 BACKGROUND

A web server is a combination of hardware and soft-
ware that uses HTTP/HTTPS protocols as a conven-
tion to respond to client requests. An example of
HTTP exchange of request and response message
from IIS configured Virtual Machine is given in Fig-
ure 1.

1https://cyberlab.usask.ca/datasets/httpfuzz-main.zip

Figure 1: An example of HTTP response from IIS web
server to ’GET / HTTP/1.1’ request.

The structure of the typical HTTP request includes
several elements:

• Request-Line: the first line of an HTTP request
that typically contains a <method> token, that tells
the server what to do with the resource (e.g., GET,
HEAD, POST), followed by the <URI>, that spec-
ifies the resource on the server, <protocol> and
its <version>. The tokens in the request line
are separated by ’/’. Nine methods have been
standardized for use in HTTP requests. Among
them, web servers are required to support the GET
and HEAD methods, while other methods are op-
tional (Fielding and Reschke, 2014).

• Request Headers: may be present to provide
additional context for a request. For example,
by including conditional fields for the resource
state, indicating accepted formats for the response
or media types (e.g., Content-Length, Accept-
Encoding), or including information about the
user, user agent, and resource (e.g., User-Agent,
Referer, From).

• Request Body: an optional part that may pro-
vide additional information to correctly retrieve
requested data.

When a request is received, the server constructs a
HTTP response that includes several elements:

• Status-line: contains the protocol and its version
followed by a numeric status code with its short
textual description of the status code. The status
code is a 3-digit number that indicates a result of
HTTP request execution.

• Response Headers: similar to a request header,
response header aims to provide additional infor-
mation to complement what is already given in
status-line. Note that the header is optional, and
the response may contain 0 or more headers.

• Response Body: typically provides the resource
requested by a client or an error message in case
of failure.
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3 RELATED WORK

Web server fingerprinting is a widely-studied topic.
Early studies leveraged differences in TCP/IP stack
implementation for fingerprinting servers. For ex-
ample, host operating system identification based on
analysis of encrypted communication was introduced
by Beverly (Beverly, 2004). Shamsi et al. proposed
to automatically generate server signatures based on
TCP/IP packets for large-scale fingerprinting (Shamsi
and Loguinov, 2017).

Differences in network system implementation
were also leveraged by Yang et al. (Yang et al., 2019)
for fingerprinting of IoT devices. The approach re-
lied on Neural Network classification model build
with features extracted from the network layer, trans-
port layer, and application layer. Another concept of
fingerprinting for the IoT platform traffic was intro-
duced by designing a set of IoT platform fingerprint-
ing workflows via traffic analysis (He et al., 2022).
The authors manually analyzed the deciphered traf-
fic and found that some traffic in IoT platforms using
private protocols had obviously distinguishable char-
acteristics.

There has been a significant research done in the
area of browser fingerprinting. Browser fingerprint-
ing is the process of collecting data from a client’s
web browser in order to create a device’s finger-
print (Laperdrix et al., 2020). Browser fingerprint-
ing usually gathers a massive amount of data about
a user’s device, ranging from hardware to operating
system to browser configuration (e.g., user’s device
model, operating system, screen resolution, user time-
zone, preferred language setting, browser version,
tech specification of user’s CPU, graphics card, and
etc.).

As opposed to browser fingerprinting, web server
fingerprinting aims to determine the software char-
acteristics of the server. Lee was one of the first
researchers to point out that different web servers
implement the HTTP response differently despite
RFC specification outlining the proper HTTP re-
sponse (Lee et al., 2002). Hence, Lee developed
HMAP, an automated tool that leveraged a method
that uses the characteristics of HTTP messages to de-
termine the identity of an HTTP server with high re-
liability. For fingerprinting web servers, three types
of characteristics from HTTP responses were taken
into consideration: syntactic, semantic, and lexical.
HMAP works with variations of GET, HEAD request
lines using the wrong capitalization of protocol name,
version, and long URIs and compares each of the re-
sponses with a list of known server characteristics.
The tool does not take into consideration of other

available HTTP methods (e.g., DELETE, TRACE).
The approach is based on the explicit assumption that
server header is present and provides trustworthy in-
formation.

The study performed by Saumil et al. applied
the tool HTTPrint to analyze web server fingerprint-
ing (Shah, 2003b). The primary focus of this work
was the analysis of server banners from common web
servers. Only a few HTTP requests were considered
including DELETE, improper HTTP version, junk re-
quest.

Shrivastava (Shrivastava, 2011) provides exam-
ples of fingerprinting mechanisms such as HTML
data inspection, presence of the files based on HTTP
response codes, checksum-based identification. The
author focused on the application fingerprinting on
the application level.

Auger outlined fingerprinting techniques based on
web architecture, server, application software, back-
end database version. Banner grabbing technique of
the HTTP responses were highlighted as server head-
ers are likely to reveal identifying information, e.g.,
intermediate agents, via header, server version, and
error pages (Auger, 2009). The study analyzed the
lexical, syntactic, and semantic information provided
in HTTP response produced by abnormal requests.

Lavrenovs et al.(Lavrenovs and Melón, 2018) car-
ried out analysis of website extracted from Alexa’s
top one million list and presented a research on the
security of the most known websites. Although the
study was not focused on server fingerprinting, it pro-
vided an insight on how much information can be
revealed through server-side headers. The analysis
reached two conclusions: a) the more popular do-
mains leak less information and b) HTTP sites are less
restrictive than HTTPS served sites in terms of the in-
formation that they provide, mostly for server related
headers.

The study conducted by Book et al. (Book et al.,
2013) applied machine learning techniques for gen-
erating server fingerprinting automatically. The au-
thors used Bayesian inference without building ini-
tial server features. They used a set of 10 specialized
HTTP requests on 110,000 live servers. The analy-
sis was performed on the response codes and MIME
types returned by the server. The authors calculated
unique fingerprint for each type of web server and
then matched the responses of unknown web servers
against the developed fingerprint set.

Techniques for detecting web servers from the
banner information, HTTP response characteristics
(order of server and date headers), and special HTTP
requests were introduced by Huang et al. (Huang
et al., 2015). Through special HTTP requests which
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included correct and undefined request methods,
the authors analyzed the web servers based on the
servers’ different processing procedures.

In this work, we leverage fuzzing to create am-
biguous HTTP requests that may potentially provoke
servers to disclose identifiable information. This is
not the first use of fuzzing for security purposes. Bar-
reaud et al (Barreaud et al., 2011) examined imple-
mentations of the HTTP protocol embedded in smart
cards for the presence of vulnerabilities. The authors
created mutators to represent the various mutation
types that were then used to automatically evaluate
the application’s behavior with the goal of exploit-
ing vulnerabilities on the servers. In a similar vein,
Jabiyev et al. (Jabiyev et al., 2021) looked at HTTP
protocol exploitation through HTTP Smuggling. Us-
ing a grammar-based fuzzer, the approach aimed to
automatically exploit the HTTP communication.

4 MITIGATING
FINGERPRINTING

The majority of the web server applications are
shipped with numerous configuration options. These
settings are easily identifiable and in essence form
a server fingerprint that can be later matched during
a fingerprinting process. Based on the complexity
of the fingerprint and the process, the fingerprinting
techniques can be broadly divided into several groups:

• A direct identification of a technology-based on
server response fields, e.g., X-POWERED-BY or
SERVER values in Figure 1.

• Inference-based identification that leverages in-
formation leading to server technology identifica-
tion (e.g., presence of files, libraries identification
by tools like Aquatone, WhatWeb, Wappalyzer,
Nikto).

• Heuristics-based fingerprinting that infers the cor-
responding web technology by combining and an-
alyzing various patterns of HTTP response ele-
ments to those contained in the database of fin-
gerprints (e.g., httprint, httprecon).

4.1 Fingerprinting Tools

Nmap. is arguably one of the most dominant and
versatile tools for network analysis and fingerprint-
ing (Lyon, 2009). By default, for an open port, nmap
produces a series of TCP packets that constitute a
generic ’null’ probe followed by a 5 second pause.
The probe packets typically include a probe string,
i.e., an arbitrary ASCII string. The server response,

if any is produced, is compared to a list of signature
regular expressions within nmap database. If a full
match is not found, nmap proceeds with a more spe-
cific (usually probably service-oriented) probes that
may also be strengthened by increased probe inten-
sity. To avoid contamination of results, Nmap typ-
ically starts a new connection for each probe which
adds a significant overhead to a fingerprinting pro-
cess. While the tool is favored by practitioners for
isolated scans, the process is clearly unfeasible for
large-scale fingerprint analysis. Nmap generally does
not anticipate significant variations from the expected
server response, as a result, various system modifica-
tions might produce an illusion of a completely dif-
ferent service.

HTTPrint. (Shah, 2003a) aims to overcome the
challenges of pure signature-based approaches that
can be easily deceived with web server banner con-
figuration. The server customization might produce
various deviations in HTTP response. To account for
these variations, HTTPrint leverages fuzzy logic and
assigns confidence ratings to choose the most proba-
ble signature and consequently to determine the type
of HTTP server.

Httprecon. (Ruef, 2017) was designed as the suc-
cessor to the HTTPrint. Similarly, Httprecon aims to
leverage the fact that most servers may exhibit dom-
inant behavior which allows for their quick identifi-
cation. The tool sends 9 HTTP requests (including
malicious requests), each of which might be repeated
22 times resulting in 198 requests per server. The
obtained responses are analyzed for the presence of
known dominant characteristics which are then sum-
marized and matched to a database containing known
Key Analysis Indexes (KAI).

Wappalyzer. (Alias, 2017) is an open-source
community-driven tool. Among other things, Wappa-
lyzer can recognize CMS (content management sys-
tems), web server software, web frameworks, analyti-
cal tools, and commonly used web front-end libraries.
The approach is based on the premise that every tech-
nology leaves distinct traces, hence, as opposed to
many other techniques, Wappalyzer uses HTML code
and web page content to determine the presence of
web technology.

Aquatone. (Henriksen, 2019). Designed for re-
connaissance, Aquatone is a versatile tool capable of
discovering subdomains, fingerprinting servers, and
identifying visually similar web pages. Based on
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Wappalyzer’s fingerprinting engine, Aquatone sends
one HTTP GET request per host with a randomly
selected set of HTTP headers. If a server response
is produced, it is analyzed using regular expression
pattern matching with respect to the fingerprints con-
tained in the corresponding fingerprint database.

WhatWeb. (Horton, 2017) is a fingerprinting tool
for identification of web technology installed on the
web server. Similar to other fingerprinting techniques,
WhatWeb analyzes the HTTP responses using regular
expression pattern matching and fuzzy logic to illumi-
nate variations in server response. In addition to this,
WhatWeb considers meta-data of the webpage (e.g.,
email addresses, web framework modules) to recog-
nize potential web technology.

FavFreak. (Batham, 2020) uses a direct approach
to web server fingerprinting based on the hash values
of favicon icon file present on the website.

Nikto. (Andress, 2011) is an open-source Web
server analysis tool that tests for vulnerabilities on
the server-side. Nikto indexes all the files and direc-
tories, that it encounters on the target web server to
locate the technical information. The fingerprinting
approach is based on the presence of identifiable and
traceable web components (e.g., favicon.ico files).

4.2 Fingerprinting Countermeasures

A fingerprinting mitigation approaches tend to ma-
nipulate or obfuscate the identifiable information pre-
venting fingerprinting. The existing fingerprinting
countermeasures typically fall into the following cat-
egories:

• Hiding Identifiable Information: this includes re-
moving response headers containing identifiable
information (e.g., <Server>), or completely dis-
abling banners to limit the information disclosure.

• Deceiving the Fingerprinting Process: the decep-
tion techniques range from modifying or misrep-
resenting banner information to replacing exter-
nal libraries or files to mislead the fingerprint-
ing and cause incorrect identification. These
methods often target inference-based fingerprint-
ing tools. Other techniques include modifica-
tion of HTTP responses to introduce variations
and render heuristic-based fingerprinting ineffec-
tive (Yang et al., 2010).

Table 1: Configurations of servers in a controlled environ-
ment.

Web server OS (Mis)Configurations
No configuration
Microsoft-IIS
v.7.5

Windows
Server 2008

Plain

Nginx v.1.14.1 Centos
8.5.2111

Plain

Nginx v.1.18 Fedora 32 Plain
Lighttpd
v.1.4.55

Centos
8.5.2111

Plain

Lighttpd
v.1.4.59

Debian 11.0 Plain

Lighttpd
v.1.4.45

Ubuntu 18.04.6 Plain

Apache
v.2.4.37

Centos
8.3.2011

Plain

Configured
Microsoft-
IIS/10.0

Windows
Server 2016

Disabled Server Ban-
ner

Microsoft-IIS
v.8.5

Windows
Server 2012

Disabled Server Ban-
ner

Microsoft-
IIS/10.0

Windows
Server 2016

Disabled X-
Powered-By

Nginx v.1.16 Debian 11.0 Disabled Server Ban-
ner

Nginx v.1.18 Ubuntu 20.04.3 Set <Server> value
to Apache/2.4.52

Lighttpd
v.1.4.55

Fedora 30 Set <Server> value
to Microsoft-IIS/7.5

Apache
v.2.4.29

Ubuntu 18.04.3 Disabled X-
Powered-By

Apache
v.2.4.51

Fedora 34 Set <Server> value
to lighttpd/1.4.55

Apache
v.2.4.46

Ubuntu 21.04 Disabled Server
header and X-
Powered-By

4.3 Analysis of Fingerprinting Tools

To evaluate the accuracy of fingerprinting in the
presence of various countermeasures, we have setup
and configured four different types of web servers:
Microsoft-IIS, Nginx, Apache, and Lighttpd. The
servers were installed on different operating systems
to explore the behaviour of the mentioned fingerprint-
ing techniques. Since the objective of this work is to
explore the fingerprinting capabilities in a presence of
mitigation, we further apply various mitigation mea-
sures resulting in the nine configurations presented in
Table 1.

Hiding Identifiable Information. As a first ap-
proach, we configured servers to remove response
headers that directly state the installed web server
software (such as <Server>, <X-Powered-By>,
<X-AspNet-Version><X-AspNetMvc-Version>).
To disable this information, we installed and config-
ured libapache2-mod-security2 module on Apache
servers (Apache, 2022), nginx-extras package on
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Nginx servers and configured system settings on IIS
servers. It was not possible to completely remove
response headers and disable banner information for
Lighttpd servers.

Deceiving the Fingerprinting Process. To de-
ceive the fingerprinting, we have modified the exist-
ing HTTP headers to supply incorrect information.
<Server> header.

• for Apache, using libapache2-mod-security2, we
modified the server value in security.conf file.

• for Nginx, we added more set headers variable
in nginx.conf file to change the Server header
value.

• for Lighttpd, we modified the value of
lighttpd.conf file’s server.tag variable.

• We were not able to modify the Server header
value for IIS server.

Since at least two of the tools are known to rely on
the presence of favicon.ico file in their fingerprinting
process, we have created random icon files to replace
favicon.ico in two of the servers.

Our goal was to mitigate fingerprinting by con-
figured the servers and application settings without
crashing the servers or making the applications fail
to run or behave unexpectedly/abruptly.

4.4 Results

To create a baseline for our analysis, we launch all fin-
gerprinting tools against plain installations of seven
servers. All tools were able to correctly identify web
server technology for all server installations. The fin-
gerprinting results were drastically different when fin-
gerprinting mitigation measures were applied as the
results in Table 2 show.

After modifying and hiding the headers along
with technology information, the majority of the tools
failed to detect the accurate environment on the web
servers. For servers, the identification was mostly
blank or incorrect detection.

None of the inference-based tools could give any
proper information regarding technology and server
information against the 9 configured servers. It is
quite obvious that they largely rely on the banner
grabbing information in spite of their difference in
fingerprinting approaches. For example, with modi-
fied Server header, the majority of tools (5 out of 8)
simply extracted the value without any further veri-
fication. In cases when the identifiable headers were
present, the majority of tools provided no identifica-
tion returning blank response.

Hence, even in a presence of simple mitigation
these techniques failed to properly recognize the tech-
nology. Among the heuristic-based tools, Nmap and
HTTPrint tool were able to detect only one IIS server
despite of information hiding. Httprecon tool per-
formed the best among the tools only misclassify-
ing Nginx server as IIS. However, the versions of the
servers were not detected properly.

5 HTTPFuzz DESIGN

Our analysis of fingerprinting techniques revealed
their inadequacy to provide accurate recognition of
web server technology in a presence of even small
deviations from the expected results. Our goal is to
design an automated approach for fingerprinting web
server applications insensitive to variations that might
be introduced by various mitigation techniques. The
flow of the proposed HTTPFuzz approach is intro-
duced in Figure 2.

HTTPFuzz is a multi-stage approach that lever-
ages fuzzing to generate mutated HTTP requests.
These requests are directed towards configured HTTP
servers set up in our controlled environment for test-
ing. The responses are collected and analyzed to re-
duce the massive set of mutated requests and to select
mutations that are likely to produce correct identifica-
tion. Finally, the requests generated for the selected
mutation types are deployed to fingerprint technology
of unknown web servers in the wild.

Fuzzing Module. One of the insights our analysis
of fingerprinting techniques revealed is that differ-
ent technologies respond to ambiguities in HTTP re-
quest’s fields differently, hence our approach aims to
systematically explore possible discrepancies.

Our fuzzing module uses a grey box paradigm,
i.e., it generates mutated requests given a valid
HTTP request syntax and elements. Although
HTTP specifications allow an HTTP request to con-
tain several elements, our fuzzer restricts its muta-
tions to <request-line> fields, i.e., optional ele-
ments (<headers> and <body>) are not generated.
All <request-line> fields are considered mutable
and undergo character-level manipulations: insertion,
deletion, swapping. The character pool includes
ASCII character set, i.e., capital and small letters are
considered to be different characters. For insertion,
up to 256 random characters can be appended. In ad-
dition to that, protocol <version> included the use
of float and integer values.The examples of mutations
are shown in Table 3.
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Table 2: Fingerprinting servers with the existing techniques.
Hiding Headers Deceptions

Tools Default Con-
figuration

Server X-Powered-By Server Value Changed Modified
favicon.ico

Nginx IIS Apache IIS Apache Nginx Lighttpd Apache All Servers
Whatweb X 5 5 5 5 5 Apache IIS Lighttpd 5

Aquatone X 5 5 5 5 5 Apache IIS Lighttpd 5

Nikto X 5 5 5 5 5 Apache IIS lighttpd 5

Wappalyzer X 5 5 5 5 5 Apache IIS Lighttpd 5

Nmap X 5 X 5 5 5 Apache IIS Lighttpd 5

FavFreak X 5 5 5 5 5 5 5 5 5

Httprint X 5 X 5 5 5 5 Apache X 5

HttpRecon X IIS/6.5 X X 5 5 IIS/7.5 X X 5

X correct identification
5 blank/no identification
value identified information (correct/incorrect)

Figure 2: The flow of HTTPFuzz approach.

Table 3: The examples of a HTTP GET request mutations.

Mutation HTTP request line
Deletion GT / HTTP/1.1
Insertion GETA / HTTP/1.1
Swapping GxT / HTTP/1.1

Analysis Module. The HTTP responses from the
mutated requests are collected and parsed to extract
features for further fingerprinting. The analysis stage
aim is two-fold: reducing the number of request and
selecting the elements of response that are indicative
of the employed web technology.

The fuzzing approach generates a significant num-
ber of requests. Using all mutated requests is infeasi-
ble due to traffic rate-limiting policies commonly set
by servers. Flooding servers with the requests is sim-
ilarly not efficient for large-scale analysis. Hence, we
need to select requests that trigger discrepancies and
are likely to produce behaviour indicative of the em-
ployed web applications. Similarly, since the mutated
requests produce often unexpected HTTP response,
we need to select elements of the response that we
can use for accurate fingerprinting.

For these purposes, we leverage machine learning
classification. In this work, we explore three classi-
fication algorithms: Neural Networks (NN), Decision
Trees (DT), and Random Forest (RF). The classifi-
cation parameters of the algorithms employed in this
study are shown in Table 4.

For classification, we derive features that charac-
terize any HTTP response, i.e., all elements that might
be potentially present in the response, including status
line, headers, and body, and characteristics of the ap-
plied request mutations. For each response header, we
create three additional features: indicating the pres-
ence of a header, its value, name, and capitalization
pattern. Since this initial step is performed on the
known servers, the corresponding server’s technology
is used as a ground truth label in this classification.

In essence, classification analysis allows for intel-
ligent and adaptive selection of requests that are able
to provoke servers to disclose their service-level in-
formation. Note that this process is not reliant on the
stability of server behaviour or the knowledge of ap-
plied fingerprinting mitigation mechanisms.

The corresponding mutation information for re-
sponses that are successfully classified are forwarded
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Table 4: The parameters of the classification algorithms.

Alg. Hyperparameters
Neural Net-
works

max iter=10000, learning rate=’adaptive’,
solver=’adam’, alpha=0.001, random state=42

Decision
Tree

max depth=6, criterion=’entropy’, splitter=’best’

Random
Forest

n estimators=50, criterion=’entropy’, bootstrap=True,
min samples split=2, min samples leaf = 1, oob score
= True, max features=”auto”, max leaf nodes=None,
min impurity decrease=0.0, max depth=6

to the fuzzing module to further guide fuzzing for fin-
gerprinting in the wild.

Fingerprinting Module. The classification analy-
sis yields a small set of mutated requests are then used
for fingerprinting unknown servers. The mutated re-
quests are sent to target servers and the received re-
sponses are forwarded to the fingerprinting module.

6 EXPERIMENTS

Experimental Setup. Our approach was imple-
mented using the Python language (v 3.9) with the
scikit-learn library (v 0.23.2). The request to web
servers were sent using CURL utility. A summary of
the classification algorithms’ parameters used in the
prediction module is given in Table 4. A 5-fold cross-
validation was employed to measure the accuracy of
all machine learning models.

6.1 Experiments with Servers in a
Controlled Environment

As the first step of the experiments, we focused on
analysis of fingerprinting accuracy on a diverse set
of web servers set up in the controlled environment
(steps 1-3 of the HTTPFuzz approach). For the four
different servers set up in the controlled environment,
the fuzzing module generated 7,411 mutated requests
that were sent to 16 web servers which included both
plain and configured ones to mitigate fingerprinting.

The obtained servers’ responses were collected
and parsed to remove features with a low variance
(var = 0) as they are unlikely to contribute to the
classification model. We also standardized features
by removing the mean and scaling them to unit vari-
ance. As servers unless configured to hide informa-
tion, commonly respond with (optional) headers that
indicate the server’s web technology (e.g., Server
and X-Powered-by), we excluded these headers from
the analysis. The resulting set contained 68 features.

To shed light on the most statistically relevant fea-
tures, we have decided to utilize Information Gain

(IG) to identify the importance of each feature. Ta-
bles 6 show the top selected features with IG > 0.01.
All further experiments were conducted with this se-
lected set of 11 features.The highly ranked feature is
’filtered headers’, a string indicating an order in which
headers appear in the server response. Note that this
feature does not contain header values but rather indi-
cates that depending in the server technology headers
appear in a distinct order which allows the fingerprint-
ing of the server technology.

We have further classified the parsed requests
from our controlled four web servers with the selected
features using three machine learning algorithm. Ta-
ble 7 shows the accuracy of these classifiers for fin-
gerprinting.

Our results show that we can fairly accurately
(93.67% accuracy with RF and DT) identify the type
of web technology even in the presence of finger-
printing countermeasures. Compared to the results of
commonly employed fingerprinting utilities (Table 2),
this is a significantly improved performance.

A close manual analysis of the results revealed
that only a few mutation categories were able to pro-
voke the servers to disclose their information. Among
them are insertion by appending a random number
of characters on several request line methods (GET,
HEAD, DELETE, TRACE, OPTIONS), protocol and
its version, and swapping of characters on request line
method and protocol. The total of 32 categories listed
in Table 5.

6.2 Fingerprinting Web Servers in the
Wild

The selected mutation categories are forwarded to
the fuzzing engine for fingerprinting servers in the
wild. Based on these categories, HTTPFuzz generates
HTTP requests (one per category) and sends them to
web servers to be identified.

Collected Data. For this step, we selected domain
names from a list of the top 1 million domains called
Majestic Million list 2. From the list of ranked do-
mains, a set of 350,000 domains has been selected
at random for our experiments. These domains were
scanned using nmap utility for possible web server
fingerprinting. Out of these servers, 127,169 re-
sponded. The vast majority of the servers (89%) were
not identified by nmap, i.e., nmap produced no-match
results (Table 8). 12,450 (10%) of domains were
identified by nmap. Furthermore, 10,091 (82%) of
these domains sent HTTP responses that contained

2https://majestic.com/reports/majestic-million
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Table 5: The categories of mutated requests.

Mutation Mutation Cate-
gory

Request

Insertion Target: GET GETA / HTTP 1.1
Insertion Target: OPTIONS OPTIONSA / HTTP 1.1
Insertion Target: HEAD HEADA / HTTP 1.1
Insertion Target: DELETE DELETEA / HTTP 1.1
Insertion Target: TRACE TRACEA / HTTP 1.1
Insertion Target: URI GET /A HTTP 1.1
Insertion Target: URI OPTIONS /A HTTP 1.1
Insertion Target: URI DELETE /A HTTP 1.1
Insertion Target: Protocol GET / HTTPA 1.1
Insertion Target: Protocol OPTIONS / HTTPA 1.1
Insertion Target: Protocol HEAD / HTTPA 1.1
Insertion Target: Protocol DELETE / HTTPA 1.1
Insertion Target: Protocol TRACE / HTTPA... (18 ”A”

appended) 1.1
Insertion Target: Protocol

version
OPTIONS / HTTP 1.11

Insertion Target: Protocol
version

HEAD / HTTP
1.11111111111111111

Insertion Target: Protocol
version

DELETE / HTTP
1.111111111

Insertion Target: Protocol
version

TRACE / HTTP 1.111... (180
1 appended)

Insertion Target: Protocol
version

GET / HTTP 1.111111

Insertion Target: URI TRACE /A HTTP 1.1
Swapping Target: HEAD aEAD / HTTP 1.1
Swapping Target: DELETE DELERE / HTTP 1.1
Swapping Target: GET aET / HTTP 1.1
Swapping Target: Protocol DELETE / HpTP 1.1
Swapping Target: Protocol GET / HlTP 1.1
Swapping Target: Protocol TRACE / HVTP 1.1
Swapping Target: Protocol OPTIONS / HSTP 1.1
Swapping Target: Protocol HEAD / HcTP 1.1
Swapping Target: Protocol HEAD / HTTd 1.1
Swapping Target: Protocol

version
GET / HTTP 5.1

Swapping Target: OPTIONS aPTIONS / HTTP 1.1
Swapping Target: TRACE dRACE / HTTP 1.1
Deletion Target: Protocol

version
GET / HTTP .1

<Server> header and the value of this header agreed
with the server identification produced by nmap.

The servers were then sent the selected mutated
requests. We have further performed two sets of ex-
periments targeting web servers labeled by nmap and
those that were not identified by nmap.

Evaluating HTTPFuzz on Wild Servers Identified
by Nmap. As another validation step, and in an
absence of large datasets with labeled web servers,
we have turned to a list of domains that their HTTP
responses provided web server identification in the
<Server> header. We have selected a subset that was
also correctly (according to the value of this header)
fingerprinted by Nmap. Although the correct server

Table 6: Feature Importance.

Feature IG
filtered headers 0.506496
content-type value 0.166241
connection value 0.040618
accept-ranges case 0.039472
status message 0.039399
accept-ranges value 0.033453
status code 0.033364
allow value 0.029266
content-length case 0.026900
allow case 0.017372
content-type case 0.011032

Table 7: Classification accuracy of fingerprinting web
servers.

NN DT RF
Controlled environment 93.9% 94.29% 94.29%
Web servers on the wild
identified by nmap

87.66% 98.39% 98.45%

recognition by Nmap cannot be guaranteed, we feel
that this was a reasonable verification.

To evaluate our fingerprinting approach, we apply
the HTTPFuzz to this subset of 10,091 servers. In
this analysis, we retain the selected set of 15 features,
i.e., Server and X-Powered-by related features are
excluded from this analysis.

The results given in Table 7 confirm the effective-
ness of the proposed approach. With fairly high accu-
racy (98.8% with RF), HTTPFuzz is able to determine
the web server technology. Since this set provided
a larger pool of samples (including other servers be-
yond the originally considered), we have further re-
trained the model on this set. The results were similar
to the ones archived with an earlier model (97% with
RF). Similarly, the top 10 features included the fea-
tures selected with controlled servers. We therefore
used this model in fingerprinting unknown servers.

Fingerprinting Unknown Servers. We explore the
practicality of our approach on the set of 102,752
servers not identified by Nmap. In this analysis, we
have leveraged the model built by HTTPFuzz during
the validation step allowing us to label unidentified
servers. Similar to the previous experiments, we have
relied on a small set of features that excluded server
identifiable information if it was present.

Since these servers have no corresponding ground
truth, the resulting responses were classified and the
final result was selected based on the majority label of
the classified responses (over 80% of responses con-
tained the corresponding label). The prediction re-
sults are given in Table 9. The majority of the servers
were classified as Apache and Nginx. This is a pre-
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Table 8: Data collected in the wild.

Total Domains 127,169
Invalid Domains 11,967 (9.4%)
Valid Domains 115,202 (90.6%)

Domains not identified by NMAP 102,752 (89.2%)
Domains fingerprinted by NMAP 12,450 (10.8%)

Among them: 11,881 (95.4%)
Apache 5,995 (50.45%)
IIS 148 (1.24%)
Lighttpd 17 (0.1%)
Nginx 5,721 (48.1%)

Domains with no <Server> 20,727 (18%)
Domains with known <Server> 94,475 (82%)

Domains fingerprinted by NMAP with known
<Server> header value:
Results do not agree 2,161 (17.6%)
Results agree 10,091 (82.4%)

Among them:
APACHE 5536 (55.21%)
IIS 51 (0.50%)
LIGHTTPD 9 (0.09%)
NGINX 4431 (44.19%)

Table 9: Fingerprinting unknown servers.

Server Frequency
Tengine 41
Lighttpd 112
Varnish 170
Microsoft-IIS 579
Cowboy 709
Python 852
Caddy 1,703
Apache 37,648
Nginx 60,938
Total 102,752

dictable outcome as these two servers have the major-
ity market share.

7 CONCLUSIONS

In order to fingerprint the technological aspects of a
web server, gathering proper information plays a vi-
tal role. In the modern cyber world, the cyber at-
tackers try to build intelligent attack methods and ex-
ploit remote web servers by gathering vendor name,
vendor versions and the services running on the web
servers. When specific software version of the server
is revealed, the server becomes susceptible to attacks
against software that is known to contain security vul-
nerabilities.

In this work, we proposed a novel web server
fingerprinting approach that utilizes HTTP request
fuzzing and machine learning classification algo-
rithms to analyze the behavioural characteristics
found in web server responses. We showed that tech-

nology detection does not require the server to dis-
close its exact identity and a small set of requests can
be sufficient to achieve highly accurate fingerprinting
without any advance knowledge of applied mitigation
techniques.
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