
Implementation of a Stateful Network Protocol
Intrusion Detection Systems

S. Seng1,2, J. Garcia-Alfaro1 and Y. Laarouci2
1TelecomSud Paris, Palaiseau, France

2EDF R&D, Palaiseau, France

Keywords: Statechart, Protocol Modeling, Intrusion Detection System, Anomaly Detection, Industrial System, Critical
Infrastructures.

Abstract: The deployment of a Network Intrusion Detection System (NIDS) is one of the imperatives for the control of
an information system. Today, almost all intrusion detection systems are based on a static vision of network
exchanges, whether for detection engines based on signatures or on behavioral models. However, this approach
is limited: it does not allow to directly take into account past exchanges and thus to fully model normal or
abnormal behavior, such as verifying that an authentication has taken place before authorizing a privileged
request or detecting a replay attack. We propose to add an additional dimension to NIDS by performing
stateful monitoring of communication protocols. Unified Modeling Language (UML) statecharts have been
chosen to model the protocols and to perform the stateful monitoring. An implementation of this solution is
integrated within an existing NIDS and validated on two industrial protocols IEC 60870-5-104 and Modbus
TCP. This implementation has been realized by dissociating the stateful monitoring and the NIDS with the
help of an abstraction interface allowing an easy integration of new communication protocols.

1 INTRODUCTION

1.1 Context

Faced with cybersecurity issues, the implementa-
tion of cybersecurity information systems monitor-
ing tools is increasingly needed and even becomes a
compulsory requirement. Many companies are invest-
ing in setting up a Security Operation Center (SOC),
equipped with a Security Information Management
System (SIEM) for the recognition and management
of alerts. The origin of these alerts comes from
various sensors such as Intrusion Detection Systems
(IDSs).

In this paper, we focus only on Network Intru-
sion Detection System (NIDS). We do not distinguish
on the type of detection methodology (i.e., Signature-
based or Behavior-based).

1.2 Static Vision of Exchange

NIDS use filters called dissectors to identify and inter-
pret the network packets they capture. These dissec-
tors extract the various fields, options and structured
data contained in packets. This data, once extracted,
will then be transmitted to a detection engine that will

determine if it is a healthy packet or a potentially ma-
licious packet. Figure 1 depicts the idea, in which the
first line represents the different stages of a NIDS.

Capture Dissector Detection

Capture Dissector Stateful Détection

Existing

Proposition Detection

Figure 1: Addition of the stateful stage.

Almost all dissectors are static. They do not take
into account the dynamics of network protocols. This
static operation does not allow to directly take into
account past exchanges, which significantly reduces
the possibilities of predicting an attack. For example,
it is not possible to verify that an authentication has
taken place before authorizing a privileged request or
to detect a replay attack.

1.3 Proposal and Experimentation

We propose to overcome this limitation by adding an
incremental dimension to NIDS through stateful mon-
itoring of communication protocols. As illustrated in
the second row of Figure 1, the stateful monitoring

398
Seng, S., Garcia-Alfaro, J. and Laarouci, Y.
Implementation of a Stateful Network Protocol Intrusion Detection Systems.
DOI: 10.5220/0011327400003283
In Proceedings of the 19th International Conference on Security and Cryptography (SECRYPT 2022), pages 398-405
ISBN: 978-989-758-590-6; ISSN: 2184-7711
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



stage is inserted after the dissectors and before the de-
tection engine. The latter then takes advantage of the
data enriched with the history of exchanges and the
conformity of the packet with respect to the protocol.

Our proposed solution has a secondary goal. It
has to be as agnostic as possible of use cases, i.e., it
has to be as independent as possible of the NIDS by
proposing an abstraction interface for the modeling
of the stateful monitoring. By focusing our work on
the modeling of the communication protocol and not
on the modeling of the use case, we enter the field of
Protocol-specification-based NIDS — which are rela-
tively little studied (Uppuluri and Sekar, 2001). This
allows us to be use case agnostic.

A prototype of our stateful monitoring solution
has been developed. It is based on the open source
NIDS Zeek1 which it completes with a plugin. In ad-
dition, Harel’s statecharts have been used to model the
protocols and thus allow stateful monitoring. They
seem to be more adapted to the modeling of com-
plex systems than the traditional Finite State Machine
(FSM). The prototype has been tested with the indus-
trial communication protocols Modbus TCP and IEC
61870-5-104.

The rest of the paper is structured as follows. Sec-
tion 2 elaborates further on our problem domain. Sec-
tion 3 surveys related work. Sections 4 and 5 provide
our contribution and reports experimental work. Sec-
tion 6 provides some additional discussions. Section
7 concludes the work.

2 PROBLEM DOMAIN

The main objective of our work is to complement the
dissectors of a NIDS in order to take into account
the dynamic aspect of a network exchange. This re-
quires modeling the behavior of network communica-
tion protocols. In practice, in the context of network
communication protocols, this is similar to stateful
monitoring.

2.1 Use and Relevance of Stateful
Monitoring

Stateful monitoring of network communication pro-
tocols is not new and is already applied in several
domains such as testing, simulation or compliance
verification. For cybersecurity, the best known use
of stateful monitoring concerns firewalls (Gouda and
Liu, 2005). It allows a much finer control on network

1https://zeek.org

exchanges. For example, it allows to manage in a finer
way the two directions of communication of proto-
cols such as TCP or the capacity to take into account
by firewalls protocols that use a dynamic allocation of
network ports such as FTP in active mode or Remote
Procedure Call (RPC). Still in the field of cybersecu-
rity, stateful monitoring is also used for application or
protocol fuzzing, in Host-based Intrusion Detection
System (HIDS) or, like in this article, in NIDS.

The use of stateful monitoring adds a dynamic
view of a system, providing an additional dimension
to tools.

2.2 Modeling Usability Problem and
UML Statechart Contribution

The simplest and most common method to perform
stateful monitoring is based on automata, especially
FSM or its derivatives (Mealy machines, nondeter-
ministic FSM, etc.) (Qin-Cui et al., 2009; Goldenberg
and Wool, 2013).

The majority of tools or studies that use state-
ful monitoring for communication protocols simplify
the protocols or processes to avoid the combinatorial
explosion of the number of states. This is notably
the case of the Netfilter/iptables firewall, which only
manages four states for the TCP protocol (NEW, ES-
TABLISHED, RELATED and INVALID), or of stud-
ies (Qin-Cui et al., 2009) that do not take into account
some elements that are considered superfluous, such
as the control of timeouts, re-transmissions, or some
internal signals (synchronization, keep-alive, etc).

However, we consider that in a NIDS context, all
elements are important and can constitute anomalies
or weak signals of an attack.

This difficulty from traditional FSM for stateful
monitoring is already known. In (Yu et al., 2015), the
authors evoke the problem of the combinatorial ex-
plosion of the number of states and more generally
the lack of ergonomics (readability and editing) of
FSMs for humans. They propose to use Harel’s state-
charts (Harel, 1987) which offer concepts missing in
FSMs such as hierarchy or parallelization which al-
low to significantly improve the readability of an au-
tomaton.

2.3 Importance of Stateful Monitoring
for ICS

2.3.1 Higher Cybersecurity Risks and Impacts

We believe that Industrial Control System (ICS) are
less well prepared to face cybersecurity attacks. In-
deed, some specificities of ICS offer a greater expo-

Implementation of a Stateful Network Protocol Intrusion Detection Systems

399



sure to cyber-attacks. First, industrial equipment de-
signers, industrial solution integrators and operators
are still not very aware of cybersecurity, which is why
there are rarely effective protection measures against
cybersecurity risks. Secondly, ICS are often designed
for a much longer lifespan than in IT. It is common
to still find ICS in operation 20 to 30 years after their
initial setup. However, cybersecurity evolves quickly
and requires regular software and hardware updates.
But the availability of ICS is often a more impor-
tant criterion than for IT, the updates of ICS are of-
ten grouped during the planned maintenance opera-
tions. Thus, a critical vulnerability on a system can
sometimes be fixed several months, or even years, af-
ter the publication of a patch. This is even more true
for critical ICS where a hardware or software update
can jeopardize safety qualifications. In these cases,
operational safety has priority over cybersecurity, and
operators are reluctant to perform updates. Finally, at-
tacks on ICS and especially critical ICS, due to their
interaction with the physical world, can have finan-
cial, environmental and even human impacts that are
much more significant than in IT. All these elements
imply that the need for monitoring ICS is probably
more important than for IT.

2.3.2 Effective Monitoring

On another level, some specificities about ICS seem
favorable to monitoring solutions. Indeed, compared
to IT systems, ICS do not evolve much. They have
equipment, especially Programmable Logic Con-
trollers (PLC), that are deterministic in their opera-
tions. This provides industrial communication proto-
cols with interesting properties for network monitor-
ing (Mitchell and Chen, 2014):

• relatively simple protocols;

• deterministic communication, based on iterative
and continuous polling between, for example, a
PLC and its sensors/actuators or between a super-
visory console and its PLCs;

• strict timing requirement.

These properties make industrial communications
easier and more efficient to monitor than IT com-
munications which are often more complex, evolve
rapidly and have a high variability due to human ac-
tivities (Cheung et al., 2006). This facilitates the cre-
ation of anomaly detection models.

2.3.3 Network-protocol-based Intrusion
Detection System and Modbus

The two aforementioned points about ICS when com-
paring it to IT (i.e., higher cybersecurity risks and ef-

fective monitoring), are complementary and make the
use of IDSs even more important. However, the het-
erogeneity of industrial solutions, their low hardware
resources and their closed (proprietary) aspects limit
the possibilities for an HIDS. That is why we focus
our work on Network-based Intrusion Detection on
ICS and we propose to add stateful monitoring sup-
port in industrial protocols.

Modbus TCP is a simple, open specification in-
dustrial communication protocol. It has been widely
used for several years in ICS. It is supported by the
majority of devices and is often the only protocol of-
fering interoperability between devices of different
technologies. Moreover, it is probably the most stud-
ied industrial protocol in the scientific literature. For
these reasons, Modbus will be the use case of this ar-
ticle.

3 RELATED WORK

Stateful monitoring of communication protocols
within NIDS is not new, the first NIDS performing
this date back to before 2002 (Kruegel et al., 2002).
After Behavior-statistical-based NIDS, Stateful NIDS
was probably one of the first behavioral models. The
number of articles on this subject being relatively
high, we will focus on those dealing with ICS and,
in particular, the Protocol-Specification-based NIDS
and those whose work is close to our work.

Tidjon et al. (Tidjon et al., 2020) notes the current
shortcoming of NIDS in not having a dynamic vision
of network data exchanges. They proposed a state-
ful modeling method based on an algebraic language,
to overcome this shortcoming. However, the method
suggested by Tidjon et al. applies to the rules and sig-
natures engine, rather than the protocols.

Carcano et al. (Carcano et al., 2010) proposes
a modeling of an ICS using a virtual representa-
tion divided between coherent and incoherent states
of the system. The entry in an incoherent state
raises an alert. For this modeling they use standard
Backus-Naur Form (BNF) notation. In a similar way,
Monzer (Monzer, 2020) proposes to model an indus-
trial system using a hybrid automaton for anomaly
detection. Monzer also proposes a methodology to
convert PLC programs from Grafcet language to hy-
brid automata. These two studies are clearly oriented
on detection methods specifically related to use cases
and do not offer model abstraction.

Two studies closely related to ours are Cheung
et al. (Cheung et al., 2006) and Goldenberg and
Wool (Goldenberg and Wool, 2013). They both
propose Protocol-specification-based NIDS. The first

SECRYPT 2022 - 19th International Conference on Security and Cryptography

400



one (Cheung et al., 2006) proposes three methods to
model the behavior of Modbus TCP within NIDS, in-
cluding one at the protocol level. One of the authors
will propose in (Dutertre, 2008) a formal method
based on Prototype Verification System (PVS) to de-
scribe Modbus and to perform conformance check-
ing. Like us, Goldenberg and Wool (Goldenberg and
Wool, 2013) proposes stateful monitoring on Modbus
protocol using an FSM. However, both of these stud-
ies act as the final detection engine, while we propose
a stateful engine at an intermediate level allowing to
keep the original detection engine which is enriched
with new data.

A search on the IEC 60870-5-104 protocol also al-
lows to identify some interesting articles for the mod-
eling of this protocol (Yang et al., 2014). In particular,
(Yu et al., 2015) reminds us of the relevance of FSM
to model communication protocols and more gener-
ally event driven systems. However, he points out
that traditional FSMs have intrinsic usability prob-
lems that make it difficult for humans to use them in
practice. As an alternative, he proposes the use of
Harel’s Statecharts or its variant standardized in the
UML standard: the UML Statechart.

There is no study proposing to integrate, in a
complementary way, a stateful monitoring stage to a
NIDS, which is both independent of the use case and
the detection engine. The latter will keep its proper-
ties and will benefit from complementary data linked
to the stateful monitoring to make its predictions.

4 DESIGN AND
IMPLEMENTATION

4.1 NIDS Framework

The main objective of this paper is to realize a state-
ful NIDS. As mentioned in Section 1.2, compared to
existing NIDS, our contribution focuses on the state-
ful aspect. The different existing stages of NIDS,
namely capture, dissection and detection being rela-
tively complex and in order not to redevelop existing
things, we will rely on free NIDS that we will modify.

We chose the Open Source NIDS Zeek as it allow
to easilly extend its functionalities. Moreover, Zeek
also seems to be the most used NIDS in the scientific
literature, probably for these same reasons of expand-
ability.

4.2 Modeling Stateful

Our secondary goal is to implement protocol stateful
monitoring in the most generic way and to provide

an abstraction level between the communication pro-
tocol and the NIDS. To meet this objective, we pro-
pose to use standard modeling methods such as FSM.
However, we also propose to take into account the dif-
ficulties mentioned in Section 2.2 about FSM and will
use Harel’s Statecharts.

We have choosen the W3C SCXML format to rep-
resent Harel’s statecharts because it is well known, it
is a standard and for the existence of several tools,
such as SCXMLCC and SCXMLGUI.

4.3 Implementation

Zeek, as a framework, provides an Application Pro-
gram Interface (API) and documentation for plugin
integration. It is accessible in the Zeek language,
C++, but also in an internal language, more abstract
and simpler: BINPAC.

The implementation of our solution then consists
in creating a Zeek plugin which will have to fulfill the
following goals:

1. Modeling/Stateful, which consists in modeling,
with the help of a Statechart, one, or more, given
communication protocol, described in SCXML
format.

2. Interfacing. which consists of:

• Interface with the dissector of the communica-
tion protocol and take into account its events to
transmit them to the model realized in Step 1.
This last one will then be able to carry out the
stateful monitoring.

• Generate events in case of anomaly in the state-
ful model.

• Provide to Zeek’s detection engine API with the
internal state of the Statechart and its context.

According to Zeek’s philosophy, Step 1 will be
done in C++ and Step 2 will be done using a BIN-
PAC script.

4.3.1 Modelisation/Stateful

Several development libraries in C++ implement Stat-
echarts. The two best known libraries are Boost and
Qt. The Qt library offers the advantage of directly tak-
ing into account the SCXML format, but this support
seems incomplete. It is the Boost library which was
selected because it seems more tested, has a better
documentation, a community and updates more im-
portant. The lack of SCXML format support by Boost
is compensated by the existence of the SCXMLCC
tool which allows to generate C++ code implementing
Boost Statecharts from a model in SCXML format.

Implementation of a Stateful Network Protocol Intrusion Detection Systems

401



This Stateful modeling is then partly generated
automatically from a Statechart model described in
SCXML.

The remaining implementation consists in export-
ing functions to manipulate this model. These func-
tions will be called by the interfacing script. Here are
the three main functions:

• init: initialize an instance of a statechart for each
new session of the protocol.

• dispatch: sends to the model an event received
from the dissector. This event will fire a statechart
transition or raise an anomaly.

• get states: returns the current states and their con-
texts.

4.3.2 Interface

The implementation of the interfacing part of the
Zeek plugin is relatively classic and resembles what
is traditionally found in existing plugins. However, it
should be noted that the taking into account of a pro-
tocol by our plugin requires the existence of a Zeek
dissector for this protocol.

Figure 2 represents the global architecture of the
Zeek plugin. The left-hand (light blue) rectangle rep-
resents the action that generates the plugin code as-
sociated with each protocol. The right-hand (light
green) rectangle represents the Zeek plugin, com-
posed of the Stateful stage (previously generated part
and exported functions) and the BINPAC interface
that interacts with Zeek.

To do for each protocol Plugin Zeek

SCXMLCC
Statechart

(C++/Boost)

Protocol 
model in 
SCXML Interface

Events from dissector

Events generate to Zeek (logs, alert)

Figure 2: Zeek stateful-plugin architecture.

4.4 Modeling Modbus TCP

The use case chosen for this experimentation is the in-
dustrial communication protocol Modbus TCP. It is a
very simple communication protocol, working on the
master/slave principle. Here is a simplified descrip-
tion of the functioning of Modbus: A Modbus mas-
ter (TCP client), sends a request to a Modbus slave
(TCP server) by sending a message, this last one an-
swers to the master by returning a message. Each re-
quest from the master corresponds to a single network
packet and have a single network packet in response
from the slave. The slave does not have the capac-
ity to initiate an exchange with the master, it can only

answer its requests. The absence of response from a
slave to a master request within a defined time (time-
out) is foreseen by the protocol. In the same way, a
slave which would not understand a request or would
be unable to answer it will return an error message.
Each Modbus message have a fully defined format in
the standard according to its type.

Figure 3 represents a possible very simplified stat-
echart model of the Modbus TCP protocol. Figure 3
is an extract of scxmlgui.

Process reply

request

Idle

reply

response error

response timeout

Figure 3: Statechart simplified modeling of Modbus TCP.

4.5 Modbus Dataset

Finding a dataset to test our prototype was not easy.
We initially wanted to use the network exchanges of a
real industrial system including a supervisory console
Schneider Magelis GTU and a Schneider M340 PLC.
However, we realized that Schneider does not use the
standard Modbus TCP functions. Instead, Schnei-
der reimplements its own protocol on top of the 0x90
function of Modbus TCP which is not documented.

We then thought of using Modbus TCP datasets
listed by (Choi et al., 2019). Unfortunately, the con-
tent and the operating mode of these datasets are not
fully described and require a consequent cleaning to
extract the useful data. Finally, for our experimenta-
tion, we simulated a system composed of two Modbus
TCP simulators.

The first simulator uses software Modbus Poll2 to
simulate a Modbus master and the second simulator
uses software Diagslave Modbus Slave Simulator3 to
simulate a slave. Our platform is composed of two
simulated devices that communicate directly through
a network interface.

The dataset thus generated represents 124 Mod-
bus TCP packets corresponding to 62 requests and 62
associated responses over a time span of 62 seconds.
The tcpreplay4 tool is used to replay the dataset ac-
cording to the same time periodicity as the simulated
platform.

2https://www.modbustools.com
3https://www.modbusdriver.com/diagslave.html
4https://tcpreplay.appneta.com/

SECRYPT 2022 - 19th International Conference on Security and Cryptography

402



5 RESULTS

The dataset generated in Section 4.5 does not contain
any anomaly of use of the Modbus TCP protocol. Fig-
ure 4 is an extract from the event log of the Zeek plu-
gin which illustrates after an initialization phase the
succession of events:

• [OnEventRequest] ‘Request’: corresponding to
the arrival of a Modbus TCP request, followed
by the change of state Idle − > Process reply
where the automaton goes from state Idle to Pro-
cess reply

• [OnEventReply] ‘Reply’: corresponding to the ar-
rival of a Modbus TCP reply, followed by the
change of state Process reply −> Idle where the
automaton goes from state Process reply to Idle

scxml -> global
global -> Idle
[OnEventRequest] ‘Request’
Idle -> Process reply
[OnEventReply] ’Reply’
Process reply -> Idle
[OnEventRequest] ‘Request’

Figure 4: Modbus TCP Plugin logs.

5.1 Missing Reply

In order to highlight the anomaly detection, we modi-
fied the dataset by removing a Modbus TCP response.
The deletion of the network packet causes a desyn-
chronism in the TCP exchanges. This has no impact
on Zeek and our plugin. Figure 5 corresponds to the
event log of our plugin and shows on line 3 that an
anomaly is reported following the reception of a Re-
quest event when we are in the state Process reply.
This event does not correspond to a valid transition
according to our Modbus TCP model represented in
Figure 3.

[OnEventRequest] ‘Request’
Idle -> Process reply
[Anomaly] On event: request
Process reply -> Process reply
[OnEventReply] ‘Reply’
Process reply -> Idle

Figure 5: Modbus TCP Plugin logs with missing Reply.

5.2 Reply Timeout

In a similar way to the deletion of a packet, we wanted
to check that the timeout management is well taken
into account. To do this, we have voluntarily delayed
the arrival of a response so that it causes a timeout.
Figure 6 corresponds to the event log of our plugin

and shows on line 3 that a timeout has been applied.
The management of timeouts has been taken into ac-
count in our Modbus TCP model represented in Fig-
ure 3, i.e., it is a valid transition which has not raised
any anomaly but which has caused a change of state
from Process reply to Idle. In line 5, the late arrival
of the response is no longer expected and causes an
anomaly.

[OnEventRequest] ‘Request’
Idle -> Process reply
[OnEventResponseTimeout] ‘Response timeout’
Process reply -> Idle
[Anomaly] on event Reply
Idle -> Idle

Figure 6: Modbus TCP Plugin logs with Reply timeout.

5.3 Stateful NIDS

The implementation of the Zeek plugin and the exper-
imentation with Modbus TCP show that our prototype
works. A stateful monitoring is correctly done. The
live evolution of the statechart can be visually con-
sulted using the scxmlgui tool which allows to see the
states being activated and deactivated according to the
events received from the dissector. The network pack-
ets corresponding to the Modbus TCP protocol that do
not respect our simplified model generate anomalies
which are logged.

5.4 Abstraction

Our secondary goal of designing an abstract imple-
mentation that can take into account several proto-
cols without having to modify the plugin is theoreti-
cally achieved because it consists to add the statechart
modeling description of protocols in SCXML format.
In practice, the description of a protocol model in
SCXML format must use the same naming scheme
for the transitions as the dissector events for this pro-
tocol.

6 DISCUSSION

Our solution is positioned as a new protocol stateful
monitoring stage within a NIDS. It is a complemen-
tary stage that does not aim to replace existing ones.
In particular, it is not intended to replace the final de-
tection engine. In its current state, it only allows to
generate new events in Zeek (anomalies) when a pro-
tocol model is not respected. The current treatment
of these events is a logging. Our solution does not
explicitly generate alerts because this is the responsi-
bility of the detection engine. In any case, it would be

Implementation of a Stateful Network Protocol Intrusion Detection Systems

403



unable to detect attacks that would respect our mod-
eling of this protocol.

To improve the detection performance of the
NIDS, the detection engine would have to take into
account the new events generated by our plugin or be
able to query it. For example, for a signature-based
detection engine, it is possible to write new rules that
directly take into consideration events generated by
the plugin and corresponding to anomalies. In addi-
tion, rules of a signature-based detection engine can
now check the state of a protocol session as an addi-
tional criterion, thus reducing the risk of false posi-
tives. However, this requires rewriting the signatures
to integrate these new additional capacities. In addi-
tion, this also requires to build a comparative bench-
mark with quality datasets. These conditions are gen-
erally quite difficult to meet.

This work was initially done with an industrial use
case concerning a remote control system for electrical
networks with the IEC 61870-5-104 communication
protocol. This protocol is more complex, less known,
but especially the dissector and the dataset that we
used are not public. This is why, for this article, we
have redefined the use case using Modbus TCP. The
stateful monitoring of Modbus TCP has been done
using a very simplified model that does not consider
broadcast messages and has only two states. It would
of course be possible to make a more complete model,
which would allow to identify more anomalies. For
example, we could consider checking for each differ-
ent type of request that the associated answer corre-
sponds to this request.

Our prototype on the IEC 61870-5-104 protocol
has been tested on several real systems. It has allowed
to identify several anomalies in equipment implemen-
tations. However, since no attack took place on these
platforms, the prototype can only detects errors in the
implementation of the protocols. Following these ex-
periments, our prototype should be deployed as a con-
formity checker tool for the IEC 61870-5-104 proto-
col.

We have not measured the cost in hardware re-
sources of our plugin, but no doubt that this cost is
significant. Indeed, our solution requires to keep in
memory all active network sessions. The overall per-
formance of the NIDS is reduced. However, our solu-
tion is aimed at industrial systems where the number
of sessions is reduced and in this context, the addi-
tional cost is probably negligible.

7 CONCLUSION

We have proposed a new method based on commu-
nication protocol stateful monitoring to improve the
performance of existing NIDS. Stateful monitoring,
although existing for several years, is proposed here
with two novelties:

• It is positioned as an intermediate and comple-
mentary stage that remains agnostic of the use
case. The NIDS retains all its original capabilities
and is provided with new information on the his-
tory of past exchanges and protocol compliance.

• It uses a level of abstraction with the NIDS allow-
ing the easy addition of new protocols and pos-
sible sharing of protocol models using the open
format SCXML.
The results obtained are encouraging and show

that this solution works: anomalies are well detected
and the detection engine has access to the current state
of the state graph.

Future work will consist in experimentally verify-
ing the effective improvement of the performance of a
NIDS. This would require rewriting the signatures of
the signature detection engines or adapting the mod-
els of the anomaly detection engines to take into ac-
count the new information available. This would then
require comparing solutions with and without stateful
monitoring using a quality dataset.

Other future work consists in improving the state-
ful monitoring engine by correcting a specific prob-
lem that can occur in NIDS: packet loss. Indeed, al-
though it did not appear in our experimentation, the
loss of one or more packets is a very probable situa-
tion in NIDS. It can lead to a desynchronism between
the real state of a network exchange and the state-
ful monitoring. This would require resynchronization
methods such as automaton branch prediction.

REFERENCES

Carcano, A., Fovino, I., Masera, M., and Trombetta, A.
(2010). State-Based Network Intrusion Detection Sys-
tems for SCADA Protocols: A Proof of Concept. In
Rome, E. and Bloomfield, R., editors, Critical In-
formation Infrastructures Security, Lecture Notes in
Computer Science, pages 138–150, Berlin, Heidel-
berg. Springer.

Cheung, S., Dutertre, B., Fong, M., Lindqvist, U., Skinner,
K., and Valdes, A. (2006). Using Model-based Intru-
sion Detection for SCADA Networks. Proceedings
of the SCADA security scientific symposium. Vol. 46.
2007.

Choi, S., Yun, J.-H., and Kim, S.-K. (2019). A Compari-
son of ICS Datasets for Security Research Based on

SECRYPT 2022 - 19th International Conference on Security and Cryptography

404



Attack Paths. In Critical Information Infrastructures
Security, volume 11260, pages 154–166. Springer In-
ternational Publishing, Cham. Lecture Notes in Com-
puter Science.

Dutertre, B. (2008). Formal Modeling and Analysis of
the Modbus Protocol. In Critical Infrastructure Pro-
tection, IFIP International Federation for Information
Processing, pages 189–204, Boston, MA. Springer
US.

Goldenberg, N. and Wool, A. (2013). Accurate modeling of
Modbus/TCP for intrusion detection in SCADA sys-
tems. International Journal of Critical Infrastructure
Protection, 6(2):63–75.

Gouda, M. and Liu, A. (2005). A model of stateful fire-
walls and its properties. In 2005 International Confer-
ence on Dependable Systems and Networks (DSN’05),
pages 128–137. ISSN: 2158-3927.

Harel, D. (1987). Statecharts: a visual formalism for com-
plex systems. Science of Computer Programming,
8(3):231–274.

Kruegel, C., Valeur, F., Vigna, G., and Kemmerer, R.
(2002). Stateful intrusion detection for high-speed
network’s. In Proceedings 2002 IEEE Symposium on
Security and Privacy, pages 285–293. ISSN: 1081-
6011.

Mitchell, R. and Chen, I. (2014). A survey of intrusion de-
tection techniques for Cyber-Physical Systems. ACM
Computing Surveys, 46(4):55:1–55:29.

Monzer, M.-H. (2020). Model-based IDS design pour ICS.
PhD Thesis, Université Grenoble Alpes.

Qin-Cui, F., Zi-ying, L., and Ke-jia, F. (2009). Implementa-
tion of IEC60870-5-104 protocol based on finite state
machines. In 2009 International Conference on Sus-
tainable Power Generation and Supply, pages 1–5.
ISSN: 2156-969X.

Tidjon, L., Frappier, M., and Mammar, A. (2020). Intru-
sion Detection Using ASTDs. In Barolli, L., Amato,
F., Moscato, F., Enokido, T., and Takizawa, M., edi-
tors, Advanced Information Networking and Applica-
tions, Advances in Intelligent Systems and Comput-
ing, pages 1397–1411, Cham. Springer International
Publishing.

Uppuluri, P. and Sekar, R. (2001). Experiences with
specification-based intrusion detection. In Interna-
tional Workshop on Recent Advances in Intrusion De-
tection, pages 172–189. Springer.

Yang, Y., McLaughlin, K., Sezer, S., Yuan, Y., and Huang,
W. (2014). Stateful intrusion detection for IEC 60870-
5-104 SCADA security. In 2014 IEEE PES General
Meeting | Conference Exposition, pages 1–5. ISSN:
1932-5517.

Yu, C., Shen, Y., Huang, L., Huang, H., Zhang, X., Jia, S.,
and Liu, J. (2015). The implementation of IEC60870-
5-104 based on UML statechart and Qt state machine
framework. In 2015 IEEE 5th International Confer-
ence on Electronics Information and Emergency Com-
munication, pages 392–397.

Implementation of a Stateful Network Protocol Intrusion Detection Systems

405


