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Abstract: The Automated Fingerprint Identification System (AFIS) is a biometric identification methodology that uses 
digital imaging technology to obtain, store, and analyse fingerprint information. There has been an increased 
interest in fingerprint-based security systems with the rise in demand for collecting demographic data through 
security applications. Reliable and highly secure, these systems are used to identify people using the unique 
biometric information of fingerprints. In this work, a learning-based method of identifying fingerprints was 
investigated. Using deep learning tools, the performance of the AFIS in terms of search time and speed of 
matching between fingerprint databases was successfully enhanced. A convolutional neural network (CNN) 
model was proposed and developed to classify fingerprints and predict fingerprint types. The proposed 
classification system is a novel approach that classifies fingerprints based on figure type. Two public datasets 
were used to train and evaluate the proposed CNN model. The proposed model achieved high validation 
accuracy with both databases, with an overall accuracy in predicting fingerprint types at around 94%. 

1 INTRODUCTION 

Biometric information encompasses a set of unique 
and measurable physical characteristics, including a 
person’s fingerprints and particular facial features, as 
well as one’s voice and handwriting. Each person’s 
fingerprints are formed of unique shapes and curves 
that remain unchanged during a person’s lifetime. 
Hence, fingerprinting can quickly identify and 
authenticate a person efficiently. Due to its evident 
reliability in accurately identifying persons, biometric 
information has become the focus of researchers and 
companies specialized in protection technology. 
Fingerprints are now being extensively used as a 
simple means of authentication on smartphones and 
other mobile devices.* 

A fingerprint is a biometric method utilized to 
identify people and authenticate identities. Unique 
features are extractable from the surface of each 
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fingerprint (Bian et al. 2019) and (Rani et al., 2019). 
Many biometric techniques have been devised for 
fingerprint recognition and identification using the 
ridges and greyscale images. This work emphasized 
using a deep learning algorithm and testing its ability 
to perform this task. Fingerprints identification 
methods have conventionally outperformed other 
biometrics methods, such as face and speech 
recognition, being well-established, reliable, and 
robust (Minaee et al., 2019) and (Chaitra et al., 2021). 
In this area, fingerprint orientation field estimation 
typically improves the performance of automated 
fingerprint identification systems. 

Fingerprint identification systems typically encom-
pass fingerprint imaging, acquisition, preprocessing, 
and feature extraction matching. A significant number 
of studies focus on various aspects of fingerprinting 
identification systems, including selection and 
extraction of optimized features as well as different 
proposed methods of matching (Valdes et al., 2019) 
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and (Srivastava et al., 2022). The old technique was 
utilized based on deep learning in order to distinguish 
four classes (arch, tented arch, left loop, right loop, and 
whorl), using the Galton-Henry classification in (Shea, 
2009 and Srivastava et al., 2021). 

Fingerprints and facial features are presently the 
most thoroughly studied biometric indicators, allowing 
for reliable recognition in various applications. There 
has been a growing need for more accurate and reliable 
biometric identification and authentication-based 
models from smartphones to border control. Recently, 
researchers have been able to enhance the robustness 
of recognition and identification models by 
incorporating deep learning (Ribeiro et al., 2018) and 
(Ayan et al., 202). In the following segments, we 
review a number of the most recent related studies. 

The authors in (Stojanovic et al., 2017) reviewed 
recent methods in identifying latent fingerprints and 
compared the most recent minutia descriptors. They 
reported that selecting a good minutia would result in 
improved accuracy of the AFIS. Their work detailed 
the various minutia descriptors that could be used in 
automatic fingerprint feature extraction and 
compared them in terms of identification rates. They 
proposed that the minutia descriptor C&J - which 
relies on deep learning algorithms - be the new focus 
of research in the area of latent fingerprint 
identification. Furthermore, the authors 
recommended that new minutia descriptors based on 
deep learning be developed and the identification 
accuracy be studied. In particular, they recommended 
conducting studies to identify the best minutia 
descriptors to enhance the performance of AFISs. 

In (Preetha and Sheela, 2018), the authors 
suggested that understanding the advantages and 
limitations of the fingerprint orientation field 
estimation methods is of fundamental importance to 
creating fingerprint identification. According to the 
authors, a common misunderstanding is that 
automatic fingerprint identification had not been 
appropriately addressed, despite AFIS being a subject 
of research for decades. They explained that 
fingerprint identification remains a significant pattern 
identification dilemma of interest to researchers due 
to the large intra-class mutability and inter-class 
relationships in fingerprint patterns. They stressed 
that automatic fingerprint identification systems 
typically attempt to ascertain reliable matching 
features from fingerprint images of inferior quality or 
latent images, ‘damaged’ and ‘defects’ such as scars, 
dirt, grease, and/or moisture on the surface of 
fingertips. In (Cao and Jain, 2015), the authors 
concluded that learning-based methods based on deep 
learning had significantly improved the performance 

of fingerprint orientation field estimation systems, 
especially when dealing with challenges that 
traditional methods had typically failed to tackle, 
including latent fingerprints (such as poor-quality 
fingerprints). They summarized the limitations of 
conventional techniques as follows: 1) the initial 
orientation fields are typically unreliable; 2) relying 
primarily on high-quality fingerprints, their 
algorithms may fail to handle latent and poor-quality 
fingerprints; 3) human intervention during the 
process of algorithm execution may be required; 4) 
high computational complexity of such approaches. 
In (Cao and Jain, 2019), the authors studied using a 
CNN in running the fingerprint estimation algorithm 
by modeling orientation field estimations of a poor-
quality image patch as a classification mission. They 
classified the latent patch as one of a set of illustrative 
orientation patterns using a CNN. The CNN was able 
to learn the input images' characteristic features 
directly. The authors concluded that fingerprint 
identification estimated through a CNN would result 
in higher accuracy than dictionary-based methods. 
Schuch et al. 2017 trained CNNs as regression 
networks to assess a fingerprint orientation field. 
They called this proposed model a ConvNetOF. The 
most recent work done in fingerprint classification 
using the DL method is reported in (Michelsanti et al., 
2017), (Peralta et al., 2018), and (Zia et al., 019). DL-
based methods have been recognized as powerful 
tools in the classification field (Lecun et al0., 2015). 
Despite the fact that the wide use of DL approaches 
in image classification, there remains a research gap 
with regards to their use in fingerprint classification. 
In that regard, the early work on this field was started 
by authors in (Shea, 2009), (Wang et al., 2016), and 
(Kakadiaris et al. 2009). 

The most recent works on fingerprint 
classification with new deep learning techniques are 
considered in (Michelsanti et al., 2017); two pre-
trained CNN models (VGG) were evaluated using the 
National Institute of Standards and Technologies 
(NIST) SD4 dataset. The proposed models were 
compared in terms of fast feature extraction. The 
authors showed that DL-based methods outperformed 
other methods due to their learning ability from the 
row data. In addition, a deep CNN (DCNN) was used, 
and the reported accuracy stood between 88.9% and 
90% with the same NIST SD4 dataset 0(Peralta et al., 
2018). Further in (Zia et al., 2019), the authors 
proposed a baseline DCNN model, and the reported 
accuracy stood between 92.2% and 96.1% with the 
NIST SD4 dataset. In addition, the authors reported 
the high robustness of the proposed model. In (Blanco 
et al., 2020), basic and modified extreme learning 
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machines (ELMs) were tested for their efficacies 
concerning fingerprint classification. The authors 
showed that the improved ELM had outperformed the 
other CNN models in terms of training speed and 
computational cost. 

Furthermore, the authors reported that the enhanced 
ELM was able to handle data with the unbalanced class 
distribution. They said the accuracy of 95%. They 
concluded that the weighted ELM had achieved better 
results in terms of accuracy and penetration rate 
metrics. In (Iloanusi and Ejiogu, 2020), the work 
focused on classifying input fingerprint grayscale 
images according to the gender of the person being 
identified. The authors reported an overall accuracy 
rate of 91.3% in the classification. In this study, a 20-
layer CNN model was used. The model used was built 
from the ground up. They employed both a Sokoto 
Coventry Fingerprint Dataset (SOCOFing) dataset and 
their dataset for training and testing. All previous work 
focused on typically studied categories of the old four 
classes (arch, tented arch, left loop, right loop, and 
whorl). The paper focuses on fingerprint type. 
Therefore, in this brief, labeling the datasets and 
utilizing the state-of-the-art deep learning technique 
with CNN structure is conducted to classify a 
fingerprint type. As presented in the literature review, 
and to the best of our knowledge, no work has 
previously tackled finger type classification, which 
marks this work's novelty. 

In this study, the proposed new classifier was 
designed to identify fingerprints as either thumb or 
non-thumb. Such classification will improve the 
matching time and the accuracy of AFIS. The data 
have been labeled in the two-class. Then, training and 
validation of the data have been applied. Deep 
learning was used to classify the gray image of 
fingerprint. A model of CNN was applied using the 
benchmarked dataset. The proposed DL model is 
used to help the matching algorithm verify the input 
fingerprint more expediently, as it would require the 
matching algorithm to search on half of the database. 

This paper is organized as follows:  In Section 2, 
the data preparation with the proposed structure is 
involved. The CNN architecture model is presented 
and discussed in Section 3. Then, Section 4 presents 
the experimental results for Thumb CNN (TCNN) 
model. Finally, a conclusion is derived in Section 6. 

2 PROPOSED SCHEME AND 
DATA PREPARATION 

The proposed model in this work is used to classify 

the fingerprint image based on the finger type, as 
shown in Figure 1. First, the dataset has is prepared 
and labeled into the target classes. The labeled dataset 
is separated into training and validation sets. A part 
of the dataset is reserved for measuring the 
performance of the proposed model. Second, the deep 
learning model based on CNN structure is 
investigated. Then, the proposed model is trained and 
tuned in order to achieve high classification accuracy. 
Finally, the unseen dataset is used to test the model 
performance. 

 
Figure 1: CNN Proposed scheme. 

Two benchmark datasets were used to evaluate 
the performance of our proposed model. The first one 
was the NIST dataset (NIST, Biometric Special 
Databases and Software, 2022). This database 
featured 4000 8-bit grayscale 512x512 pixel 
fingerprint images at the time of the study. The 
dataset was collected randomly and stored in PNG 
format. This dataset has been widely used in testing 
and developing automated fingerprint classification 
systems. The original database was classified into 
five categories (L = left loop, W whirl, R = right loop, 
T = tented arch, and A = arch). Subsequently, the 
dataset is reorganized to match the newly proposed 
classes. The naming scheme of the PNG files was 
done such that the two numbers after the underscore 
indicate the finger type and from the hand from which 
the fingerprint image was taken. For example, in the 
file labeled ‘f0001_01.png,’ the ‘01’ after the 
underscore indicates that the fingerprint belongs to a 
right thumb (Karu and Jain, 1996)0. The dataset was 
divided into five files, one for each finger type. For 
the thumb classifier, the same dataset was utilized. In 
this case, thumb data was used, and the non-thumb is 
collected randomly from the index, middle, ring, and 
little fingers. Thumb sample data included 700 
samples, 600 of which were set for training and 100 
for validation and testing. An equal number of 175 
samples were randomly selected from each class 
(index, middle, ring, and little fingers). Data in this 
model was divided into 85% for training and 15% for 
validation. Samples from the datasets are illustrated 
in Figure 2. 
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Figure 2:  Samples from the Datasets. 

The second dataset used to train and test our proposed 
models was the SOCOFing dataset (Shehu et al., 
2019). The study consisted of actual fingerprints 
taken from 600 subjects at the time of the study. 
Images were labeled according to the exclusive 
attributes of gender, hand, and finger type. The real 
part of this dataset was used for the purposes of this 
study. The dataset was divided into subclasses in 
order to create both thumb and other finger-type 
models. For the thumb model, the dataset was 
clustered into two classes of a total of 1200 thumb 
fingerprint images of the BMP format. The non-
thumb class consisted of 300 images from the index, 
middle, ring, and little fingers, for 1200 images. Of 
this dataset, 75% was used for training and 25% for 
validation.  

3 CNN ARCHITECTURE 

As discussed in the previous sections, the study was 
to classify fingerprint data into subclasses. Our 
approach in this work was to use a learning-based 
method with a supervised learning methodology. To 
this end, a deep learning technique was utilized to 
achieve the classification target. As a state-of-the-art 
model of deep learning and machine learning, CNN 
was determined as ideal for classification tasks of 
image-based data (Shyu et al., 2020). The architecture 
of the thumb CNN (TCNN) model used in this work 
is described in the coming subsection. 

A CNN model was developed to train the 
classification model. The model consisted of four 
convolutional layers, each of which was followed by 
a max-pooling layer. Filters in the four convolutions 
numbered 256, 128, 64, and 32, respectively. Type 
3X3 filters and a ReLU activation were used. The 

application of consecutive convolutional and max-
pooling layers resulted in tensors of size (6, 6, 32), 
which were flattened to size (1,152). Two dense 
layers 128 and 20 neurons in size were then added. 
The fully connected layers were supplied with ReLU 
and Softmax activations consecutively. We used a 
dropout layer between the two fully connected layers 
with a drop rate of 30%. For training, we used cross-
entropy as the loss and an Adam optimizer in (Shyu 
et al., 2020) for the backpropagation algorithm. Keras 
with TensorFlow backend was used to create and 
train the CNN model. The model summary is shown 
in Figure 3. 

 
Figure 3: TCNN Model Summery. 
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4 EXPERIMENTS AND RESULTS 

The proposed technique has been tested based on the 
preparation data, and all experiments were conducted 
using Python with TensorFlow and Keras libraries. 
Training the models was conducted using Google 
Collaboratory GPU resources. The results of the 
training and testing TCNN model will be detailed in 
the subsequent sections. 

4.1 Training TCNN Model 

Input data of both datasets used for the purposes of 
training and testing are summarized in Table 1.  The 
NIST D4 dataset was randomly distributed into 70% 
for training, 15% for validation, and 15% for testing. 
At the same time, SOCOFig datasets were randomly 
distributed into 75% for training, 15% for verification, 
and 10% for testing. Before training the model, data 
augmentation was employed and tuned in order to 
increase accuracy and prevent overfitting. Images 
used in training rotated within 20o, shifted right and 
left within 10%, with image shearing and zoom 
within 10%, and with horizontal flipping—the use of 
the aforementioned augmentation technique allowed 
for the enhancement of all models. The best accuracy 
and loss metrics results stood at a 97% validation 
accuracy, a 0.13 validation loss with the NIST D4 
dataset, a 96% validation accuracy, and a 0.1 
validation loss with the SOCOFing dataset. Results 
are detailed in Table 1; also, Figure 4 and Figure 5 
illustrate the training performed on the mentioned 
dataset. 

Table 1: Summary of The Two Datasets. 

Dataset Training Validation Test 

NIST SD4 

498 thumbs 

498 not-thumb 

• 125 indexes 

• 125 middles 

• 124 rings 

• 124 little 

102 thumbs 

102 not-thumb 

• 26 indexes 

• 26 middles 

• 25 rings 

• 25 little 

100 thumbs 

100 not-thumb 

• 25 indexes 

• 25 middles 

• 25 rings 

• 25 little 

SOCOFing 

900 thumbs 

900 not-thumb 

• 225 indexes 

• 225 middles 

• 225 rings 

• 125 little 

180 thumbs 

180 not-thumb 

• 45 indexes 

• 45 middles 

• 45 rings 

• 45 little 

120 thumbs 

120 not-thumb 

• 30 indexes 

• 30 middles 

• 30 rings 

• 30 little 

 

 
(a) 

 
(b) 

Figure 4: Results of the TCNN Model based on NIST SD4: 
(a) model loss and (b) model accuracy. 

 
(a) 

 
(b) 

Figure 5: Results of the TCNN Model based on SOCOFing: 
(a) model loss and (b) model accuracy. 
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Table 2: Training of TCNN Model. 

Dataset 
Training Validation 
Accuracy Loss Accuracy Loss 

NIST D4 89.43 0.23 86.90 0.21 
SOCOFing 91.97 0.18 92.26 0.21 

Table 3: Matric Results for Test Set. 

Metric NIST D4 SOCOFing 

Accuracy 90.00% 89.00% 
Precision 95.28% 83.63% 
Recall 84.16% 92.00% 
F1-score 89.38% 87.61% 

4.2 Testing CNN Model  

Loss and accuracy results of both the training and 
validation sets are illustrated in Figure 4 and Figure 5. 
Accuracy results of the validation set are summarized 
in Table 2. Regularization induced by the dropout 
layer allowed for more extended training of the model 
and reduced the possibility of overfitting. Table 3 
shows the unseen test dataset's accuracy, precision, 
recall, and F1 scores. Notably, accuracy is decent for 
a classification problem. Other metrics indicated that 
predictions were somewhat uniform across the 
different classes. In order to check how our model had 
performed concerning individual classes, we used 
confusion matrices. Each matrix showed the correctly 
classified samples in the diagonal, according to class; 
it also gave an insight into what classes are confused 
by the model. Our model performed superiorly in 
terms of differentiation between classes, as shown in 
the diagonal of the confusion matrix in Figure 6.  

To the best of our knowledge, there is no work in 
the literature tackling the classification of the 
fingerprint image to the finger type (thumb or not 
thumb). However, there are some works have been 
done on the same dataset with different problems 
which are not comparable with our proposed work. 
Table 4 summarizes the best result achieved in the 
literature of three different field and features. The best 
accuracy achieved in classifying fingerprints to 
Galton-Henry classification (arch, tented arch, left 
loop, right loop, and whorl) is 95.05 % (Michelsanti 
et al. 2017). The best accuracy reached in assigning 
gender (Male or Female) from fingerprints image is 
91.3% (Iloanusi and Ejiogu, 2020). The accuracy 
achieved in classifying that fingerprint is for a right 
hand or left hand is 96.80% (Kim et al., 2020) where 
this accuracy is a validation accuracy during the 
training process not a test accuracy on an unseen 
dataset. 
 

 
(a) 

 
 (b) 

Figure 6: Confusion Matric (a) SOCOFing test set. (b) 
NIST D4 test set. 

Table 4: Tackled PROBLEMS IN Literature. 

Tackled Problem 
Accuracy 

(%) 

classifying fingerprints into arch, 
tented arch, left loop, right loop, and whorl 

(Michelsanti et al. 2017). 
95.05 

Gender classification (Iloanusi and 
Ejiogu, 2020) 

91.30 

Left- or Right-Hand Classification 
(Kim et al., 2020) 

96.80 

Finger Type Classification 90.00 

5 CONCLUSION 

A novel approach for classifying fingerprints based 
on the finger type was introduced through this work. 
Results of implementation and experimentation 
indicated that the TCNN model performed superiorly, 
with a high accuracy rate of fingerprint type 

ICINCO 2022 - 19th International Conference on Informatics in Control, Automation and Robotics

252



classification. The deep learning technique evidently 
aided in the proper extraction and classification of 
fingerprints. The developed model was trained and 
evaluated using two datasets, NIST and SOCOFing. 
The main metrics considered in this work, commonly 
considered in studies of DL/CNN architecture, were 
chosen to best reflect the level of performance in 
terms of classification and features extraction. The 
proposed model was able to classify the type of the 
fingerprint with the accuracies of 90% and 89% with 
the NIST D4 and SOCOFing datasets, respectively. 
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