
Software Enhancement Effort Estimation using Stacking Ensemble
Model within the Scrum Projects: A Proposed Web Interface

Zaineb Sakhrawi1 a, Asma Sellami2 b and Nadia Bouassida2 c

1University of Sfax, Faculty of Economics and Management of Sfax, Sfax, Tunisia
2University of Sfax, Higher Institute of Computer Science and Multimedia, Sfax, Tunisia

Keywords: Software Enhancement Effort Estimation, Functional Change, Functional Size, COSMIC FSM Method,
Scrum, Stacking Ensemble Model, Web Application.

Abstract: The frequent changes in software projects may have an impact on the accuracy of the Software Enhance-
ment Effort Estimation (SEEE) and hinder management of the software project. According to a survey on
agile software estimation, the most common cost driver among effort estimation models is software size. In-
deed, previous research works proved the effectiveness of the COSMIC Functional Size Measurement (FSM)
method for efficiently measuring software functional size. It has been also observed that COSMIC sizing is
an efficient standardized method for measuring not only software size but also the functional size of an en-
hancement that may occur during the scrum enhancement project. Intending to increase the SEEE accuracy
the purpose of this paper is twofold. Firstly, it attempts to construct a stacking ensemble model. Secondly,
it intends to develop a localhost web application to automate the SEEE process. The constructed stacking
ensemble model takes the functional Size of an enhancement or a functional change, denoted as FS(FC), as
a primary independent variable. The stacking ensemble model combines three Machine Learning (ML) tech-
niques: Decision Tree Regression, Linear Support Vector Regression, and Random Forest Regression. Results
show that the use of the FS(FC) as an input to SEEE using the stacking ensemble model provides significantly
better results in terms of MAE (Mean Absolute Error) = 0.206, Mean Square Error (MSE) = 0.406, and Root
Mean Square Error (RMSE) = 0.595.

1 INTRODUCTION

Effort estimation is one of the key activities sup-
porting software project planning and management
(Abran, 2015). However, the frequent changes
throughout the software project may influence the ac-
curacy of the effort estimates and hinder the project’s
success (Usman et al., 2018). Even when using the
agile approach, time constraints and a lack of quan-
titative evidence frequently result in overestimations
or underestimates, as well as faulty plans (Trzeciak,
2021). The agile software development life cycle
(SLC) lacks a specifically planned mechanism for
maintenance (Rehman et al., 2018). Software Mainte-
nance is the field of Software Engineering which have
been ignored over the last period. It has not received
the same degree of attention that the other phases have

a https://orcid.org/0000-0003-1052-3502
b https://orcid.org/0000-0002-6739-5508
c https://orcid.org/0000-0003-0434-2465

(Bourque and Fairley, 2014). Software maintenance
activity has been classified into two categories: cor-
rection and enhancement (ISO/IEC, 2006). We will
concentrate on the enhancement category in our re-
search. Enhancement is defined as ”a change made to
an existing software product to meet a new require-
ment” (ISO/IEC, 2006).
Agile approach like Scrum embraces changes
(Rehman et al., 2018). When managing Scrum soft-
ware projects, providing an accurate estimation of an
enhancement effort when requirements are likely to
change is critical (Arora et al., 2020). There are nu-
merous estimation techniques available, including ex-
pert opinion, Planning Poker (PP), and a few others
(Vyas et al., 2018). According to a survey of five stud-
ies on basic estimation techniques (Vyas et al., 2018),
the PP technique is the most commonly used in scrum
projects. The basis of the PP is practitioners’, which
are expressed in the form of Story Points. In practice,
it is used to estimate the effort required to complete
software requirements or User Stories (US).

Sakhrawi, Z., Sellami, A. and Bouassida, N.
Software Enhancement Effort Estimation using Stacking Ensemble Model within the Scrum Projects: A Proposed Web Interface.
DOI: 10.5220/0011321000003266
In Proceedings of the 17th International Conference on Software Technologies (ICSOFT 2022), pages 91-100
ISBN: 978-989-758-588-3; ISSN: 2184-2833
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

91

The US is a short description of intent presenting user
request (Desharnais et al., 2011). Besides PP, sev-
eral international standards provide well-documented
methods for measuring or approximating the US func-
tional size, such as the COSMIC FSM method. There
is a growing body of work on the use of the COS-
MIC function points (Ungan et al., 2014) for estima-
tion and performance measurement of software de-
velopment projects which can be adapted for predict-
ing agile Software Enhancement effort too (Sakhrawi
et al., 2021c). Rather than the increasing use of the
COSMIC FSM method, our other motivation for this
research study stems from the fact that existing sin-
gle ML techniques used for SEEE have several lim-
itations (Wang et al., 2021) while other innovative
models, such as the ensemble model, have yet to be
adopted in the industry for estimating software effort.
Indeed, recent research publication (Sakhrawi et al.,
2021a) has investigated the use of ensemble learn-
ing for improving SEEE for traditional projects (i.e.,
using waterfall methodology) compared to individual
models.
In accordance with the findings obtained in (Sakhrawi
et al., 2021a), our research paper’s goal is to improve
the accuracy of SEEE for scrum projects by building a
stacking ensemble model using the FS (FC) as an in-
dependent variable. Our constructed stacking ensem-
ble model combines three different ML techniques:
Decision Tree Regression, Linear Support Vector Re-
gression, and Random Forest Regression (DTRegr,
LinearSVR, and RFR). The selected three ML tech-
niques are recently used for SEEE and proved as ac-
curate models for SEEE in both traditional and scrum
contexts (Sakhrawi et al., 2021c). Estimation results
using the stacking ensemble model are compared to
those using the three ML techniques (DTRegr, Lin-
earSVR, and RFR) separately. Although the stacking
ensemble model produces significant results, using it
manually is time-consuming. Of course, manual solu-
tions are not practical. For this reason, we propose de-
veloping a local web application called ”ERWebApp”
to automate the SEEE process.
The rest of this paper is organized as follows. Section
2 provides an overview of the key concepts that will
be used. Section 3 discusses the related work. Sec-
tion 4 provides a detailed description of our research
work process. Section 5 discusses the experimental
results. In section 6, we present the evaluation per-
formed throughout the threats to validity. Finally, in
section 7, we summarizes the presented work and out-
lines some of its possible extensions.

2 BACKGROUND

This section describes an overview of the COSMIC
FSM method, the PP technique, and the stacking en-
semble model.

2.1 COSMIC

The Common Software Measurement International
Consortium (COSMIC) is an FSM method proposed
in 1999 to overcome some limitations of FPA (Mar-
tino et al., 2020). COSMIC is used for measuring
software functionality. The method is designed to
be independent of any implementation decisions em-
bedded in the operational artifacts of the software to
be measured. The process for measuring the COS-
MIC functional requirement size is composed of three
phases: Measurement strategy phase, mapping phase,
and Measurement phase (Berardi et al., 2011). Using
COSMIC FSM a functional process is composed of
a set of functional sub-processes that may be either a
data movement or a data manipulation. There are four
types of data movements: Entry (E), eXit (X), Read
(R), and Write (W).

• An Entry moves a data group into a functional
process from a functional user.

• An eXit moves a data group out of a functional
process to a functional user.

• A Write moves a data group from a functional
process to persistent storage.

• A Read moves a data group from persistent stor-
age to a functional process.

A data group is a set of attributes that describes one
object of interest. The COSMIC measurement unit
is one data movement of one data group indicated as
one CFP (COSMIC Function Point). The size of a
functional process is determined by the sum of the
data movements it includes. The functional size of
a functional process (noted by FS (FP)) is given by
Equation 1 (Berardi et al., 2011).

FS(FP) = ∑FS(Entries)+∑FS(eXits)+

∑FS(Reads)+∑FS(Writes)
(1)

The size of a change (an enhancement) presenting a
functional process is the sum of its data movements
that have been added, deleted, and modified. The soft-
ware functional size after the change is the sum of the
sizes of all the added data movements minus the size
of all the removed data movements.

ICSOFT 2022 - 17th International Conference on Software Technologies

92

2.2 Overview of Planning Poker

The Planning Poker technique was initially proposed
by Grenning (Grenning, 2002) and popularized by
Cohn (Haugen, 2006) where agile software effort is
predicted in terms of units of work referred to as
‘story points’ quantifying the implemented US (Vyas
et al., 2018). The US is a requirement presented in
a specific way to highlight the type of user as well
as the goal or functionality that the user needs to per-
form in order to obtain some benefits (Haugen, 2006).
The main objective of PP was to build more effec-
tive prediction sessions and to get more implications
from the whole industry project team (Haugen, 2006).
Even though the PP is the most widely used technique
to estimate software development effort, it was criti-
cized in the same way as expert judgment. In addition,
it does not provide direct information on the software
size to be delivered.

2.3 Stacking Ensemble Model

The stacking model is invented by Wolpert (Wolpert,
1992). It is recently used for estimating software ef-
fort (Sampath Kumar and Venkatesan, 2021)(Priya
et al., 2021). The stacking model combines lower-
level ML techniques for achieving more accurate esti-
mation. The constructed linear estimation model con-
sists of two learning levels (Kraipeerapun and Amorn-
samankul, 2015). The first learning level is called
Level-0, where models are trained and tested in inde-
pendent cross-validation examples from the original
input data. Then, the output of Level-0 and the origi-
nal input data is used as input for level-1, called gen-
eralized (i.e the meta-model). Level-1 is constructed
using the original input data and the output of level-
0 generalizers (Kraipeerapun and Amornsamankul,
2015).

3 RELATED WORK

Recently, research studies have reported that the
COSMIC FSM method has been successfully used
in agile software projects (Sakhrawi et al., 2021c).
The use of the COSMIC FSM method increases the
quality of the documentation in agile projects (Ungan
et al., 2014). Compared to the scrum story points,
the estimation model built using the COSMIC FSM
method provides more accurate results for estimat-
ing development effort (Ungan et al., 2014)(Sakhrawi
et al., 2021c). Hence, the use of software func-
tional size in COSMIC Functional Points (CFP) units
as independent variables to build an effort estima-

tion model give more accurate results than the use
of Story Points as independent variables (Sakhrawi
et al., 2021c).
More recently, the use of the ensemble model,
combining more than one single ML technique,
has achieved attention in the software engineering
research (Sampath Kumar and Venkatesan, 2021;
Sakhrawi et al., 2021a). In addition, a systematic
review conducted by (Idri et al., 2016) has con-
firmed that the ensemble methods outperformed their
constituents (single models). In the same context,
(Sakhrawi et al., 2021a) proposed a stacking ensem-
ble model that has revealed promising capabilities in
improving the accuracy over single models for tradi-
tional SEEE. Regarding a systematic mapping study
on the use of ML techniques for SEEE (Sakhrawi
et al., 2021b), this is the first study to our knowl-
edge that investigates the use of the ensemble method
in software maintenance (enhancement) effort estima-
tion within the scrum context.

4 RESEARCH PROCESS

Figure 1 presents our proposed research work pro-
cess. We compare the SEEE accuracy of the selected
ML techniques when used (trained and tested) sep-
arately with the SEEE accuracy of the constructed
stacking ensemble model. The stacking ensemble
model is then integrated into a local web application
(ERWebApp) to help estimators (e.g., development
team) make SEEE automatically.

4.1 Data Collection Data

In this section, we will use real projects developed
using the scrum framework and derived from indus-
try (Sakhrawi et al., 2021c). The chosen dataset is
an example of Software Enhancement in which the
functional specifications are considered an enhance-
ment. Because our work focused on enhancement, we
use the following filters to eliminate trivial projects:
Actual Development Time (man-days), full life cy-
cle effort for a project exceeding 80 man-hours, and
”Stats” other than ”implement” were excluded. When
assessing the performance of an estimation model, the
choice of a suitable one is based on the quality of its
inputs, data sets, and, most importantly, the use of
international standards (Abran, 2015). Indeed, since
the FS (FC) gives accurate results (Sakhrawi et al.,
2021c), we propose to measure the FS of all US in
the dataset. Then, we add the new measurements to
the existing dataset attributes. The enhancement FS in
the dataset (that is expressed in the form of US) was

Software Enhancement Effort Estimation using Stacking Ensemble Model within the Scrum Projects: A Proposed Web Interface

93

1. Data Collection 2. Creating Estimation Models
3. Evaluating Estimation

Models

.csv
Prediction results with

single models
Prediction results with

stacking ensemble model

Identification of the

accurate prediction model

(i) Industrial dataset (Scrum

software Projects)

(ii) Effort calculated using

Planning Poker (Story Points)

(ii) Enhancement size

(COSMIC Function Point)

(i) DTRreg, LinearSVR, and

RFR models with the use of

COSMIC sizing

(ii) Training data (70%) and

testing data (30%)

(i) Stacking Ensemble model

with the use of COSMIC sizing

(ii) Training data (70%) and

testing data (30%)

(i) Performance assessment

(MAE,MSE and RMSE)

(ii) Comparison of performance

assessment between single and

stacking models

4. Automatically Estimating

Enhancement Effort through a

Web Application

Automatically make

SEEE

(i) Submit ER

(ii)Generate FS(CR)

Figure 1: Research Work Process.

measured using the COSMIC method. The COSMIC
FSM process includes three phases (Berardi et al.,
2011): the measurement strategy, the mapping of con-
cepts, and the measurement of the identified concepts.

Measurement Strategy Phase. The Measurement
Strategy phase defines what will be measured (the
purpose of measurement). And therefore, the scope
to be measured is determined. The strategy phase is
important to ensure that we measure what is required
to be measured. The following are the main parame-
ters that must be identified during this phase:

• The purpose: Estimating Effort for implementing
an enhancement (i.e., a Functional Change).

• Overall scope: Generating the Functional Change
(FC) size and estimating the associated enhance-
ment effort.

• Functional users: are human users in this case.

• Layer: An industrial dataset (eight sprints).

• Level of granularity: one level of granularity

Mapping of Concepts. An Enhancement within
scrum context is presented by US. A US exhibits a
high-level requirement description. There is no gen-
eral standard US representation (Sellami et al., 2018).
The level of granularity for sizing requirements (or
enhancements) in the form of a US must be that of the
COSMIC functional processes (Berardi et al., 2011).
For that reason, the mapping of a US to a COSMIC
Functional Process necessitates distinguish the iden-
tification of following concepts:

As an <Actor>: represents the user of
the US referred to as the functional user

in COSMIC.
I want to <Goal>: represents the

enhancement request referred to as US
or a Functional Process (FP) in

COSMIC.
so that <value or expected benefit>

Regarding Table 1, the level of granularity for sizing
an enhancement in the form of a US must be that
of the COSMIC FP (Berardi et al., 2011). FC are
mainly classified into three types: add (new require-
ments to be created), delete (existing requirements to
be deleted), and modify (existing requirements to be
modified) (Sakhrawi et al., 2019).

Measurement Phase. In the Measurement phase,
the COSMIC Functional Process (FP) consists of a
set of functional sub-processes. The FP size is the
number of data movements (DM) it includes and the
software size is the sum of the sizes of all its FPs.
According to (Berardi et al., 2011), the DM can be
identified based on some common word cases (such
as create, select, delete, add, share, display, etc.)
(Sakhrawi et al., 2019). Using the identified DM
types that are repeatedly executed by the user can fa-
cilitate the measurement process. Table 2 explained
the ability of the COSMIC FSM method on detailing
the Functional change process (from process to sub-
process), which exposes more iterations and therefore
more data movements.

4.2 Constructing Estimation Models

We have constructed two estimation models presented
in Figure 1. The first model constructs three ML
techniques (DTRegr, LinearSVR, and RFR) for SEEE
separately. The second model constructs a stack-
ing ensemble model (that combines the three se-
lected ML techniques. For the models set of ex-
periments, we use the classic approach with a sim-
ple 70%(training)-30% (validation/test) split. Exper-

ICSOFT 2022 - 17th International Conference on Software Technologies

94

Table 1: Example: mapping of US with COSMIC FC.

US
Id

User Story description COSMIC Functional Change de-
scription

As an
. . . (actor)

I can . . . (Goal) Effort in Story
Points

Change Type (add,
delete, or modify)

FC
descrip-
tion

1 Organization
User

Add a custom evidence type
to an assessment criterion
(because the standard evi-
dence types are not appro-
priate for me)

4 ADD() Add
Custom
Evi-
dence
Type

Table 2: Sizing an enhancement “Add Custom Evidence Type” in CFP units.

FP De-
scription

Functional
User

Description of Sub-
FP

Data Group Object of interest DM
type

CFP

Add
Custom
Evidence
Type

Organisation
User

Request to view a
specific widget

Custom Evidence
type

Custom Evidence
type

Entry 1

Add a “custom” ev-
idence type against
a specific attainment
criterion

Custom Evidence
Type

Custom Evidence
type

Organisation
User

Add a custom evi-
dence type and give
him a name (free
form text)

Custom Evidence
Type

Custom Evidence
type

Entry 1

Verify changes Custom Evidence
Type

Custom Evidence
type

Read 1

Save changes Custom Evidence
Type

Custom Evidence
Type

Write 1

The custom evidence
type is saved

Custom Evidence
Type

Custom Evidence
type

eXit 1

The custom evidence
type is saved

Custom Evidence
Type

Custom Evidence
type

eXit 1

Total 6

iments were performed using the Google Colabo-
ratory1 python programming. The most recent in-
ventory tool is Google Colaboratory, also known
as Google Colab. It makes GPUs available to re-
searchers who lack resources or cannot afford one.

4.3 Evaluating Estimation Models

To evaluate the accuracy of the estimation models,
we used three widely used evaluation metrics (Idri
et al., 2015): the mean absolute error (MAE), the
mean square error (MSE), and the root mean square
error (RMSE).

1https://colab.research.google.com/notebooks/intro.
ipynbrecent=true

4.3.1 LinearSVR Algorithm Performance
Assessment versus DTRegr, and RFR
Models

Regarding Table 3, error metrics (such as MAE,
MSE and RMSE) reveal quite values using linearSVR
(MAE=0.240 ; MSEs= 0.923 ; RMSE=0.646).

Table 3: Estimation analysis using MAE, MSE and RMSE.

Method/ pa-
rameters

MAE MSE RMSE

LinearSVR 0.240 0.923 0.646
DTRegr 0.5 1.0 1.0
RFR 0.952 1.479 1.216

Software Enhancement Effort Estimation using Stacking Ensemble Model within the Scrum Projects: A Proposed Web Interface

95

4.3.2 Stacking Ensemble Model

When constructing a stacking ensemble model, it
is critical to select which ML techniques will be
used as ”estimators”. The meta-model provided via
the “final estimator” argument (DTRegr) is trained
to combine the estimation of the selected ML tech-
niques provided via the ”estimators” argument (Lin-
earSVR, RFR). Each model is trained on the con-
structed dataset using the FS(FC) as a primary in-
dependent variable. Then, the outputs of ”estima-
tors” are fed into the ”final estimator” which com-
bines each estimator model with a weight and delivers
the final estimation.

Selecting Estimators and final estimator. The
main parameters of the stacking ensemble regres-
sion model are defined in scikit-learn2 as follows:
StackingRegressor(estimators, final estimator=None,
*) explained in Table 4. Thus, we try to identify which

Table 4: Stacking ensemble regression model parameters’.

Parameters Description
estimators Base estimators which will

be stacked together.
final estimator An estimator which will be

used to combine the base es-
timators

technique from the three ML techniques can be used
as ”final estimator” and which ones should be used as
”estimators”. Table 5 illustrates the estimation analy-
sis results using MAE, MSE, and RMSE. Error met-
rics reveal quite values when the DTRegr algorithm
is used as the final estimator (MAE=0.206 ; MSE=
0.406; RMSE=0.595). Figure 2 shows the ML ”esti-
mators” and the average of their estimations.

Table 5: Estimation analysis using MAE, RMSE.

estimators final
esti-
mator

MAE MSE RMSE

LinearSVR
and RFR

DTRreg 0.206 0.406 0.595

LinearSVR
and DTR-
reg

RFR 0.788 0.922 0.960

DTRreg
and RFR

Linear
SVR

0.761 1.250 1.118

2https://scikit-learn.org/stable/modules/classes.htmlmo
dule-sklearn.ensemble

Figure 2: ML ”estimators” and the average of their estima-
tions.

Make SEEE. Constructing SEEE, each ML regres-
sion technique is trained on the selected dataset. The
outputs of ”estimators” are therefore fed into the ”fi-
nal estimator” which combines each regression es-
timator model with a weight and delivers the final
estimation. To evaluate the overall performance of
the constructed estimation model, we selected the
r2 score evaluation metric3. Figure 3 depicts the
r2 score results, with the best possible score of 1.0.
The results show that the stacking ensemble model
outperforms the other three ML techniques. The
rr2 score is 0.789.

Figure 3: ML techniques Performance Assessment.

4.4 A Proposed Web Interface for SEEE

Regarding experimental results, we found that us-
ing the stacking ensemble model is the most accu-
rate model. However, using this model manually is
time-consuming. Of course, manual solutions are not
practical. For this reason, we propose to develop an
ERWebApp to rapidly and automatically make SEEE.
The ERWebApp is designed to first generate the en-

3https://scikit-learn.org/stable/modules/generated/
sklearn.metrics.r2 score

ICSOFT 2022 - 17th International Conference on Software Technologies

96

hancement functional size and then estimate its corre-
sponding effort.
The ERWebApp is developed using Bootstrap4, Anvil
Platform5, and Python6. Python is used in the back-
end to create the estimation model that maps the in-
put and output data based on the stacking ensemble
model, while Anvil’s Platform and Bootstrap are used
in the frontend to display content. In order to transfer
content between web applications and the estimation
model, the use of the Anvil platform appeared to be
beneficial. It is used to help in the visualization of
the estimation model by creating and hosting the esti-
mation web page, which is entirely written in Python
using predictable and minimal resources (CPU, mem-
ory, threads). The ERWebApp is styled using Boot-
strap. It is hosted on the user’s computer’s localhost
and can be accessed using web browsers from any op-
erating system.

4.4.1 ERWebApp Users

The ERWebApp is designed to meet the needs of the
three Scrum roles: product owner, scrum master, and
development team members. It will enable estimators
to express the ER in the form of US in the natural
language. Then, the functional size of the US will
be generated in terms of CFP units. The estimator
then receives the estimated effort based on ontology
and ML techniques. This implies that the three scrum
roles would be able to perform the following actions
in the web interface:

1. The Scrum Master: is responsible for the revised
planning and deciding on the execution of the ER.

2. The Product Owner: Submit the ER description.

3. The Development Team: reformulate the ER in
three steps: (1) specify a formal description of the
ER, (2) generate the functional size of the ER in
CFP units, and (3) estimate the effort required to
implement the ER.

The principal parts of the ERWebApp are described
throughout three pages of interfaces: a projects
overview (for scrum master), a submit ER form (for
product owner), and regulate ER form (for the de-
velopment team). Focusing on making the ERWe-
bApp easier to use, we created three sessions for the
three scrum roles. Indeed, we created three login ses-
sions/profiles for the three roles. Figure 4 depicts an
example of the product owner’s login session page.

4https://getbootstrap.com/
5https://anvil.works/open-source
6https://www.python.org/

Figure 4: Login page of product owner.

4.4.2 Product Owner Interface: Submit
Enhancement Request

When a new enhancement occurs in an existing
project, the product owner must submit the enhance-
ment description. As shown in Figure 5, the develop-
ment team is responsible for implementing enhance-
ment. After the ER has been approved, a detailed de-
scription can be created (in other words, going from
an informal to a formal ER description). The Prod-
uct Owner can express and submit an enhancement
request in natural language using this interface page.

Figure 5: Submit enhancement request.

4.4.3 Development Team Interface

We concentrated on the development team session be-
cause that is the team in charge of managing and im-
plementing the enhancement. The development team
will provide the COSMIC sizing of an enhancement
as well as an estimate of the corresponding effort.

Software Enhancement Effort Estimation using Stacking Ensemble Model within the Scrum Projects: A Proposed Web Interface

97

Figure 6 depicts the output via the user interface.

Figure 6: Development team interface.

Enhancement Request Details. The web interface
page of the development team includes the enhance-
ment details. Figure 6 contains two buttons: the blue
button downloads the enhancement description vali-
dated by the product owner, and the green button gen-
erates a formal explanation of a specific enhancement
request. Figure 7 shows a full formal description of a
selected ER. The functional size of the specified ER is
also represented in terms of CFP units. A button was
created to demonstrate how the functional size of an
enhancement, denoted as FS (FC), can be found and
used to estimate the effort required to complete this
enhancement. When the button ”click to reveal in de-
tail” in Figure 7 is selected, the details of FS (FC) are
generated as shown in Figure 8 (details of functional
size measurement are provided in Measurement phase
paragraph in section 4.1.

Estimating Enhancement Request Effort. As
shown in Figure 9 using the Anvil platform, we cre-
ated a web page for SEEE. Through the Anvil plat-
form, we can share a private link to the web page.
Then, in the Bootstrap template, we included this link
to be used by the development team. The Anvil plat-
form is also used to connect the model built-in Google
Collab to the input variable, which is the functional
size of the enhancement request.
The SEEE web page interface includes two sessions:
the train session constructed on the backend with the
Goggle Collab and the estimation session designed

Figure 7: Enhancement request details.

Figure 8: Regulate enhancement request page.

for the development team with the Anvil platform. As
shown in Figure 9, the development team needs to se-
lect the model to estimate the effort of the enhance-
ment request. The stacking ensemble model-based
SEEE must be uploaded by the developer. In addi-
tion, the development team must provide the func-
tional size (approximated) of enhancement (FC) as in-
put in CFP. As a result, our ERWebApp can estimate
the Software Enhancement effort.

Figure 9: Estimating enhancement request effort.

5 DISCUSSION AND
COMPARISON

Recall that our proposed research process goal is to
investigate (i) the importance of using the enhance-
ment FS as a primary independent variable and (ii)
the use of the stacking ensemble model for improv-
ing the accuracy of SEEE within the scrum context.
We firstly conducted three selected ML techniques
(DTRegr, LinearSVR, and RFR) separately. Exper-
imental results show that LinearSVR is the most ef-
fective model. This is supported by the results, which
show a minimum MAE of 0.240. To ensure the above
results, we have investigated the idea of using a stack-
ing ensemble model by combining the three ML tech-
niques (DTRegr, LinearSVR, and RFR). Experimen-
tal results are compared with the three ML techniques
when constructed separately. The effectiveness of the
stacking ensemble model can be seen in the results
(see Figure 2 and Figure 3). This is supported by
the results with the minimum MAE of 0.206, MSE

ICSOFT 2022 - 17th International Conference on Software Technologies

98

of 0.406 and RMSE of 0.595, and a good r2 score of
0.789.

6 THREATS TO VALIDITY

The validity of this research results is pertinent to in-
ternal validity and external validity.

• Internal threats to validity are related to the size
of the data set where the number of instances in
the data set must be more significant. This work
is limited to the numerical attributes of the Soft-
ware Enhancement datasets for scrum projects,
although many historical scrum project datasets
contain categorical attributes.

• External threats to validity are proportional to the
degree to which the study’s findings can be ap-
plied to other projects. We only used one private
scrum dataset. However, we believe that our pro-
posed research study can be applied to a variety of
project datasets.

7 CONCLUSION

In this study, we investigated the problem of accu-
rate estimation of effort for software scrum enhance-
ment projects. Three single ML techniques and stack-
ing models were implemented and empirically tested.
Based on the fact that COSMIC sizing is a power-
ful FSM method, it was used as an input feature for
predicting enhancement effort, the enhancement FS
is used as an independent variable. The following are
the results of the experiments:

• LinearSVR is more accurate with small MAEs=
0.240, MSE= 0.923, and RMSE= 0.646 compared
to DTRreg and RFR.

• The stacking ensemble model is more accurate
with MAE of 0.206, MSE of 0.406 and RMSE
of 0.595, and a good r2 score of 0.789 compared
to the selected single ML techniques SEEE accu-
racy.

Then, we conclude our research work process by
building a localhost ERWebApp. The web applica-
tion’s goal is to evolve into a company that can esti-
mate the effort of a new enhancement request from FS
in a scrum context. We did not place a high value on
the roles of scrum master and product owner because
the estimation process is handled by the development
team. However, it will be improved in the future.

REFERENCES

Abran, A. (2015). Software project estimation: the fun-
damentals for providing high quality information to
decision makers. John Wiley & Sons.

Arora, M., Verma, S., Chopra, S., et al. (2020). A system-
atic literature review of machine learning estimation
approaches in scrum projects. Cognitive Informatics
and Soft Computing, pages 573–586.

Berardi, E., Buglione, L., Cuadrado-Collego, J., Deshar-
nais, J.-M., Gencel, C., Lesterhuis, A., Santillo, L.,
Symons, C., and Trudel, S. (2011). Guideline for the
use of cosmic fsm to manage agile projects. Common
Software Measurement International Consortium.

Bourque, P. and Fairley, R. E. (2014). Guide to the software
engineering-body of knowledge. Online in Internet:
URL: http://www. swebok. org [Stand: 12.01. 2005].

Desharnais, J.-M., Buglione, L., and Kocatürk, B. (2011).
Using the cosmic method to estimate agile user sto-
ries. In Proceedings of the 12th international con-
ference on product focused software development and
process improvement, pages 68–73.

Grenning, J. (2002). Planning poker or how to avoid
analysis paralysis while release planning. Hawthorn
Woods: Renaissance Software Consulting, 3:22–23.

Haugen, N. C. (2006). An empirical study of using plan-
ning poker for user story estimation. In AGILE 2006
(AGILE’06), pages 9–pp. IEEE.

Idri, A., azzahra Amazal, F., and Abran, A. (2015).
Analogy-based software development effort estima-
tion: A systematic mapping and review. Information
and Software Technology, 58:206–230.

Idri, A., Hosni, M., and Abran, A. (2016). Systematic liter-
ature review of ensemble effort estimation. Journal of
Systems and Software, 118:151–175.

ISO/IEC (2006). International standard—iso/iec 14764 ieee
std 14764-2006 software engineering; software life
cycle processes &; maintenance.

Kraipeerapun, P. and Amornsamankul, S. (2015). Us-
ing stacked generalization and complementary neu-
ral networks to predict parkinson’s disease. In 2015
11th International Conference on Natural Computa-
tion (ICNC), pages 1290–1294. IEEE.

Martino, S., Ferrucci, F., Gravino, C., and Sarro, F. (2020).
Assessing the effectiveness of approximate functional
sizing approaches for effort estimation. Information
and Software Technology, 123:106308.

Priya, A. V., Varadarajan, V., et al. (2021). Estimating soft-
ware development efforts using a random forest-based
stacked ensemble approach. Electronics, 10(10):1195.

Rehman, F., Maqbool, B., Riaz, M. Q., Qamar, U., and Ab-
bas, M. (2018). Scrum software maintenance model:
Efficient software maintenance in agile methodology.
In 2018 21st Saudi computer society national com-
puter conference (NCC), pages 1–5. IEEE.

Sakhrawi, Z., Sellami, A., and Bouassida, N. (2019).
Requirements change requests classification: an
ontology-based approach. In International Confer-
ence on Intelligent Systems Design and Applications,
pages 487–496. Springer.

Software Enhancement Effort Estimation using Stacking Ensemble Model within the Scrum Projects: A Proposed Web Interface

99

Sakhrawi, Z., Sellami, A., and Bouassida, N. (2021a). Soft-
ware enhancement effort estimation using correlation-
based feature selection and stacking ensemble
method. Cluster Computing, pages 1–14.

Sakhrawi, Z., Sellami, A., and Bouassida, N. (2021b). Soft-
ware enhancement effort prediction using machine-
learning techniques: A systematic mapping study. SN
Computer Science, 2(6):1–15.

Sakhrawi, Z., Sellami, A., and Bouassida, N. (2021c). Sup-
port vector regression for enhancement effort predic-
tion of scrum projects from cosmic functional size. In-
novations in Systems and Software Engineering, pages
1–17.

Sampath Kumar, P. and Venkatesan, R. (2021). Improv-
ing accuracy of software estimation using stacking
ensemble method. In Advances in Machine Learn-
ing and Computational Intelligence, pages 219–227.
Springer.

Sellami, A., Haoues, M., Borchani, N., and Bouassida,
N. (2018). Towards an assessment tool for control-
ling functional changes in scrum process. In IWSM-
Mensura, pages 34–47.

Trzeciak, M. (2021). Sustainable risk management in it en-
terprises. Risks, 9(7):135.

Ungan, E., Cizmeli, N., and Demirörs, O. (2014). Com-
parison of functional size based estimation and story
points, based on effort estimation effectiveness in
scrum projects. In 2014 40th EUROMICRO Confer-
ence on Software Engineering and Advanced Applica-
tions, pages 77–80. IEEE.

Usman, M., Britto, R., Damm, L.-O., and Börstler, J.
(2018). Effort estimation in large-scale software de-
velopment: An industrial case study. Information and
Software technology, 99:21–40.

Vyas, M., Bohra, A., Lamba, C., and Vyas, A. (2018). A re-
view on software cost and effort estimation techniques
for agile development process. International Journal
of Recent Research Aspects, 5(1):1–5.

Wang, L., Zhu, Z., Sassoubre, L., Yu, G., Liao, C., Hu,
Q., and Wang, Y. (2021). Improving the robustness
of beach water quality modeling using an ensemble
machine learning approach. Science of The Total En-
vironment, 765:142760.

Wolpert, D. H. (1992). Stacked generalization. Neural net-
works, 5(2):241–259.

ICSOFT 2022 - 17th International Conference on Software Technologies

100

