data set contains information about the simulation
model’s applicability and the training of the machine
learning algorithms will fail.
Further research will investigate the possibility to
perform the initial estimator learning in an iterative
approach starting only with a small amount of initial
data points, thus being able to reduce the preparation
effort.
REFERENCES
Alvarez Lopez, P., Behrisch, M., Bieker-Walz, L.,
Erdmann, J., Flötteröd, Y.-P., Hilbrich, R., . . . Wießner,
E. (2018). Microscopic Traffic Simulation using
SUMO. Paper presented at the The 21st IEEE
International Conference on Intelligent Transportation
Systems, Maui, USA.
Biehler, J., Gee, M. W., & Wall, W. A. (2015). Towards
efficient uncertainty quantification in complex and
large-scale biomechanical problems based on a
Bayesian multi-fidelity scheme. Biomechanics and
Modeling in Mechanobiology, 14(3), 489-513.
doi:10.1007/s10237-014-0618-0
Bishop, C. M. (2006). Pattern recognition and machine
learning: New York : Springer.
Fernandez-Godino, M. G., Park, C., Kim, N., & Haftka, R.
(2017). Review of multi-fidelity models.
Fiala, E. (2006). Mensch und Fahrzeug: Fahrzeugführung
und sanfte Technik [Human and vehicle: Vehicle
guidance and smooth technology]. Wiesbaden: Vieweg.
Gron, A. (2017). Hands-On Machine Learning with Scikit-
Learn and TensorFlow: Concepts, Tools, and
Techniques to Build Intelligent Systems: O'Reilly
Media, Inc.
Heißing, B., & Ersoy, M. (2011). Chassis Handbook:
Fundamentals, Driving Dynamics, Components,
Mechatronics, Perspectives. Wiesbaden:
Vieweg+Teubner.
ISO. (2020). Intelligent transport systems - Partially
automated lane change systems (PALS) - Functional /
operational requirements and test procedures.
ITE Technical Committee. (1989). Determining Vehicle
Change Intervals: A Proposed Recommended Practice.
ITE Journal, 57, 27-32.
Krauß, S. (1998). Microscopic Modeling of Traffic Flow:
Investigation of Collision Free Vehicle Dynamics.
Retrieved from
Pacejka, H. B. (2012). Tire and Vehicle Dynamics (Third
Edition). Oxford: Butterworth-Heinemann.
Paulweber, M. (2017). Validation of Highly Automated
Safe and Secure Systems. In D. Watzenig & M. Horn
(Eds.), Automated Driving: Safer and More Efficient
Future Driving (pp. 437-450). Cham: Springer
International Publishing.
Schölkopf, B., & Smola, A. J. (2018). Learning with
Kernels: Support Vector Machines, Regularization,
Optimization, and Beyond: The MIT Press.
Schramm, D., Hiller, M., & Bardini, R. (2018). Vehicle
Dynamics - Modeling and Simulation: Springer-Verlag
Berlin Heidelberg.
Semrau, M., & Erdmann, J. (2016). Simulation framework
for testing ADAS in Chinese traffic situations. Paper
presented at the SUMO2016, Berlin.
Sieberg, P., Blume, S., Reicherts, S., & Schramm, D.
(2019). Nichtlineare modellbasierte pradiktive
Regelung der Fahrzeugdynamik in Bezug auf eine
aktive Wankstabilisierung und eine Nickreduzierung.
[Non-linear model-based predictive control of vehicle
dynamics in terms of active roll stabilization and pitch
reduction]. Forschung im Ingenieurwesen, 83(2), 119-
127. doi:10.1007/s10010-019-00337-6
Sovani, S., Johnson, L., & Duysens, J. (2017).
Incorporating high fidelity physics into ADAS and
autonomous vehicles simulation, Wiesbaden.
Wegener, A., Piórkowski, M., Raya, M., Hellbrück, H.,
Fischer, S., & Hubaux, J.-P. (2008).
TraCI: an interface
for coupling road traffic and network simulators. Paper
presented at the Proceedings of the 11th
communications and networking simulation
symposium, Ottawa, Canada.
Generating a Multi-ﬁdelity Simulation Model Estimating the Models’ Applicability with Machine Learning Algorithms