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Abstract: Having access to large data sets recently gained increasing importance, especially in the context of automation 
systems. Whether for the development of new systems or for testing purposes, a large amount of data is 
required to satisfy the development goals and admission standards. This data is not only measured from 
real-world tests, but with growing tendency generated from simulations, facing a trade-off between 
computational effort and simulation model fidelity. This contribution proposes a method to assign individual 
simulation runs the simulation model that has the lowest computation costs while still being capable of 
producing the desired simulation output accuracy. The method is described and validated using support vector 
machines and artificial neural networks as underlying vehicle simulation model classifiers in the development 
of a lane change decision system. 

1 INTRODUCTION 

Over the last years, the availability of large data sets 
has gained increasing importance in both research and 
system development. Especially in the field of 
automation, the demand for appropriate data is rising 
as machine learning algorithms are receiving more 
attention. 

A popular application area for automation is the 
automotive sector with its driver assistance systems 
ranging from supportive systems like the lane 
departure warning system to fully autonomous 
driving vehicles. Even with classical controller 
strategies and thus without the use of data-driven 
algorithms, in the development process an exhaustive 
amount of test cases has to be covered. Many of those 
tests are nowadays performed in simulations. 
(Paulweber, 2017) 

On the one hand, the simulation-based testing 
offers economic advantages. Depending on the 
simulation environment, the test can be performed 
faster than real-time, thus the development process 
can be shortened. Furthermore, occurring system 
failures do not harm testing personal nor real 
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hardware and can be eliminated before deployment in 
expensive real-world prototypes. On the other hand, 
tests in simulation environments come with practical 
advantages. The tests can be carried out under 
constant, deterministic environmental conditions, 
which can be chosen independently of i.e. weather 
impacts that real-world testing has to cope with.  

(Sovani et al., 2017) 
Other than providing an environment to test 

developed systems, simulations can also be used in 
the design process. Systems based on data-driven 
machine learning algorithms need plenty of data to be 
trained on. Whereas this data can be collected in the 
real-world, using simulation data offers again a less 
time and cost consuming alternative. 

Using a simulation, the two important 
characteristics are the underlying model’s fidelity and 
the required computational resources. In general, the 
more accurate the simulation model has to be, the 
more computational power respective time is needed 
for simulation.  

While a complex simulation model may result in 
highly accurate data for all regarded simulated events, 
its complexity may not be necessary in each of these 
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events. For some cases, a less complex model can be 
sufficient in accuracy as well, whilst requiring less 
computational resources. 

As the trade-off between computational 
requirements and model fidelity is not only subject to 
automation system simulation but rather a general 
problem in the field of simulations, many researchers 
are investigating possible solutions, combining 
multiple simulation models of varying fidelity to so-
called multi-fidelity models. 

In (Fernandez-Godino et al., 2017), the authors 
review different merging strategies for those multi-
fidelity models. E.g., the merging can be performed 
by correcting the output of low fidelity models. 
Therefore, the deviation from a high fidelity model is 
analysed at given points, in the application this 
deviation is estimated. (Biehler et al., 2015) 

An alternative approach defines selection criteria 
for each of the simulation models. This contribution 
belongs to the latter strategy, the proposed method 
uses a selection criterion per investigated model that 
is learned from the models’ simulation data using 
machine learning algorithms. 

In the following, a short introduction into the 
fundamentals of the used vehicle models and machine 
learning algorithms is given. Afterwards, the 
simulation framework is presented. Subsequently, the 
proposed method is described before finally being 
applied to the development of an automated lane 
change decision system. 

2 FUNDAMENTALS 

This section presents an overview on the 
fundamentals of the used vehicle models as well as 
support vector machines and neural networks  

2.1 Vehicle Dynamics 

In this contribution, the simulations are performed 
with four vehicle models. With increasing model 
fidelity, those models are a point mass model, a linear 
single-track model and two nonlinear single-track 
models. Vehicle models with higher fidelity like a 
dual-track model or a multi-body system are not 
considered in this paper, since the focus of this work 
is the presentation of the method determining the 
required model fidelity. Furthermore, the performed 
simulation does not include highly dynamical events 
with high lateral accelerations and thus the single-
track models are sufficient to model the vehicles 
dynamics accurately. 

2.1.1 Point Mass Model 

For the vehicle model with the lowest fidelity a point 
mass model is used. The model uses the first order 
Euler method to compute the vehicles position 𝒙 and 
speed 𝒗  at discrete time intervals Δ𝑡  based on the 
current acceleration 𝒂: 

𝒙ሺ𝑡 ൅ Δ𝑡ሻ ൌ 𝒙ሺ𝑡ሻ ൅ 𝒗ሺ𝑡 ൅ Δ𝑡ሻ ∙ Δ𝑡 (1)

𝒗ሺ𝑡 ൅ Δ𝑡ሻ ൌ 𝒗ሺ𝑡ሻ ൅ 𝒂ሺ𝑡ሻ ∙ Δ𝑡 (2)
In this model, neither rotational movement around 
any axis nor tire characteristics are modelled. 
(Alvarez Lopez et al., 2018) 

2.1.2 Linear Single-Track Model 

The linear single-track model is an often-used vehicle 
simulation model describing the lateral behaviour of 
a vehicle. For low lateral accelerations, this model is 
very accurate but because of linearisation of the 
equations, the model’s fidelity decreases with 
increasing lateral accelerations.  

The model does not include longitudinal forces, 
thus only constant velocities can be simulated. The 
only rotation allowed for this model is around the 
vertical axis, the other rotations are restricted. Tire 
modelling is done by a linear model depending on the 
lateral slip angle and the cornering stiffness of the 
tires. A detailed explanation of the model can be 
found in many literature sources, e.g. in (Heißing & 
Ersoy, 2011). 

2.1.3 Nonlinear Single-Track Model 

The highest fidelity models used in this work are 
nonlinear single-track models. In general, this model 
is modelling the movement in lateral and longitudinal 
direction as well as the rotation around the vertical 
axis. Considering the longitudinal component of the 
model, an engine model is incorporated in 
conjunction with resistance force modelling. 

The vehicle-road contact point is modelled by the 
empirical magic formula model, a nonlinear tire 
model after (Pacejka, 2012). Since the equations of 
this model are not linearized, the model does not 
suffer from the accuracy loss for higher lateral 
acceleration the linearized model has to deal with. 

Optionally, this model can be complemented by a 
roll and pitch model. Those models are linear models 
of the rotational behaviour around the horizontal 
axes. As those rotations are described by linear 
models, they are only feasible for small rotational 
movement. For further description of the nonlinear 
single-track model and the roll model, please consider 
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(Schramm et al., 2018). The pitch model is described 
in (Sieberg et al., 2019). 

2.2 Artificial Neural Networks 

The artificial neural networks (ANNs) considered in 
this work are so-called fully-connected feedforward 
neural networks. The signal flow in such ANNs is 
always directed from the input-neurons through the 
hidden neuron layers to the output neurons. Thereby, 
every neuron of one layer – excluding the input layer 
– is connected to all neurons of the preceding layer. 
Figure 1 shows the structure of these ANNs, 
exemplary with two hidden layers.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 1: Fully-connected feedforward neural network with 
two hidden layers. 

In each neuron, its N inputs 𝒙 ∈ ℝ୒ – hence the 
outputs of the previous layer with N neurons inside – 
are summed up with each input weighted by the 
neuron’s weights 𝒘 ∈ ℝ୒. This sum is adjusted by 
the neuron’s bias 𝑏 ∈ ℝ to compensate for a possible 
offset before the output of the neuron is calculated by 
applying an activation function fୟୡ୲: ℝ → ℝ.  Thus, 
each neuron’s output 𝑦 can be described by: 

𝑦 ൌ fୟୡ୲ሺ𝒘்𝒙 ൅ 𝑏ሻ (3)

Popular activation functions are the Tanh and 
Sigmoid functions as well as the Exponential Linear 
Unit (ELU) which is defined as follows:  

f୉୐୙ሺxሻ ൌ ൜
x       , x ൐ 0

𝛼 ∙ ሺ𝑒௫ ൅ 1ሻ, x ൑ 0  (4)

Thereby, the parameter 𝛼 describes the lower bound 
of the function’s output. (Gron, 2017) 

During the training of the ANN, the trainable 
parameters weight and bias of the neurons are adapted 
to fit the network to the given data. This is achieved 

by the method of error backpropagation. Based on a 
loss function, the difference between network output 
and target output on the training data points is 
computed. The error loss is then propagated 
backwards through the ANN, from the output layer to 
the input layer. During this backpropagation, the 
gradients of the weights and biases are computed with 
respect to the loss. These gradients are then used in 
gradient descent algorithms to adjust the trainable 
parameters with the goal of minimisation of the loss 
function. As with all gradient based approaches, 
finding the global minimum cannot be guaranteed and 
the training algorithm may be stuck in a local 
minimum. (Bishop, 2006). 

2.3 Support Vector Machines 

Support Vector Machines (SVMs) are maximum 
margin binary classifier. Like many (binary) 
classifiers, the algorithm tries to distinguish two 
classes in data by placing a separating hyperplane in 
the input space, defined by: 

𝒘்𝒙 ൅ 𝑏 ൌ 0 (5)

Hereby, 𝒙 ∈ ℝ୒  describes the N-dimensional input 
vector, also called the features of a data point ሺ𝒙, 𝑦ሻ 
which also consists of the class membership 𝑦 ∈
 ሼെ1,1ሽ . The weights 𝒘 ∈ ℝ୒  and the bias 𝑏 ∈  ℝ 
compose the parameters that are adjusted when fitting 
the SVM to a data set. Given two classes in the N-
dimensional input space that are linear separable, thus 
separable by a (N-1)-dimensional hyperplane, often 
many – if not infinite – hyperplanes can be fitted to 
solve this task. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2: Classification hyperplane with maximized margin 
(solid line) and arbitrary hyperplane (dotted line). 
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Being a maximum margin classifier, the SVM 
chooses the hyperplane that is maximizing the 
distance to the data points. Thus, the margin between 
the two classes is maximized. This property of the 
SVM gives an advantage over other classification 
algorithms like neural networks choosing an arbitrary 
separating hyperplane. The maximum margin 
solution improves the generalisation ability of the 
classifier if new data points lay outside the classes 
data clusters the algorithm has been fitted on. In 
Figure 2, a visualisation of a maximum margin and an 
arbitrary hyperplane is given. (Bishop, 2006) 

The underlying constrained optimisation problem 
is defined by: 

min ൭
1
2

𝒘்𝒘 ൅
𝐶
𝑀

෍ 𝜉௠

ெ

௠ୀଵ

൱ (6)

The optimisation has to be performed under the 
constraint for each data point ሺ𝒙௠, 𝑦௠ሻ to ideally be 
located outside the margin: 

𝑦௠ሺ𝒘்𝒙௠ െ 𝑏ሻ ൒ 1 െ 𝜉௠ (7)

Hereby, the first term of the objective function 
focusses on maximizing the margin, the second on 
minimizing the slack 𝜉 ൒ 0 . The slack variable in 
conjunction with the regularisation parameter 𝐶  is 
used to allow margin violation. In general, no data 
point may be located inside the margin, i.e. ∑ 𝜉௠ ൌ
 0. This is only possible for strictly linear separable 
classes. As most real-world problems do not satisfy 
this condition, e.g. because of noise, small violations 
are allowed to increase the overall performance of the 
SVM algorithm. 

The optimisation problem often is solved using 
the method of Lagrange multipliers on the dual 
optimisation problem. 

As mentioned, the SVM can only be applied on 
linear separable classes, with small deviations from 
this norm being allowed. This limitation can be 
bypassed by a transformation of the input space into 
higher dimensionality, hence making it to a linear 
classification problem in the transformed feature 
space. This transformation leads to dot products in 
high dimensional space required for the parameter 
calculation, highly increasing the computational 
costs. To avoid these extra computational costs, the 
feature space transformation is not performed 
explicitly. Using the kernel trick, the computational 
costly dot products in high dimensions are replaced 
with a kernel function, that produces the same result 
but being more efficient to compute. (Schölkopf & 
Smola, 2018) 

3 SIMULATION 

In this section, the scenario depicted in the simulation 
is described. Afterwards, the used simulation 
framework is presented. Finally, the procedure of data 
generation is outlined. 

3.1 Simulation Scenario 

In this contribution, a scenario on a straight road with 
two lanes is considered. In total, three different 
vehicles are part of the situation: On one lane, there is 
the ego vehicle that is approaching a slower car, 
called front vehicle. On the neighbouring lane drives 
a faster car, called back vehicle. The scenario is 
illustrated in Figure 3.  
 

 
 
 
 
 
 
 

 

Figure 3: Simulated traffic scenario. 

The ego vehicle is equipped with an adaptive 
cruise control (ACC). Monitoring the distance to the 
ahead driving front vehicle, by default the ACC 
secures a safe distance by applying the brake if 
getting to close. In this work, a lane change shall be 
performed instead. Therefore, the viability of a lane 
change manoeuvre has to be checked, which is 
constrained by the approaching back vehicle.  

Using suitable sensors, the ego vehicle’s ACC has 
knowledge of the velocity of each vehicle, 𝑣ா௚௢, 𝑣஻௏ 
and 𝑣ி௏ , as well as of the distances 𝑑஻௏  and 𝑑ி௏  to 
the other cars. 

3.2 Simulation Framework 

The simulation framework used in this contribution 
consists of a co-simulation between 
MATLAB/Simulink and the microscopic traffic 
simulation software Eclipse SUMO (Alvarez Lopez 
et al., 2018). 

Internally, SUMO uses a point mass model to 
simulate the vehicles behaviour. In this framework, 
the front and back vehicle are modelled with this 
simple vehicle model. Both vehicles are only driving 
in longitudinal direction, hence the point mass model 
is suitable for the simulation. While the front vehicle 
is driving at constant speed, the back vehicle may 

Ego vehicle Back vehicle Front vehicle 

𝑑஻௏ 

𝑣஻௏ 

𝑣ா௚௢ 
𝑣ி௏

𝑑ி௏ 
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brake to avoid a crash with the lane changing ego 
vehicle. This braking reaction is modelled by 
SUMO’s default driver model after (Krauß, 1998). 

The ego vehicle is the subject of the vehicle model 
investigation, as such it is modelled by the four 
already introduced vehicle models, namely the point 
mass model, the linear and the two nonlinear single-
track models. The computation of the point mass 
model is also performed in SUMO. As the ego vehicle 
has to carry out a lane change manoeuvre, the lateral 
dynamics have to be considered as well. By default, 
SUMO does not model lateral movement, instead the 
cars jump from lane to lane in simulation. Activating 
the Sublane Model, the lateral movement is modelled 
by the point mass model as well. (Semrau & 
Erdmann, 2016)  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4: Structure of simulation framework with point 
mass model and single-track models (STMs). 

The other three advanced vehicle models are 
implemented in MATLAB/Simulink. These models 
require the input of the steering angle, the nonlinear 
single-track models need the throttle and brake pedal 
positions as well. The latter inputs are computed 
using a PID controller, that controls the ego vehicle’s 
velocity to be constant. For the two simpler vehicle 
models, this assumption of constant velocity is 
required. 

The steering angle is computed using a lateral 
guidance model after (Fiala, 2006). This model 
assumes that the driver aligns the vehicle’s driving 
direction to a targeted viewpoint, in case of a lane 
change this viewpoint lays on the adjacent lane. Using 
a PD controller computing the steering angle, the 
vehicle’s direction is adjusted. 

The ACC as well is modelled in Simulink, 
monitoring the distance to the front vehicle and 
giving the signal that a reaction, either a lane change 
or a braking manoeuvre, is necessary. 

The communication between both simulations is 
built using TraCI, an interface integrated in SUMO. 
Using TraCI4Matlab by (Wegener et al., 2008), the 
interface can be accessed from MATLAB and, with 
some adaptions, also from Simulink. The co-
simulation is managed by Simulink, controlling the 
simulation steps inside SUMO and recording the 
necessary data for later analysis. In Figure 4, the 
framework is depicted. 

3.3 Data Generation 

The simulation parameters 𝒙 being changed are the 
velocities of the vehicles as well as the distance of the 
back vehicle when the ACC signal is invoked: 

𝒙 ൌ ൣ𝑣ா௚௢, 𝑣ி௏, 𝑣஻௏, 𝑑஻௏൧
்
 (8)

When performing a lane change, the viability of 
the manoeuvre is evaluated regarding dangerous 
interferences with the other traffic participants. 
Therefore, minimum distances between the cars have 
to be maintained. 

Further aspects being considered are the 
deceleration of the back vehicle and the lateral 
acceleration and jerk the ego vehicle is exposed to 
during the lane change.  

The limit for the deceleration of the back vehicle 
is set to a maximum of 3 m/s² according to the 
recommendation by the Institute of Transportation 
Engineers (ITE Technical Committee, 1989). The 
limitations to the lateral dynamics conform to the 
requirements specified for partially automated lane 
change systems in ISO 21202 (ISO, 2020). 

4 MODEL BOUNDARIES 
DETERMINATION 

This section presents the proposed method to choose 
the simulation model with the lowest required model 
by estimating their application boundaries. Therefore, 
the method is described using two different machine 
learning algorithms, namely SVMs and ANNs. 
Afterwards, the results are evaluated and compared. 
Finally, a more precise adaption to the method is 
presented. 
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Table 1: Parameters varied in simulation. 

Parameter 
Minimum 

value 
Maximum 

value 
Step size 

𝑣ா௚௢ 30 km/h 70 km/h 5 km/h 

𝑣ி௏ 25 km/h 65 km/h 10 km/h 

𝑣஻௏ 40 km/h 140 km/h 10 km/h 

𝑑஻௏ 50 m 200 m 25 m 

To demonstrate the method, a data set consisting 
of 1,505 simulation parameter combinations is 
generated. The different parameters chosen for those 
runs are given in Table 1. Thereby, only reasonable 
combinations are considered and disregarding, for 
example, combinations where the front vehicle is 
faster than the ego vehicle and thus no overtaking 
takes place. 

Each simulation run is computed with all four 
vehicle models being applied once. The lane change 
is performed in each simulation run and the feasibility 
of the manoeuvre is evaluated afterwards. In total, per 
vehicle model 𝑀 ൌ 1,505  labelled data points 
ሺ𝒙௠, 𝑦௟௖

௠ሻ are available, where the label describes the 
feasibility ( 𝑦௟௖

௠ ൌ 1ሻ  respectively the infeasibility 
ሺ𝑦௟௖

௠ ൌ 0ሻ of the lane change. 

4.1 Data Preparation 

Required is the definition of ground truth data, i.e. the 
results the simulation models should produce. In 
general, the best option is to choose real-world data. 
As such data often is not available, like in this 
contribution, the simulation model with the highest 
fidelity and thus the closest real-world modelling 
capability should be chosen to represent the ground 
truth. Hence, in the following, the ground truth data 
will be referencing the data produced with the 
nonlinear single-track model with linear roll and pitch 
modelling. 

The next step is to evaluate the simulation models’ 
feasibility on given data points, i.e. the 1,505 
simulation runs. By comparison of the simulation 
results against the ground truth data, the models will be 
determined to have sufficient fidelity if the simulation 

result match the ground truth, else to be not suitable for 
application. This comparison is performed for each 
data point contained in the data set. 

This way, a set of discrete points ൫𝒙௠, 𝑦௠௙
௠ ൯,

𝑚 ൌ  1 … 1,505,  is generated for each vehicle 
model. These points consist of the simulation 
parameters 𝒙௠ , at which the computed results are 
compared against the ground truth, and the label 𝑦௠௙

௠  
defining the suitability of the model for this 
simulation run.  

Based on these discrete points, machine learning 
algorithms are trained to estimate the simulation 
models’ application boundaries, thus interpolating 
between the given data. As a consequence, the given 
data distribution should cover the simulation 
parameter space sufficiently.  

4.2 Classifier Training 

In the following, ANNs and SVMs are trained using 
the data points ൫𝒙௠, 𝑦௠௙

௠ ൯ . As the SVM is only a 
binary classifier, thus can only distinguish between 
two classes, the ANNs are as well implemented as 
binary classifiers for better comparison. Therefore, 
for each vehicle model there will be a separate SVM 
or ANN estimating if the model’s fidelity is sufficient 
for a given data point. By cascading the binary 
classifiers based on increasing simulation model 
fidelity, the lowest fidelity model which is applicable 
can be determined. 

With both presented machine learning algorithms, 
the data pre-processing is the same: The inputs 𝒙௠ 
are standardized to zero mean and unit variance. 
Furthermore, the data set is split into two parts. 30 % 
of the data is used as test data to verify the algorithms 
after training. The remaining data is used for a grid 
search hyperparameter optimisation in the training 
process, performing a stratified 5-fold cross-
validation.  

The evaluation of the trained algorithms is 
performed using two metrics. Besides the standard 
accuracy metric, the precision metric is used as well. 
 

Table 2: SVMs hyperparameter variations. 

Kernel Regularisation 𝐶 
Kernel parameters (Not feasible)-class  

weighting 𝑟 𝛾 d 
Linear 2ିହ, 2ିଷ, … , 2ଵହ - - - 1, 5, 10, 30, 50 

Polynomial 2ିହ, 2ିଷ, … , 2ଵଵ 0, േ1, േ10 2ିଵହ, 2ିଵଷ, … , 2ିଵ 2, 5 1, 5, 10, 30, 50 
RBF 2ିହ, 2ିଷ, … , 2ଵହ - 2ିଵହ, 2ିଵଷ, … , 2ହ - 1, 5, 10, 30, 50 

Sigmoid 2ିହ, 2ିଷ, … , 2଻ 0, േ1, േ10 2ିଵହ, 2ିଵଷ, … , 2ଵ - 1, 5, 10, 30, 50 
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The precision is defined as follows, with 𝑡𝑝 
standing for true positives and fp for false positives: 

Precision ൌ
𝑡𝑝

𝑡𝑝 ൅ 𝑓𝑝
 (9)

Hence, the precision is a measure for the correctness 
of positive classifications. In this work, positive 
classification means that the model is viable for the 
given simulation parameters. Since it is desired to not 
use a simulation model when its fidelity is not high 
enough to produce the right results, no false positive 
classifications should be made. Thus, the precision 
should be 100 %. This is the constraint for all trained 
classifiers to be satisfied, the accuracy metric is then 
used to rank the classifiers with full precision. 

4.2.1 Support Vector Machine 

In the training of the SVMs, the hyperparameter 
optimisation is done with respect to the kernel 
functions and their respective parameters, the 
regularisation and the class weighting. In terms of 
kernel functions, linear, 2nd and 5th degree 
polynomial, gaussian (radial basis function, RBF) and 
sigmoid kernels are investigated. In total, 5,670 
combinations were evaluated per vehicle model, the 
hyperparameters evaluated are given in Table 2. 

The class weighting is chosen as additional 
hyperparameter, because depending on the used 
vehicle model only a small part of the data set is 
assigned the class “not feasible”. To counteract the 
uneven class distribution, the weight of those samples 
has to be increased. 

The best found hyperparameters for the vehicle 
models are shown in Table 3. 

Table 3: Best found SVM hyperparameter combinations. 

Vehicle 
model 

SVM parameters 
Test 

accuracy

Point mass 
RBF kernel, 𝐶 ൌ 8, 𝛾 ൌ 2ିଷ, 

5-times weighting 
0.8894 

Linear 
single-track 

Polynomial kernel, d= 2, 𝐶 ൌ
 512, 𝛾 ൌ 2ି଻, 𝑟 ൌ  1 50-times 

weighting 
0.6018 

The nonlinear single-track model without roll and 
pitch model is not included in the table. This is 
because of the similarity to the ground truth, that is in 
fact only the extension by the roll and pitch 
behaviour. Since the dynamics in the manoeuvre are 
not remarkably high, the impact of this extension is 
almost negligible – only for one data point in the 
whole data set the simulation outcome differed. With 
only one data point in the data set being assigned the 
“not feasible” class, training a data driven model is 

pointless. Hence, the standard nonlinear single-track 
model will be excluded in the further evaluations of 
the machine learning algorithms. In application 
phase, the single data point this model is not suitable 
will be computed by the ground truth model. 

The two given SVM hyperparameter 
combinations for the point mass model and the linear 
single-track model satisfy the 100 % precision 
constraint in training and validation, and achieve the 
overall highest validation accuracy in training phase. 
Evaluating the fully trained SVMs on the so far 
unseen test data yields a precision of 100 % as well 
and the accuracy given in the table. Remarkable is the 
much lower accuracy achieved for the linear single-
track model, which is presumably the cost for the 
precision constraint, leading to a high required class 
weighting and the tendency to underestimate the 
viability of the vehicle model. 

4.2.2 Artificial Neural Network 

For the trained ANNs, the investigated 
hyperparameters are given in Table 4 with a total of 
2,304 combinations evaluated.  

Table 4: Hyperparameters used in ANN training. 

Hyperparameter Values 

Hidden neurons 
ሾ50ሿ, ሾ100ሿ, ሾ50,50ሿ, ሾ100,100ሿ, 

ሾ50,20ሿ, ሾ100,20ሿ 
Activation function Sigmoid, Tanh, ELU

Dropout rate 0, 0.2 
L2-regularisation 0, 0.01 

Learning rate 10ିସ, 10ିଷ, 10ିଶ, 10ିଵ

Learning rate decay 0, 0.3 
(Not feasible)-class 

weights
1, 5, 10, 50 

Investigated are ANNs with one and two hidden 
layers and varying neuron count per layer. For the 
hidden layers, different activation functions are 
evaluated. Furthermore, the influence of the learning 
rate is considered by investigation of different start 
learning rates and an optional learning rate decay of 
30 % every 25 training epochs. Additionally, the 
usage of regularisations methods, namely dropout and 
L2-regularisation, is covered in the hyperparameter 
optimisation.  

The output layer of the ANNs consist of one 
neuron with the Sigmoid activation function, thus the 
ANNs are producing one single output ranging from 
0 to 1 that can be interpreted as the “feasible” class 
membership probability for the vehicle model. The 
output layer is not subject to the hyperparameter 
optimisation. 
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During this optimisation, the ANNs are trained 
for a total of 100 training epochs. Based on precision 
and accuracy in the cross-validation, the best found 
models are given in Table 5.  

Table 5: Best found ANN hyperparameter combinations. 

Vehicle 
model 

Hyperparameters 

Point mass  

Hidden neurons: ሾ100,20ሿ 
Activation function: ELU 

No dropout 
L2-regularisation: 0.01 

Learning rate: 0.01 and 30% decay rate
Class weight: 10 

Linear 
single-track 

Hidden neurons: ሾ50,50ሿ 
Activation function: ELU 

No dropout 
L2-regularisation: 0.01 

Learning rate: 0.001 without decay rate
Class weight: 50 

In Table 6, the performance of the two trained 
ANNs on the test data is given. Important to mention 
is, that none of the investigated ANNs satisfy the full 
precision constraint during the hyperparameter 
optimisation regarding the linear single-track model. 
Even using a 100-times weighting for the “not 
feasible” class resulted in only one parameter 
combination fulfilling the constraint while only 
achieving an accuracy of 0.08. With this restriction in 
mind, a hyperparameter combination was chosen that 
produced one false positive classification in the 
training phase. 

Table 6: Test evaluation of trained ANNs. 

Vehicle model Test precision Test accuracy 

Point mass 1.0 0.8341 

Linear single-
track 

0.9972 0.8230 

4.3 Classifier Validation 

For validation purposes, a larger data set is generated 
in simulation. Therefore, the vehicle model for each 
simulation run is chosen by the trained ANNs 
respectively SVMs. In total, the new data set consists 
of 5,447 data points all located in the parameter 
boundaries given in Table 1 but distributed with a 
finer grid. For comparison against the ground truth, 
the chosen simulation runs are performed with the 
nonlinear single-track model with roll and pitch 
model as well. 

In the following, the accuracy of the data sets 
generated with the model assignment by the machine 
learning algorithms as well as the computing time 
required for the simulation is discussed. In Figure 5, 
the computations times are visualized, in Figure 6 the 
number of wrongly assigned vehicle models. Therein, 
the SVMs performance is labelled with “default 
SVMs”. 

4.3.1 Support Vector Machine 

Using the trained SVMs to assign the vehicle model 
for the simulation runs, 8 of the 5,447 simulation 
results differ from the ground truth data. Hence, in 
0.147 % of the simulations a vehicle model is chosen 
whose model fidelity is not sufficient to compute the 
manoeuvre.  

Mentioned should be that one of the faulty vehicle 
model assignments is not made by an SVM. Both 
SVMs, the one for the point mass model as well as the 
one for the linear single-track model, classified their 
models to be not feasible for the given simulation 
parametrisation. But as already stated, the difference 
in the smaller first generated data set between the 
nonlinear single-track models is vanishing and thus, 
no algorithm could be trained for this vehicle model. 
Rather, the only known simulation parameters the 
default nonlinear single-track model is not feasible 
are assigned to the ground truth model manually. In 
the new larger data set, another simulation 
parametrisation the ground truth model should be 
used is contained resulting into one wrong 
assignment. 

Regarding the computation times needed for the 
simulation runs, with the help of the SVMs a 
reduction of about 72 % is achieved. 

4.3.2 Artificial Neural Network 

Considering the trained ANNs for the vehicle model 
assignment, a total of 29 simulation runs result in a 
differing simulation outcome compared to the ground 
truth. This corresponds to a wrong model assignment 
in 0.532 % of simulation runs. Again, one of the 
wrong model assignments is made because of the 
vanishing difference between both nonlinear single-
track models. 

While achieving a reduced accuracy compared to 
the SVMs, the computation time reduction is 
enhanced, reducing the required time by 79 %. 
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Figure 5: Computation times for data set generation. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 6: Wrong model assignments in data set generation. 

4.4 Shifted Classifier 

As shown in the validation of the classifiers, for some 
simulation runs the wrong vehicle model is chosen. 
Thus, the wrong classifications are analysed 
regarding the computed probabilities of class 
membership. 

In case of the ANNs, the output f୅୒୒ሺ𝒙ሻ ranges 
from 0 to 1 and the decision boundary between both 
classes is located in the middle, hence at f୅୒୒ሺ𝒙ሻ ൌ
0.5 . Investigating the wrong classifications, the 
output was in average 0.4 away from the decision 
boundary. Considering that the maximum distance is 
0.5, those wrong classifications are made with a very 
high probability. 

For SVMs, the decision boundary is located at 
fୗ୚୑ሺ𝒙ሻ ൌ  0  and the margin spans the area of 
|fୗ୚୑ሺ𝒙ሻ| ൏ 1 in which preferably no classification is 
placed. As stated in section 2.3, small violations of 

the margin are allowed in the training controlled via 
the regularisation parameter. 

Taking a look at the SVMs’ outputs on the wrong 
classified simulation runs, the average distance from 
decision boundary is at 0.276 while no distance is 
larger than 0.512 and thus every data point is located 
in the middle of the margin. The approach of 
maximizing the margin between the classes and 
having it unpopulated by data points in training 
improves the robustness of SVMs on new data points 
which may lay outside the training data clusters. 

By shifting the decision boundary from the middle 
of the margin to its boundary, the precision of the 
SVM can be improved. This way, for every data point 
located inside the margin the simulation model is 
classified to be not feasible. Hence, for every data 
point the classifiers prediction is given with an 
uncertainty, the simulation model is not chosen in 
favour of the precision. In Figure 7, the decision 
boundary shift is visualized  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 7: Shifted decision boundary. 

To validate this proposed approach, a third full 
data set is generated in the simulation using the SVMs 
already trained but shifting their decision boundaries 
accordingly. The results from comparison against the 
ground truth data are also shown in Figure 5 and 
Figure 6. 

Using the shifted SVMs indeed improved the 
precision of the classifier. Now in only 1 out of the 
5,447 simulation runs a wrong vehicle model is 
assigned, which again is the data point not classified 
because of the vanishing difference between the 
nonlinear single-track models. In fact, the two shifted 
SVMs achieved a precision of 100 %. 

The drawback of shifting the decision boundary is 
the usage of more models with higher fidelity, thus 
decreasing the achievable computation time 
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reduction. With a reduction of about 64 %, the 
required time still is highly reduced. 

5 APPLICATION EXAMPLE 

In this final section, the generated data sets are used 
to train a lane change decision system (LCDS). 
Therefore, the data set generated by the shifted SVMs 
and the ground truth data set are considered. The 
LCDS is implemented by an SVM for each data set, 
comparing the suitability of those. The goal of the 
LCDS is to classify the viability of a lane change at a 
given situation. 

The training of the SVM is made in accordance to 
Section 4.2.1, i.e. the investigated hyperparameters, 
given in Table 2, are evaluated with the help of a grid 
search combined with a stratified 5-fold cross-
validation. The data preparation and splitting are done 
accordingly too. 

Since the application is a safety relevant feature, a 
lane change should not be started in unfeasible 
situations. To ensure this, again the precision of the 
trained classifiers is constrained to be 100 %. 

Table 7: Hyperparameters and performance of trained 
LCDS. 

Data 
set 

SVM parameters 
Train 

accuracy
Test 

accuracy
Ground 
Truth 

RBF kernel, 𝐶 ൌ 0.5 , 𝛾 ൌ 1 
10-times weighting 

0.9465 0.9558 

Shifted 
SVMs 

RBF kernel, 𝐶 ൌ 0.5 , 𝛾 ൌ 1 
10-times weighting 

0.9471 0.9558 

In Table 7, the in the cross-validation best 
performing hyperparameter combinations are given. 
The precision of both trained LCDS satisfies the full 
precision constraint on both training and test data and 
therefore the system is making no false positive 
classifications which could result in endangering 
overtaking manoeuvres. While the hyperparameters 
as well as the test accuracy do not show any 
differences, the training accuracy has little deviations. 
Since the high similarity between both data sets is 
already known, the results are not surprising. 

In general, most data driven algorithms perform 
well even with some noise in the training data so that 
small errors in data set generation may not affect the 
application. Important to mention here is that the test 
data should not contain errors, thus should be taken 
from the ground truth. Else, the validation of the 
trained algorithms loses its significance. 

6 CONCLUSION 

In this contribution, a method for assigning 
simulation models with different model fidelity based 
on their estimated validity is proposed. Therefore, the 
models’ applicability boundaries are represented by 
machine learning algorithms. The algorithms 
investigated are support vector machines and 
artificial neural networks. 

For the algorithms to learn the models’ 
applicability, with each considered simulation model 
a small data set is generated. Comparing the 
simulation results against ground truth data, the 
validity of the models can be determined at discrete 
simulation parametrisations. Given this data, 
classifiers can be fit to estimate the simulation 
models’ feasibility. 

Using these classifiers, larger data sets can be 
generated only using a valid simulation model with 
the lowest computational effort.  

It is shown, that the proposed method can be used 
to highly reduce the required computation time for 
simulation data generation. Using ANNs or SVMs, a 
computation time reduction of 79 % resp. 72 % is 
achieved while generating a wrong simulation result 
in only 0.53 % resp. 0.15 % of generated data. 

Furthermore, it is proposed to shift the SVM’s 
decision boundary to improve the accuracy of the 
generated data set. This way, no loss in data set 
accuracy was produced with the drawback of a lower 
computation time reduction of 64 %.  

Finally, a lane change decision system is 
implemented using the generated data set. It is shown, 
that the developed system achieves the same accuracy 
as if it was trained on the highest fidelity model only. 

Overall it can be stated, that the proposed method 
can greatly reduce the required computation times 
when generating large data sets by simulation. 
Regarding the used machine learning algorithms, the 
investigated SVMs overperform the ANNs in terms 
of accuracy. In cases where the data set accuracy is 
crucial, it is recommended to use the proposed shifted 
SVMs for the classification. 

A drawback of the method is the required 
preparation of an initial data set for each investigated 
simulation model. This data set should cover the 
simulation parameter space in a sufficient manner to 
provide enough information for the model 
applicability estimation. Needing only small data 
sets, the time required to generate the initial data sets 
may exceed the later time savings. 

It is also shown, that for models with high 
similarity to the ground truth the method is not 
applicable. In such case, only a vanishing part of the 
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data set contains information about the simulation 
model’s applicability and the training of the machine 
learning algorithms will fail. 

Further research will investigate the possibility to 
perform the initial estimator learning in an iterative 
approach starting only with a small amount of initial 
data points, thus being able to reduce the preparation 
effort. 
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