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Abstract: In this paper, we consider the domain of smart farming aiming at agronomic processes optimization, and, 
more particularly, the issue of predicting the growth stages transitions of a plant. As existing automated 
predictions are not accurate nor reliable enough to be used in the farming process, we propose here an 
approach based on Choquet integral, enabling the passage from multiple imperfect predictions to a more 
accurate and reliable one, considering the relevance of each source in the prediction as well as the interactions, 
synergies, or redundancies between factors. Identifying the parameter values defining a Choquet-based 
decision model being not straightforward, we propose an approach based on an observation history. Our 
proposal defines an evaluation function assigning to any potential solution a predictive capability, quantifying 
a degree of order present in its output, and an associated optimisation process based on truth degrees regarding 
a set of inequalities. A case study concerns smart farming, the prototype we implemented enabling, for a given 
culture and several input sources, to help farmers to predict the next growth stage. The experimental results 
are very encouraging, the predicted day remaining stable despite presence of noise on evidence values. 

1 INTRODUCTION 

Decision-based applications and environments all 
require an intelligent combining of data coming from 
multiple sources, including sensors, humans, and 
algorithms. Combining data with relevant 
aggregation operators and identifying parameters 
corresponding to the best decision model is a 
challenging issue, due, among those, to the amount of 
available data to be considered. Several aggregation 
operators have been adapted to be used in a variety of 
information fusion problems, the choice of an 
aggregation operator depending essentially on the 
nature of available information as well as the types of 
values to be used: quantitative, qualitative, binary, …. 

We consider here the agricultural domain, a 
strategic area where, today, a major issue consists in 
increasing field productivity while respecting the 
natural environment and farms sustainability, 
requiring the development of advanced decision 

 
a  https://orcid.org/0000-0002-5819-355X 
b  https://orcid.org/0000-0001-7007-8725 
c  https://orcid.org/0000-0002-1224-1002 

support tools. In this context, a key issue in 
maximizing crop efficiency remains this of making 
reliable predictions regarding growth stage transition 
of plants, especially dates of transitions from the 
current stage to the next one. Such a prediction should 
be based on various available sources of information, 
that deliver in practice more or less accurate and 
reliable information. It will enable the farmer to 
prepare and perform relevant actions at the best 
instant with a maximized efficiency. 

In this context, multi-factor decision requires use 
of aggregation functions, such as fuzzy integrals, 
more precisely the well-known integral of Choquet. 
This latter is defined from a fuzzy measure and allows 
to consider the possible interactions between factors 
(Sugeno, 1974). Choquet integral will be used here as 
an operator of aggregation, in charge of fusing 
multiple imperfect predictions into a more certain and 
accurate one, exploiting source diversity to get a more 
significant and reliable information for guiding 
decisions. 
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In this paper, we focus on the Choquet integral, 
proposing a parametric function for data aggregation. 
We put our interest on an application of smart 
farming, proposing a way to identify the parameters 
of a growth stage prediction model. We point out that 
in a previous work (Dantan, 2020), we proposed a 
fuzzy decision support environment for smart 
farming ensuring better data structuration extracted 
from farms, and automated calculations, reducing the 
risk of missing operations. 

Our aim here is to identify the parameters of a 
Choquet-based prediction using a training dataset 
including past data delivered by sources jointed to 
observed evidence, proposing parameter values based 
on observed preferences. Our proposal defines 1) an 
evaluation function enabling to quantify the 
prediction capability of any potential solution, based 
on truth degrees of inequalities issued from evidence, 
2) on algorithm adapted from the classical gradient 
descent providing a robust solution. The originality of 
our proposal relies on one hand to identify the 
parameters only using inequalities, without values of 
the function to be learnt, and, on the other hand, to 
robustness of the obtained solution due to its least 
specificity related to training data. 

Our operator, based on Choquet integral, should 
apply ponderations to each information source, 
considering possible interactions, synergy 
complementarity, or, conversely, partial redundancy, 
between them. It will transform the input fuzzy sets 
delivered to sources into a new fuzzy set aggregating 
the input sources and delivering a global value of 
confidence based on several source-dependent inputs. 
The solution to our problem will be the optimum of 
our evaluation function, the obtained evaluation value 
quantifying both the ability of the solution to make 
right predictions and the robustness of this solution. 

The remainder of this paper is organized as 
follows. Section 2 presents the preliminaries and the 
related works. Then, in sections 3, 4 and 5, we 
formalize the problem and detail our proposal and its 
main components including the proposed algorithm. 
Section 6 is dedicated to a presentation of the 
numerical results and the interpretation of the 
obtained results. Finally, we conclude and present our 
future work in section 7. 

2 STATE OF THE ART AND 
MOTIVATIONS 

In this section, we first present preliminaries, and then 
an overview of the related research concerning 

Choquet integral and decision models along with our 
motivations and objectives. 

2.1 The Smart Farming Application 

The overall functional  architecture of our prediction 
process is presented on the figure 1. We have three 
levels: 
 Sensor and data acquisition level, that includes 

terrain sensors, aircraft and sattelite images 
acquisition, and external data collection 
through Web Service invokations; 

 The level of prediction sources, including the 
various algorithms in charge of performing 
exprimental or more complex predictions; 

 The global aggregation level. 

 
Figure 1: Functional schema of growth stage predictions. 

2.2 The Choquet Integral 

Choquet integral has been adopted taking into 
account the minimal set of hypothesis required on the 
nature of data, as well as its ability to properly model 
multiple interactions between sources, including 
partial redundancy and possible substituability of 
them. In addition, we must mention the simplicity of 
calculation to be perfomed at real time, and the 
human understandability of the various model 
parameters. 

The notion of fuzzy integral, based on the concept 
of fuzzy measure (Sugeno, 1974), also called 
capacity, enables to assign a relative importance, not 
only to each individual decision criterion, but also to 
any subset of criteria. In the context of multi-criteria 
analysis, the weight or importance of the set of 
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criteria association influences the entire combination 
of criteria, which could be also defined. 

Considering a capacity μ on the set N = {1, …, 
n}, i.e. a function from 2N into IR+ such as  μ(Ø) = 0, 
μ(N) = 1, and monotonic (i.e.  S, T ⊆ N then μ(S) ≤ 
μ(T)), the discrete Choquet integral related to the 
capacity μ is defined as the function that associates to 
any n-uple x = (x1, …, xn) ∈ IRn. 

Cμ (x1, …, xn) := i-1
i=n (μ(Aσ(i)) - μ(Aσ(i+1))).xσ(i)   (1) 

Where σ is a permutation on N such as xσ(i)  ≤ …. 
≤ xσ(n), and where: 

Aσ(i) := {σ(i), …, σ(n)} ∀ i ϵ N, Aσ(n+1) = Ø    (2) 

To simplify notations, we shall write, for any 
subset {i1, …, ip} of N:  

               μ({i1, …, ip}) = μi1, …, ip                            (3) 

A particular case of Choquet integral is the simple 
weighted sum i ai.xi (i ai = 1), the values μ(S), S 
⊆ N, generalizing here a classical weight vector. 
Limit cases of Choquet integral are the Min and Max 
operators.  

The Choquet integral enables the representation of 
non-additive criteria, i.e., with interactions between 
pairs or groups of criteria. Its interest consists mainly 
in identifying, during a decision-making process, 
given a set of values that meet this situation, the better 
quality alternative. 

2.3 Related Works 

The Choquet integral is based on two fundamental 
concepts: utility and capacity.  

A utility function aims to model the preferences 
of the decision maker regarding various possible 
input values xi. Utility functions can be seen as 
making it possible to translate the values of the 
attributes xi into a satisfaction degree (Kojadinovic, 
2009). Utility values are commensurable, monotonic, 
and ascending because, if an alternative a is preferred 
to b, then u (a) ≥ u (b) (Labreuche, 2009). 

A capacity models the fuzzy measure on which 
the integral is based and summarizes the importance 
of the criteria by aggregating utility functions, 
generalizing traditionally used weight vector. The 
learning ability of the Choquet integral has been 
demonstrated, mainly in (Grabisch, 2008). Functions 
dealing with data mining issues such as least square 
and linear programming have been used in this 
context. Preference learning consists in observing and 
learning the preferences of an individual, precisely in 

particular when ordering a set of alternatives, to 
predict automatic scheduling of a new set of 
alternatives (Fürnkranz, 2012).  

The Choquet integral learning function is based 
on a set of concepts that make it possible to leverage 
the consideration of user preferences (or decisions) 
and the interaction and/or synergy between the 
various criteria for data aggregation. Given a 
preferential ordering on a sample learning, the 
discrete Choquet integral is able to quantify, then 
learn, the relative weights of the different quality 
metrics. 

In the literature, fuzzy integrals have been used 
for different purposes, for preferences or opinions 
fusion from a variety of sources, and several 
applications and extensions of fuzzy integrals have 
been developed. In (Vitor de Campos Souza, 2018), 
the authors have proven that the use of fuzzy neural 
network is more effective than the decision tree 
algorithms often used in the literature. The fuzzy 
neural network model allows precision improvement 
and less redundancy in decision-making.  

In our previous work, we have proven that 
applying Choquet integral to order data sources 
according to the user's preferences, is an interesting 
and challenging area of research and can lead to more 
relevant results (Dantan, 2020). One originality of the 
work described in this paper consists in the proposal 
of an evaluation function attaching to any potential 
solution a degree of acceptability, based on truth 
degrees of inequality.   

3 PROBLEM STATEMENT 

Considering a crop with n prediction sources, 
information delivered by a source will consists in a 
sequence of confidence levels xi(d) ∈ [0,1] associated 
to future days 1, …, D, given a temporal horizon of D 
days. xi(d) value reflects the belief of the ith source 
regarding the occurrence of transition at d day, from 
the present phenological stage to the next one. We 
have so as many functions d ∈ {1, …, D}  → xi(d) ∈ 
[0, 1] as prediction sources i=1, …, n, and xi(d) can 
be seen as the membership function of a fuzzy subset 
of {1, …, D}, 0 meaning a null confidence, and 1 the 
maximum value, as presented on figure 2. 

No hypothesis can be made here on confidence 
levels semantics. In particular, these levels are not 
probabilities, only inequalities between two values 
issued from the same source being significant. Note 
the case with several days having all a 1 value is 
possible, reflecting inaccuracy of the prediction. 
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Figure 2: Fuzzy prediction on a temporal horizon of D days. 

We use the Choquet integral as an operator of 
aggregation, in charge of fusing the later n fuzzy 
predictions into a more certain and accurate one. It is 
expected from source diversity more significant and 
reliable information for guiding decision. This 
operator will have to apply proper ponderations to 
each information source, considering possible 
interactions, synergies complementarities, or, at 
contrary, partial redundancies, between them. It will 
transform n fuzzy subsets into a result fuzzy subset, 
aggregating the n input sources. Our goal is to enable 
an automated estimation of Choquet integral 
coefficients based on a recorded history, i.e., on a 
dataset of past source predictions, in addition to the 
corresponding observed evidence.  

X = (x1, …, xn) denoting a confidence vector, n 
being the number of sources, the training dataset 
consists in P sessions regarding the same plant, a 
session being related to a field at a given period. For 
each session, we have a sequence of Xd, prediction 
vectors for days d=1, …,D,  in addition to dTr, the real 
day of transition, a posteriori observed for this 
session. 

Available information may be expressed thanks to 
a set of R = (D-1).P inequalities : 

                        Cμ (Xk) < Cμ (Xevidence(k))                   (4) 

with k, evidence(k) ∈ [1, D.P], evidence(k) (≠ k) 
being the dTr transition day for the session containing 
the day k. 

Our problem is to learn a μ capacity, i.e. the values 
of the 2n – 1 parameters μi, μi,j, μi,j,k, … satisfying the 
above inequalities. Despite some of these may be 
trivially satisfied by any Choquet integral, i.e., for any 
μ, we keep them as input data of our problem, 
intensities of differences being considered here as 
significant pieces of information. It is the same for 
inequalities implicitly satisfied by transitivity, e.g. 
Cμ(X) < Cμ(Z), if X < Y and Cμ(Y) < Cμ(Z). 

Based on Choquet integral definition, available 
information may be expressed under the form of R 
inequalities, applying on linear expressions: 

ak
1.μ1+…+ akn.μn +  ak

1,1.μ1,2 + …+ ak
n-1,n.μn-1,n   +  

….. + ak
1, …,n.μ1, …,n   > 0 , k=1, …,R       

 
(5)

That is, using a matrix notation:   

                    [A]k.[μ]  > 0, k=1, …, R                    (6) 

 
where [A]k is the (2n-1) row vector [ak

1, ..., ak
n, 

ak
1,1, …, ak

n-1,n, ….. , ak
1, …,n] and [μ] the (2n-1) 

column vector [μ1, ..., μn, μ1,1, …., μn-1,n, … , μ1, …,n] 
That we may denote:  

                               [A].[μ] > 0                             (7) 

[A] being the rectangular matrix build with rows 
[A]k., and coefficients μi, μi, j, μi, j, k, etc., satisfying 
the minimal set of constraints: 

 
μi ≤ μi,j,∀i, j, i≠j, 

μi,j ≤ μi,j,k, ∀i, j, k, i≠j, j≠k, k≠i, …. 
                With μi ≥ 0 ∀i, and μ1, …,n ≤ 1                 (8) 

 
that may be more concisely expressed by:    
   

μ(S)  ≤ μ(S’) ; |S’| = |S| + 1, S  ⊂ S’ 
           with μ(Ø)  = 0  and μ1, …,n = μ(2N) ≤ 1          (9) 

 
We have here no values regarding a function to be 

learnt, but only a set of statements regarding 
inequalities. So, a direct identification method is not 
applicable. For building the solution, we are 
expecting here 1) a scalable algorithm, i.e., an 
algorithm that will be efficient for a huge training 
dataset with a time of execution linearly increasing 
with respect to the number of sessions P. In addition, 
2) we consider data as potentially inaccurate, the 
solution having to be robust in case of conflicting 
examples, i.e., the expected solution should be able to 
tolerate some local “nearly satisfied” inequalities. At 
last, 3) we are expecting a solution easily improvable 
by increments when new data are acquired. 

4 THE PROPOSED APPROACH 

Except in singular cases, joint inequalities (5) and (8) 
have either zero or an infinity of solutions. In practice, 
as numerous xi, provided by sources are not perfect 
values, local violations of inequalities (5) should be 
accepted. So, we do not consider only exacted 
solutions, but all potential solutions with a μ vector 
satisfying the only strict inequalities (8). On this 
domain of potential solutions, we shall optimize an 
evaluation function reflecting the expected 

d
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characteristics considered above, in order to get the 
optimized solution. 

4.1 Evaluation Function 

Considering a given μ capacity, the empirical 
distribution of [A]k.[μ] values on [-1, 1] looks as the 
following histogram (figure 3). 

 
Figure 3: Empirical distribution of inequality intensities 
with various [μ]. 

We must choose μ in such a way this distribution 
has the less as possible negative values (correct 
predictions), and the greatest as possible positive 
values (lowest specificity). This is illustrated on 
figure 3, case 2 being better than case 1, ideal case 
being this where all [A]k.[μ] would be exactly equal 
to 1.  

To meet such a distribution, we choose to 
minimize an additive cost function having the 
following form:  

 
               Φ (μ) =  k=1, …,R ϕ ([A]k.[μ])               (10) 

 
Where ϕ is a function : [-1, 1]m → IR+ continue, 

strictly decreasing, and C1 class, with: 
 ϕ (1) = 0 (case of perfect ordering);  
 Lim δ → -1 ϕ (δ) = +∞ (case of worst ordering). 

 
ϕ being in addition strictly convex: ∀δx  > 0, ϕ(-δx) 
+ ϕ(δx) > 2.ϕ(0) will give us assurance that a defect 
of ordering corresponding to -δx is not compensated 
by an overage of same intensity δx. 

So, we can choose a local cost function: 
 

       ϕ (x) = - L.log2 (½.(x + 1)), with L ∈ IR+        (11) 

 
Normalizing the expression of ϕ(x) with respect 

to R, number of inequality statements, we get: 
 

Φ (μ) = -(1/R).  k=1, …,R log2 (½.([A]k.[μ] + 1))   (12) 
 

This quantity quantifies the average “degree of 
order” present in results delivered by Cμ integral with 
respect to evidence, expressing thus the predictive 
capability of Cμ with the chosen [μ]. This order 
reflects both the crispness of the aggregated 
prediction and its degree of matching with reality. 

More generally, we may use a function: 
 

      Φ (μ) = - (1/R).  k=1, …,R log2 (ν([A]k.[μ]) )       (13) 
 
ν(δ) being a fuzzy comparator, associating to any 

[A]k.[μ] ∈ [-1, 1] a value ∈ [0,1], that is in fact the 
degree of truth of the assertion:  

 
               [Cμ(Xd) < Cμ(XEvidence(d))]                    (14) 
 
ν may be for example ν(δ) = ½.λ.(1 + erf((√2.δ)), 

where erf is the Gauss error function, enabling us to 
take into account a known inaccuracy of input values 
x. Our first expression corresponds just to the case 
where ν is the linear comparator ν(δ) = ½.(δ  + 1). 

4.2 A Measure of Order 

More generally, one can associate to any fuzzy 
prediction xi, i=1,…, D, a quantity S reflecting an 
actual lack of information in comparison with 
evidence, the considered prediction being here either 
information delivered by a single particular source, or 
a result from a multisource aggregation operator.  

 
   S = - (1/(D-1)). k=1, …, D-1 log2 (ν([A]k.[μ]))   (15) 

 
We can equivalently consider a quality factor 

defined by Q = 2-S ϵ [0, 1], 1 being the value 
corresponding to a perfect prediction, and 0 standing 
for an absence of information. The figure 4 presents 
some examples of different qualities of prediction. 

  
Figure 4: Examples of fuzzy predictions with associated S 
values. 
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Φ(μ) appears as the average value of S on the 
given training dataset. It represents the expected 
value of S related to a new prediction and quantifies 
thus the performance of the aggregation operator. 

5 ALGORITHM 

The function Φ(μ) being strictly convex as a sum of 
strictly convex functions, and then, having a unique 
minimum, we use a simple gradient descent method 
to minimize it.  

At first, we shall combine this basic method with 
the use of a penalization function in order to keep 
candidate solutions inside the limits of the domain of 
validity defined by the set of inequations (8). 

5.1 Gradient Descent 

The solution is a (2n–1) dimension vector [μ] = [μ1, ..., 
μn, μ1,1, …., μn-1,n, … , μ1, …,n], denoted here [m] = [m1, 
m2, ….., m2n-1], minimizing Φ. Φ may be expressed 
as: 

 Φ(m) = - L. k=1, …,R Log(1+  i=1, …,2n-1 ak,i.mi) 
(16) 

Where ak,i is the ith component of [A]k, and where 
L=1/(R.Log(2)), the jth component of the gradient 
being: 

∂Φ/∂mj(m) = -L.k=1, …,R ak,j /(1+i=1, …,2n-1ak,i.mi) 
 (17) 

First, we calculate, for each statement of 
inequality k, the 2n-1 values ai,k. Then, a loop 
calculates successive iterations mp of the m vector, 
according to the formula:  

            mp+1 = mp - εp.grad(mp) + Ψ(mp)            (18) 

Where grad(mp) is the gradient vector [∂Φ/∂mj(mp)], 
and where Ψ(mp) represents a penalization related to 
domain frontiers, i.e. associated to the constraints μi, 

≥ 0, μi1,i2  ≥ μi1, μi1,i2, i3  ≥ μi1,i2, …, and εp being a step 
size with an initial value ε0, and possibly updated at 
each iteration.  
 

The iteration loop stops when || mp+1 – mp || < η, where 
η is a predefined value. 

5.2 Penalization and Projected 
Gradient 

We consider the frontiers of the solution domain with 
the use of a penalization function m → Ψ(m) defined 
as: 
 

        Ψ(m) = i=1, …,n θ(μi) 

                        + S ⊆N,S≠ Ø,S≠ N,{i}∩S=Ø θ(μS∪{i}-μS)    (19) 

 
where θ is continuous and derivable, θ(x) ≈ 0 for 

x > 0, θ(x) being large positive for x < 0. E.g., for n = 
2, to express the required constraints μ1≥0, μ2≥0, 
μ1≤μ1,2, μ2≤μ1,2, and μ1,2≤ 1, we shall have Ψ([μ1, μ2, 
μ1,2]) = θ(μ1) + θ(μ2) + θ(μ1,2 - μ1) + θ(μ1,2 - μ2) + θ(1 - 
μ1,2). 

We use here a simple exterior penalization θ(x) = 
min(x, 0))2/(2. γ), γ being a parameter in relationship 
with the expected result accuracy (e.g., η = 0.01). 

As convergence process may be long, especially 
when the optimum solution is on the domain frontier, 
i.e. on one of the canonical hyperplanes μi=0, …, μi1, 

…, ip =μi1, …, ip, ip+1, …, μi1, …, in=1, instead of a 
penalization, we use an adaptation of projected 
gradient method, that is simple in our case where 
domain is a convex polytope closed by a set of 
canonical hyperplanes. 

At each iteration, we evaluate the functions ωi (μ) 
= μi, …, ωi1, …, ip, ip+1 (μ) = μi1, …, ip, ip+1 - μi1, …, ip, and ωi1, 

…, in (μ) = 1 -  μi1, …, in, a negative ω value meaning the 
candidate solution vector mp is out of the domain. In 
this case, the actual step εp is chosen in such a way 
that candidate solution is put just on the frontier. 
Then, at the next iteration, gradient grad(mp) is 
replaced by grad(mp)proj, orthogonal projection of 
grad(mp) on the considered hyperplane, ensuring that 
the new candidate solution will remain inside the 
domain. 

5.3 Overview of the Algorithm 

The algorithm is shown in pseudo-code (cf. Figure 5). 
The first line initializes the Choquet integral 
coefficients, number of days and sources of the 
current session and penalization function (pf). 
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Figure 5: Algorithm in pseudo-code. 

6 CASE STUDY AND 
NUMERICAL RESULTS 

The smart farming consists in the implementation of 
"intelligent" tools intended to support and control all 
the actions required on the crops based on collected 
information. In this context, sensors attached to 
agricultural plots carry out physical variables, 
enabling to periodically collect and store data. All 
these sources provide partial, imprecise, and 
uncertain information about reality.  

Therefore, in smart farmer context, at first, it is 
necessary to develop an estimated future state of the 
reality regarding the development of culture, based on 
a set of imperfect measures. Such an estimate state 
has to be maintained and improved over time. Our 
evaluations of the proposed approach are led in the 
context of crop monitoring, and aim at predicting the 
growth stages, called phenological stages, of a plant. 
So, in each stage, we propose to predict (reconsidered 
and refined in real time according to the new available 
information/data) the transition date to the next stage 
of plant development. This is a key factor for the 
farmer, which will allow each action to be carried out. 

 

6.1 Experimental Setup 

In a smart farming application, the days of transition 
from a growth stage to the next one is a very 
important issue for operators like farmers, who can 
then take the right actions at time t, to plan the 
sequence of actions to be taken with the right timing, 
e.g. fertilization, watering, other treatments. The n 
sources are then the predictions delivered according 
to n different methods with various input data and 
processes. 

As an illustrative example, we base our 
experiment, for a given culture, on three sources of 
input, which are: 
 The classical empirical calculation called 

“growing degree-days method”; 
 A statistical model of the plant; 
 A digital image processing. 

6.1.1 Classical Empirical Calculation 

The growing degree-days method is based on the 
cumulative daily variations of observed ambient 
temperature, according to the following formula, 
valid in absence of any disturbing element (e.g. 
stressing environmental factors like unseasonal 
drought or disease) and under given temperature 
conditions: 

 

 GDD(d)=n=D0, 1, …, d [(Tmax(n) – Tmin(n))/2 -Tbase]   (20) 

 
Where: 
 Tmax(n) and Tmin(n) are the minimum and 

maximum temperature measured during day n, 
computed from day D0, changeover day in the 
current growth stage; 

 Tbase is a constant value depending on the plant 
(called “zero vegetation temperature”). 

 
This calculation, based on daily measured 

temperatures allows the estimation of changeover day 
to the next stage (day d*) for which GDD(d*) reaches 
a known value, denoted DJ0 I, specific constant 
depending on both the current growth-stage and the 
considered plant). The calculation will be based on 
the weather data recorded up to the current day d, then 
on the weather forecast from day d+1. In practice, 
such a prediction is attached to low precision but quite 
good trueness. In general, the closer the planned 
changeover date is, the more precise is the prediction 
on day d, this prediction being moreover daily 
refined. 

  Initialize muij, d, s, epsilon, pf(x) 

  /* 2-dimensions confidence table for 

data source/day */ 

  list[d][s]sessionDS     

  /* Confidence at transition day */ 

  list[s] transitionDS  

  list[d] deltaEquationList = map(-, 

(CreateEquation(transistionDS), 

createEquation(sessionDS))) 

  list[d] entropyEquationList = map(-log2 

(erf(x)), deltaEquationList) 

  do { 

  dict gradientDict[key=“muij”].values 

= sum (map(diff(muij), 

    EntropyEquationList(muij))) 

  dict 

penalizationDict[key=“muij”].values = 

sum(map(min(diff(pf(x)), muij),0)  

  /* Penalization */ 

  new_muij = muij  

    + epsilon* (gradientDict[“muij”]  

    + penalizationDict [“muij”])  

  } while (sqrt(sum(new_muij-muij)**2) < 

epsilon 
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6.1.2 Statistical Model of the Plant  

The statistical model of the plant. Such a model 
depends on various parameters, such as the type of 
plant and the considered region. From data given as 
input and representative of the context (e.g. average 
temperature or soil quality indexes), such a model 
provides a prediction (by the application of a formula 
or an extrapolation from a table).  

This prediction will be affected of a certain degree 
of confidence that depends on the quality of the 
model, and more or less good fits to empirical data. 
In practice, a prediction will therefore result in a 
confidence interval, i.e. a confidence interval 
associated to a given confidence threshold. 

6.1.3 Digital Image Processing 

Observation by digital image processing delivers a 
measurement based on visual characteristics (red and 
infrared channels) of the observed plant, issued from 
a satellite image, with calculation of NDVI 
(Normalized Difference Vegetation Index). 

Using different cameras in different locations, 
such a source can also perform a digital image 
processing aiming at extracting typical visual 
characteristics of growth stages, e.g. specific forms 
and their degree of development. The results issued 
from such growth-stage prediction methods are also 
imprecise.  

6.2 Experimental Evaluation 

The case study concerns the cultivation of winter 
wheat in Normandy, which is a region with a 
temperate oceanic climate in France. This case is 
based on simulation data mixed with data from past 
experiences. In this example, we are at the beginning 
of stage 8 (maturity) and we are trying to predict the 
end of ripening and therefore the beginning of stage 9 
(senescence), in order to harvest wheat. The prototype 
was developed in Python 3 programming language. 

In order to assess the robustness of our algorithm, 
we placed as inputs noisy sensor confidence data, 
with Gaussian noises of increasing standard 
deviations. Figure 6 illustrates examples of graphs 
obtained with noisy data sources. 

We performed a simulation with noisy input 50 
times per noise value (Gaussian noise with standard 
deviation from 0.05 to 0.15). For each simulation, we 
computed descriptive statistics about the predicted 
day of passage (cf. table 1). These analyses seem to 
show a certain robustness of the algorithm, even with  
 

 

Figure 6: Predicted days for the next growth stage. 

noisy signal. The predicted day does not seem to vary 
significantly. Table 1 contains the summary of the 
simulations. 

Table 1: Experimental results. 

Noise 

Predicted day Avg max 
Choquet 
integral 
value

Avg Std 
deviation Min Max 

0.05 31.72 1.266 30 35 0.806 

0.075 32.26 1.467 30 35 0.809 

0.1 32.52 1.459 30 35 0.821 

0.15 32.1 1.992 29 37 0.880 

7 CONCLUSION AND FUTURE 
WORK 

In this paper, we proposed a Choquet-based decision 
model associated to a parameter identification 
approach. We explored the genericity, the non-
additivity and the synergies between the different 
criteria parameters, related to the Choquet integral, to 
propose a solution as an answer to the difficulty of 
defining several parameters values. 
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In our proposal, we identified the parameters of a 
Choquet-based decision model from a training dataset 
(the sources data and the observed reality) to propose 
the coefficients based on a large set of preferences 
constraints. A measure aiming at evaluating the 
prediction capability, attaching to any potential 
solution a degree of order, has been detailed. 

The case study concerns smart farming, and the 
implemented prototype allows, for a given culture 
and several sources of input, to help farmers to predict 
the senescence growth stage. We have studied how 
the Choquet integral has led to a parameter's 
identification for decision model.  The case study 
concerns the cultivation of winter wheat in 
Normandy. Indeed, for a given culture, several 
sources of input are considered, mainly the classical 
empirical calculation called "growing degree-days", a 
statistical model of the plant and observation given by 
digital image processing. 

The experimental results are very encouraging, 
the predicted day is stable despite the variation of the 
noise value. The proposed algorithm is currently 
extended to integrate the entropy criterion. 

Future work will include extending the proposal 
to support the Bi-capacities, which emerge as a 
natural generalization of capacities in such a context 
and could be interesting to integrate information that 
goes to against a phase transition over a given period. 
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